| SIGMA 3 (2007), 070, 23 pages arXiv:0705.3628 http://dx.doi.org/10.3842/SIGMA.2007.070 Contribution to the Vadim Kuznetsov Memorial Issue Hamilton-Jacobi Theory and Moving Frames Joshua D. MacArthur ^{a}, Raymond G. McLenaghan ^{b} and Roman G. Smirnov ^{a} ^{a)} Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 3J5 ^{b)} Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 Received February 03, 2007, in final form May 14, 2007; Published online May 24, 2007 Abstract The interplay between the Hamilton-Jacobi theory of orthogonal separation of variables and the theory of group actions is investigated based on concrete examples. Key words: Hamilton-Jacobi theory; orthogonal separable coordinates; Killing tensors; group action; moving frame map; regular foliation. pdf (432 kb) ps (299 kb) tex (224 kb) References - Benenti S., Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation, J. Math. Phys. 38 (1997), 6578-6602.
- Eisenhart L.P., Separable systems of Stäckel, Ann. Math. 35 (1934), 284-305.
- Olver P.J., Moving coframes. I. A practical algorithm, Acta. Appl. Math. 51 (1998), 161-213.
- Fels M., Olver P.J., Moving coframes. II. Regularization and theoretical foundations, Acta. Appl. Math. 55 (1999), 127-208.
- Horwood J.T., McLenaghan R.G., Smirnov R.G., Invariant classification of orthogonal separable Hamiltonian systems in Euclidean space, Comm. Math. Phys. 221 (2005), 679-709, math-ph/0605023.
- Kuznetsov V.B., Simultaneous separation for the Kowalevski and Goryachev-Chaplygin gyrostats, J. Phys. A: Math. Gen. 35 (2002), 6419-6430, nlin.SI/0201004.
- MacArthur J.D., The equivalence problem in differential geometry, MSc thesis, Dalhousie University, 2005.
- McLenaghan R.G., Smirnov R.G., The D., Group invariant classification of separable Hamiltonian systems in the Euclidean plane and the O(4)-symmetric Yang-Mills theories of Yatsun, J. Math. Phys. 43 (2002), 1422-1440.
- McLenaghan R.G., Smirnov R.G., The D., An extension of the classical theory of invariants to pseudo-Riemannian geometry and Hamiltonian mechanics, J. Math. Phys. 45 (2004), 1079-1120.
- Olver P.J., Classical invariant theory, Student Texts, Vol. 44, London Mathematical Society, Cambridge University Press, 1999.
- Palais R.S., A global formulation of the Lie theory of transportation groups, Memoirs Amer. Math. Soc., no. 22, AMS, Providence, R.I., 1957.
- The D., Notes on complete sets of group-invariants in K^{2}(R^{2}) and K^{3}(R^{2}), 2004, unpublished.
| |