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Symplectic Reduction of Sheaves of A-modules

Anastasios Mallios, Patrice P. Ntumba∗

Abstract

Given an arbitrary sheaf E of A-modules (or A-module in short)
on a topological space X, we define annihilator sheaves of sub-A-
modules of E in a way similar to the classical case, and obtain there-
after the analog of the main theorem, regarding classical annihilators
in module theory, see Curtis[[5], pp. 240-242]. The familiar classical
properties, satisfied by annihilator sheaves, allow us to set clearly the
sheaf-theoretic version of symplectic reduction, which is the main goal
in this paper.

Subject Classification (2000): 55P05.
Key Words: A-module, annihilator sheaves, ordered R-algebraized space, ,
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Introduction

This paper is part of our ongoing project of algebraizing classical symplectic
geometry using the tools of abstract differential geometry (à la Mallios). Our
main reference as far as abstract differential geometry is concerned is the first
author’s book [10]. For the sake of convenience, we recall here some of the
objects of abstract differential geometry that recur all throughout.

∗Is the corresponding author for the paper
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Let X be a topological space. A sheaf of C-algebras or a C-algebra
sheaf, on X, is a triple A ≡ (A, τ, X) satisfying the following conditions:

(i) A is a sheaf of rings.

(ii) Fibers Ax ≡ τ−1(x), x ∈ X, are C-algebras.

(iii) The scalar multiplication in A, viz. the map

C ×A −→ A : (c, a) 7−→ c · a ∈ Ax ⊆ A

with τ(a) = x ∈ X, is continuous; in this mapping, C is assumed to
carry the discrete topology.

The triple (A, τ, X) is called a unital C-algebra sheaf if the individual fibers
of A, Ax, x ∈ X, are unital C-algebras. A pair (X,A), with A assumed to be
unital and commutative, is called a C-algebraized space. Next, suppose that
A ≡ (A, τ, X) is a unital C-algebra sheaf on X. A sheaf of A-modules (or
an A-module), on X, is a sheaf, E ≡ (E , ρ,X), on X such that the following
properties hold:

(iv) E is a sheaf of abelian groups on X.

(v) Fibers Ex, x ∈ X, of E are Ax-modules.

(vi) The left action A ◦ E −→ E , described by

(a, z) 7−→ a · z ∈ Ex ⊆ E ,

with τ(a) = ρ(z) = x ∈ X, is continuous.

The sheaf-theoretic version of the classical notion of a dual module is defined
in this manner: Given a C-algebraized space (X,A) and an A-module E on
X, the A-module (on X)

E∗ := HomA(E ,A)

is called the dual A-module of E . For tow given A-modules on a topological
space X, HomA(E ,F) is the A-module generated on X by the (complete)
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presheaf, given by U 7−→ HomA|U (E|U ,F|U), where U runs over the open
subsets of X; the restriction maps of this presheaf are quite obvious. A most
familiar consequence regarding dual A-modules is that given a free A-module
E of finite rank on X, one has E = E∗, within an A-isomorphism.

Section 1 is concerned with annihilator sheaves of sub-A-modules of
arbitrary A-modules on one hand, and ϕ-annihilator sheaves, i.e. annihilator
sheaves (of sub-A-modules) with respect to a non-degenerate bilinear A-
morphism ϕ : E⊕F −→ A, where E and F are free A-modules of finite rank.
The sheaf-theoretic version of the main theorem on classical annihilators is
examined. The section ends with the interesting result that given a sub-A-
module F of an A-module E , the dual A-module (E/F)∗ is A-isomorphic to
the annihilator F⊥ of F .

Section 2 deals with properties of exterior rankwise A-2-forms. We
provide another proof for the affine Darboux theorem. The proof is derived
from E. Cartan[4].

Section 3, which is the last section, outlines the symplectic reduction
of an A-module E by a co-isotropic sub-A-module F of E ; the A-module E
carries a symplectic (A−) structure, given by the A-morphism ω : E ⊕E −→
A.

1 Annihilator Sheaves

Definition 1.1 Let (S, π,X) be a sheaf. By a subsheaf of S, we mean a
sheaf E on X, generated by a presheaf (E(U), σUV ) which is such that, for all
open U ⊆ X and open V ⊆ U ,

• E(U) ⊆ S(U),

• σUV = ρUV |E(U),

where (S(U) ≡ Γ(U,S), ρUV ) ≡ Γ(S) is the (complete) presheaf of sections of
the sheaf S, cf. Mallios[[10], Lemma 11.1, p. 48]. �
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We can now define the notion of sub-A-module of a given A-module,
which will be of use in the sequel.

Definition 1.2 A subsheaf E of an A-module S, defined on a topological
spaceX, is called a sub-A-module of S if E is an A-module and the inclusion
i : E ⊆ S is an A-morphism. �

Lemma 1.1 Subsheaves are open subsets, and conversely.

Proof. Let S be a sheaf on (X, T ), E a subsheaf, of S, generated by the
presheaf (E(U), σUV ), and let us denote by ℜ the set

⋃
{E(U) : U ∈ T }.

According to Mallios[[10], Theorem 3.1, p.14], the family

B = {s(U) : s ∈ ℜ and U ∈ T with U = Dom(s)}

is a basis for the topology of E , with respect to which E is a sheaf on X. But
E(U) ⊆ S(U) for every open U ⊆ X, therefore, for all s ∈ ℜ, s(U) is open
in S, and thus

⋃
B = E is open in S, as desired.

For the converse, see Mallios[[10], p. 5].

It follows from Lemma 1.1 that Definition 1.1 and Mallios’ definition
of subsheaf, see Mallios[[10], p. 5], are equivalent.

Definition 1.3 Let E be an A-module on a topological space X, and F a
sub-A-module of E . Assume that (E(U), σUV ) is the (complete) presheaf of
sections of E . By the A-annihilator sheaf (or sheaf of A-annihilators,
or just A-annihilator) of F , we mean the sheaf generated by the presheaf,
given by the correspondence

U 7−→ F(U)⊥,

where U is an open subset of X and

F(U)⊥ = {t ∈ E∗(U) : t(s) = 0 for all s ∈ E(U)},
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along with restriction maps

(ρ⊥)UV : F(U)⊥ −→ F(V )⊥

such that
(ρ⊥)UV := (σ∗)UV |F(U)⊥ ,

with the (σ∗)UV : E∗(U) −→ E∗(V ) being the restriction maps for the dual
presheaf (E∗(U), (σ∗)UV ). We denote by

F⊥

the annihilator sheaf of F . �

It follows from Definition 1.3, that the annihilator F⊥ of a sub-A-
module F of an A-module E is a subsheaf of the dual A-module E∗.

Lemma 1.2 Let E be an A-module on a topological space X, and F a sub-
A-module of E . Then, the correspondence

U 7−→ F(U)⊥

along with maps (ρ⊥)UV , as defined above, yields a complete presheaf of A-

modules on X.

Proof. First, we notice that it is immediate that for every open U ⊆ X,
F(U)⊥ is an A(U)-module and that (F(U)⊥, (ρ⊥)UV ) is a presheaf of A-
modules on X. To see that the presheaf (F(U)⊥, (ρ⊥)UV ) is complete, let
us fix an open subset U of X and an open covering U = {Uα}α∈I of U . Next,
let s, t be two elements of F(U)⊥ such that

(ρ⊥)UUα
(s) ≡ sα = tα ≡ (ρ⊥)UUα

(t),

for every α ∈ I. Since F(U)⊥ ⊆ E∗(U), so s, t ∈ E∗(U); (E∗(U), (ρ∗)UV )
being the complete presheaf of sections associated with the sheaf E∗ (for the
completeness of (E∗(U), (ρ∗)UV ), see Mallios[[10], (6.4), Definition 6.1, p.134,
and (5.1), p.298]), and

(ρ⊥)UUα
(s) = (ρ∗)UUα

(s) and (ρ⊥)UUα
(t) = (ρ∗)UUα

(t) ,
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we have that s = t. Therefore, axiom (S1) (cf. Mallios[[10], p.46]) is satis-
fied∗.

Now, let us check that axiom (S2), see Mallios[[10], p.47], is also sat-
isfied. So, let U and U = {Uα}α∈I be as above. Furthermore, let (tα) ∈∏

αF(Uα)
⊥ be such that for any Uαβ ≡ Uα ∩ Uβ 6= ∅ in U , one has

(ρ⊥)Uα

Uαβ
(tα) ≡ tα|Uαβ

= tβ|Uαβ
≡ (ρ⊥)

Uβ

Uαβ
(tβ).

Since (ρ⊥)Uα

Uαβ
= (ρ∗)Uα

Uαβ
|F(Uα)⊥ , F(Uα)

⊥ ⊆ E∗(Uα) for all α, β ∈ I, and the

presheaf (E∗(U), (ρ∗)UV ) is complete, there exists an element t ∈ E∗(U) such
that

(ρ∗)UUα
(t) ≡ t|Uα

= tα,

for every α ∈ I. We should now show that t is indeed an element of F(U)⊥.
To this end, suppose that there exists an s ∈ E(U) such that t(s) 6= 0 ∈ A(U);
this implies that for some α ∈ I,

(ρ∗)UUα
(t)(ρUUα(s)) ≡ t|Uα

(s|Uα
) = tα(sα) 6= 0,

which is impossible as tα ∈ F(Uα)
⊥ and sα ∈ E(Uα). Thus, t ∈ F(U)⊥;

hence (S2) is satisfied.

By virtue of Proposition 11.1, see Mallios[[10], p.51], if F is a sub-A-
module of an A-module E , then

F⊥(U) = F(U)⊥ (1)

within an A(U)-isomorphism.

From the relation (1), we have the following corollary.

Corollary 1.1 Let E be an A-module on a topological space, and F a sub-
A-module of E . Then

F⊥ = {z ∈ E∗ : z(u) = 0 for all u ∈ F}.

∗We can however notice here that the presheaf of Lemma 1.2 can also be considered
as a functional presheaf by its very definition, hence axiom (S1), see Mallios[[11]relation
1.12, p. 81]
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Lemma 1.3 Let E be an A-module on a topological space X, and U an open
subset of X. Then,

E∗|U = (E|U)∗

within an A|U-isomorphism of the sheaves in question.

Proof. For any open subset V ⊆ U , we have

(E∗|U)(V ) ≡ (HomA(E ,A)|U)(V ) = HomA(E ,A)(V ) = HomA|V (E|V ,A|V ),

and
(E|U)∗(V ) ≡ HomA|U (E|U ,A|U)(V ) = HomA|V (E|V ,A|V ).

We thus conclude that since these two sheaves have isomorphic (local) sec-
tions, they are A|U -isomorphic.

Using the language of Category Theory, see MacLane[9] for Category
Theory, Lemma 1.3 infers that the dual-A-module functor (cf. Mallios[[10],
(5.20), p.301]) commutes with the restriction-(over U)-of-A-modules functor.
Schematically, we have the commutative diagram

E //

��

E∗

��

E|U // E∗|U = (E|U)∗.

The following definition hinges on Lemma 1.3 and Mallios[[10], (5.2),
p.298].

Definition 1.4 Let E and F be A-modules on a topological space X, and
let ϕ ∈ HomA|U (E|U ,F|U) = HomA(E ,F)(U) with U an open subset of X.
The adjoint of ϕ is the sheaf A|U -morphism

ϕ∗ ≡ (ϕ∗
V )U⊇V,open ≡ ((ϕV )∗)U⊇V,open ∈ Hom(A|U )∗((F|U)∗, (E|U)∗)

= HomA∗|U (F∗|U , E
∗|U) = HomA|U (F∗|U , E

∗|U) = HomA(F∗, E∗)(U)

such that for all ω ≡ (ωW )V⊇W,open ∈ HomA|V (F|V ,A|V ) = F(V ), one has

ϕ∗
V (ω) = (ω ◦ ϕ)|E|V ,
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that is
(ϕ∗

V (ω))W = ωW ◦ ϕW

for all open W ⊆ V . �

Scholium 1.1 If the A-modules E and F in Definition 1.4 are vector sheaves
on X, then concerning the adjoint ϕ∗ of an A-morphism ϕ ∈ HomA(E ,F),
we have

ϕ∗ ∈ HomA(F∗, E∗) = HomA(E ,F)∗ = HomA(F , E), (2)

where as usual the displayed equalities of (2) are A-isomorphisms of the
A-modules involved. For these foregone A-isomorphisms, see Mallios[[10],
Corollary 6.3, p.306].

Theorem 1.1 Let E and F be an A-module on a topological space X, and
ϕ ∈ HomA|U (E|U ,F|U), where U is some open subset of X. Then,

(imϕ)⊥ = kerϕ∗

within an A|U-isomorphism, that is for every open subset V ⊆ U , we have

(imϕV )⊥ = kerϕ∗
V

within an A(V )-isomorphismof modules.

Proof. Let ω ∈ (F|U)∗ = F∗|U . Then,

ω ∈ kerϕ∗
V ⇔ ϕ∗

V ω = 0
⇔ ωW ◦ ϕW = 0 for all open W ⊆ V
⇔ (ωW ◦ ϕW )(s) = 0 for all open W ⊆ V and s ∈ E(W )
⇔ ωW (t) = 0 for all open W ⊆ V and t ∈ ϕW (E(W ))
⇔ ωW ∈ im(E(W ))⊥ for all open W ⊆ V
⇔ ω ∈ (imE(V ))⊥ = (imϕV )⊥

Thus, we have the sought A(V )-isomorphism for every open V ⊆ U ; the
proof is thus finished.
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The notion of an annihilator sheaf may be generalized by considering
any two A-modules that are “dual” with respect to some non-degenerate bi-
linear A-form; i.e. A-isomorphic within an A-isomorphism determined by
the non-degenerate bilinear A-form considered. Before we define the notion
of non-degenerate bilinear A-morphism, we would like to make the following
convention: In fact, let E and F be A-modules on a topological space X. An
A-morphism ϕ ∈ HomA(E ,F) will be denoted ϕ ≡ (ϕU)U∈T or ϕ ≡ (ϕU)U∈T .
These notations will depend on the situation at hand, but this will be done
for the sole purpose of making indices a lot easier to handle.

Definition 1.5 Let E and F be A-modules on X. A bilinear A-morphism
ϕ ≡ (ϕU)X⊇U, open : E ⊕ F −→ A is said to be non-degenerate if for every
open subset U of X, the following conditions hold.

ϕU(s, t) = 0 for all t ∈ F(U) implies that s = 0

and

ϕU(s, t) = 0 for all s ∈ E(U) implies that t = 0.

�

Proposition 1.1 Let E and F be each a free A-module of finite rank, and
ϕ : E ⊕ F −→ A a non-degenerate bilinear A-morphism. For every (local)
section t ∈ F(U), let αUt : E(U) −→ A(U) be the mapping

αUt (s) := ϕU(s, t) (3)

for all s ∈ E(U). Then, the mapping αUt , as defined above, is an element
of E(U)∗ = E∗(U) = E(U), where the previous equalities are derived from
Mallios[[10], (3.14), p.122, (5.2.1), p.298]. On the other hand, the mapping

ϑ : F −→ E

defined by

ϑU(t) = αUt

yields an A-isomorphism of F onto E .
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Proof. That αUt , as given in relation (3), is an element of E∗(U) is clear. It
is also easy to see that the mapping

ϑU (t) = αUt

is a module morphism of F(U) into E∗(U), where, as above, U is an open
subset of X. Now, let us show that every component ϑU of ϑ is an isomor-
phism of A(U)-modules F(U) and E(U). To this purpose, suppose first that
ϑU(t) = ϑU(t′), for t, t′ ∈ F(U); then

ϕU(s, t) = ϕU(s, t′)

for all s ∈ E(U). By the bilinearity and non-degeneracy of ϕ, we have that
t = t′. Therefore, ϑU is one-to-one.

Now, suppose that the ranks of the free A-modules E and F are n and
m, respectively, that is E = An and F = Am within A-isomorphisms. Since
ϑU : F(U) = Am(U) −→ An(U) = E(U) is one-to-one and Ak(U) is a free
module for every k ∈ N, it follows that

dim E(U) ≥ dimF(U).

By a similar argument, one shows that there exists a one-to-one A(U)-
morphism of E(U) into F(U), and therefore

dimF(U) ≥ dim E(U);

hence
dim E(U) = dimF(U);

which implies that ϑU is onto. Therefore, for every open U ⊆ X, E(U) is
A(U)-isomorphic to F(U). The restriction maps of the associated complete
presheaves of sections (Γ(U, E), ρUV ) and (Γ(U,F , λUV ) can be chosen in such
a way that the diagram

F(U)
ϑU

//

λU
V

��

E(U)

ρU
V

��

F(V )
ϑV

// E(V )

commutes. Hence, ϑ ≡ (ϑU ) is an A-isomorphism between F and E .

From Proposition 1.1, we bring about the following definition.
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Definition 1.6 A pair of free A-modules E and F are said to be A-dual

or just dual with respect to a bilinear A-morphism ϕ : E ⊕ F −→ A if ϕ is
non-degenerate. If we want to stress the fact that ϕ is the bilinear map with
respect to which the free A-modules E and F are dual, we shall say that E
and F are ϕ-dual. �

We also need the following definition.

Definition 1.7 Let E and F be ϕ-dual free A-modules, S ≡ (SU) ∈ EndAE :=
(EndAE)(X), and T ≡ (TU) ∈ EndAF := (EndAF)(X). Then, S and T are
said to be transposes of each other provided that

ϕU(s, TU(t)) = ϕU(SU(s), t)

for all s ∈ E(U) and t ∈ F(U). �

Theorem 1.2 Let E and F be free A-modules which are dual with respect to
a bilinear A-morphism ϕ : E ⊕ F −→ A. Moreover, let S ≡ (SU) ∈ EndAE ;
then there exists a uniquely determined family

T ≡ (TU) ∈
∏

X⊇U,open

EndA(U)F(U)

such that for all open U ⊆ X, SU and TU are transposes of each other.
Furthermore, if T ≡ (TU) is an A-endomorphism F −→ F , then S and T
are transposes of each other as sheaf morphisms.

Proof. We have to show that for all open U ⊆ X and t ∈ F(U), there exists
a unique element t′ ∈ F(U) such that

ϕU(s, t′) = ϕU(SU(s), t), s ∈ E(U), (4)

so that we can define TU(t) to be t′. For each open U ⊆ X, SU ∈ EndA(U)E(U);
because of the latter the mapping

ψU : s 7−→ ϕU(SU(s), t)
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is an element of E∗(U) = E(U). By Proposition 1.1, there exists a unique
element t′ ∈ F(U) such that

ϑU(t′)(= αUt′ ) = ψU ;

so for all s ∈ E(U), we have

ϕU(s, t′) = ϕU(SU(s), t).

Now, define TU : F(U) −→ F(U) as TU(r) = r′, where r′ is the solution of
the equation obtained by substituting r for t in (4). Then, we have

ϕU(s, TU(t)) = ϕU(SU(s), t)

for all s ∈ E(U) and t ∈ F(U). The mapping TU is an A(U)-endomorphism
of F(U). (The details of checking that TU ∈ EndA(U)E(U) are presented in
the proof of Theorem (27.7), [5], p.239.)

Lemma 1.4 Let E and F be dual free A-modules, with respect to a non-
degenerate bilinear A-morphism ϕ, and G a sub-A-module of E . For all open
U ⊆ X, let

G(U)⊥ := {t ∈ F(U) : ϕU(s, t) = 0, for all s ∈ G(U)}.

Moreover, let (σ⊥)UV : G(U)⊥ −→ G(V )⊥, where V ⊆ U , with V and U open
in X, be mappings

(σ⊥)UV := ρUV |G(U)⊥,

where the ρUV are the restriction maps for the (complete) presheaf of sections
(F(U), ρUV ). Then, the correspondence

U 7−→ G(U)⊥, (5)

along with the maps (σ⊥)UV , yields a complete presheaf of A-modules on X.

Proof. We first notice, by virtue of Proposition 1.1, that, for all open subset
U ⊆ X, F(U) is A(U)-isomorphic to E(U), so that restricting a map such as
ρUV : E(U) −→ E(V ) to G(U)⊥ makes sense.

The rest of the proof is similar to the proof of Lemma 1.2.

Lemma 1.4 makes the following definition rather natural.
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Definition 1.8 Let E , G and F be as in Lemma 1.4. We denote by

G⊥

the sheaf on X generated by the (complete) presheaf defined by (5). We call
it the A-annihilator sheaf of G with respect to the non-degenerate bilinear
A-morphism ϕ (or Aϕ-annihilator) of G. �

Corollary 1.2 For any ϕ-dual free A-modules E and F on X, the annihi-
lator sheaf G⊥ of a subsheaf G of E , as defined above, is an A-module on
X.

We are now set for the main theorem on A-annihilator sheaves. The
results of the analog theorem in classical module theory can be found in
Curtis[[5], pp. 240-242], Adkins and Weintraub[[2], pp. 345-349]. But before
we state the theorem, we open a breach for the analog of a submodule of a
module M , generated by the set ∪i∈IMi, where every Mi is a submodule of
M .

Lemma 1.5 Let E be an A-module on X, and (Fi)i∈I a family of sub-A-
modules of E . For every open U ⊆ X, let

F (U) := 〈∪i∈IFi(U)〉,

that is F (U) is the A(U)-submodule of E(U), generated by ∪i∈IFi(U), i.e.
F (U) is the sum of the family (Fi(U))i∈I . The presheaf, given by

U 7→ F (U) := 〈∪i∈IFi(U)〉, (6)

where U runs over the open subsets of X, along with restriction maps σUV =
ρUV |F(U) ((E(U), ρUV ) is the presheaf of sections of E ), is complete.

Proof. That (F (U), σUV ) is a presheaf of A-modules on X is easy to see. To
see that the presheaf (F (U), σUV ) is complete, we need check axioms (S1) and
(S2) in Mallios[[10], pp. 46-47]. It is easy to see that axiom (S1) is satisfied.
To verify that axiom (S2) is satisfied, let U be an open subset of X and
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U = (Uα)α∈I an open covering of U . Furthermore, let (tα) =
∏

α F (Uα) be
such that for any Uαβ ≡ Uα ∩ Uβ 6= ∅ in U , one has

σUα

Uαβ
(tα) ≡ tα|Uαβ

= tβ|Uαβ
≡ σ

Uβ

Uαβ
(tβ).

Since σUα

Uαβ
= ρUα

Uαβ
|F (Uα), F (Uα) ⊆ E(Uα) for all α, β ∈ I, and the presheaf

(E(U), ρUV ) is complete, there exists an element t ∈ E(U) such that

ρUUα
(t) ≡ t|Uα

= tα,

for every α ∈ I. It remains to show that t is indeed an element of F (U).
Suppose that t is not an element of F (U), so it follows that t cannot be
written as t =

∑m
k∈J⊆I aikt

ik , with J finite, aik ∈ A(U), and tik ∈ Fik(U).
This means that for some x ∈ U , tx ≡ t(x) cannot be written as a linear
combination of finitely many tikx ≡ tik(x), where tik ∈ Fik(U) and k ∈ J with
J a finite subset of I. But this is a contradiction as x ∈ Uα for some α ∈ I,
and t|Uα

=
∑m

k=1 aikt
ik , where m ∈ N, aik ∈ A(Uα), and tik ∈ Fik(Uα). Thus,

t ∈ F (U), and the proof is finished.

Definition 1.9 Keeping with the notations of Lemma 1.5, we denote by

F ≡
∑

i∈I

Fi

the sub-A-module, on X, of E , generated by the presheaf defined by (6).
We call the sub-A-module

∑
i∈I Fi the sum of the family (Fi)i∈I . In the

case where the index set I is finite, say I = {1, . . . , m}, we shall often write∑
i∈I Fi as

∑m
i=1 Fi, or F1 + . . .+ Fm. �

On another side, it is readily verified that :

Given an A-module E and a family (Fi)i∈I of sub-A-modules, the
correspondence

U 7−→ (∩i∈IFi)(U) ≡ ∩i∈I(Fi(U)), (7)

where U is any open set in X, along with the obvious restriction
maps yield a complete presheaf of A-modules on X.
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The sheaf generated by the presheaf given by (7) is called the intersection

sub-A-module of the family (Fi)i∈I and is denoted

∩i∈IFi.

Thus, based on Mallios[[10], Proposition 11.1, p. 51], one has

(∩i∈IFi)(U) = ∩i∈I(Fi(U))

for every open set U ⊆ X.

Theorem 1.3 Let E and F be free A-modules of finite rank on X, dual with
respect to a non-degenerate bilinear A-form ϕ, and let G and H be sub-A-
modules of E . Then

(a) dimG(U) + dimG⊥(U) = dim E(U), for all open U ⊆ X.

(b) (G⊥)⊥ = G.

(c) G⊥ ∩H⊥ = (G + H)⊥.

(d) (G ∩ H)⊥ = G⊥ + H⊥.

(e) † The mapping G 7−→ G⊥ is a one-to-one mapping of the set of sub-
A-modules of E onto the set of sub-A-modules of F , such that G ⊆ H
implies that G⊥ ⊇ H⊥.

(f) If E = G ⊕H, then F = G⊥ ⊕H⊥.

(g) The A-modules G and F/G⊥ are dual A-modules with respect to the
non-degenerate bilinear A-form ϕ̃, defined by

ϕ̃U(s, [t]) = ϕU(s, t)

for all s ∈ G(U) and ṫ ∈ (F/G⊥)(U) = F(U)/G⊥(U), with U running
over the open subsets of X.

†Assertion (e) is otherwise stated as E and F having isomorphic “projective geometries”,
that is p(E) is isomorphic to p(F). See Gruenberg and Weir[[6], p.29].
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(h) Suppose that S ∈ EndAE and T ∈ EndAF are transposes of each other
with respect to ϕ, and suppose that G is an S-invariant sub-A-module
of E , i.e.

SU(s) ∈ G(U)

for all s ∈ G(U) and U open in X. Then, G⊥ is T -invariant, and
the restriction S|G ≡

(
SU |G(U)

)
X⊇U,open

and the induced A-morphism

T ∗ ≡ TF/G⊥ are transposes of each other with respect to the bilinear
A-form ϕ̃, defined in part (g).

Proof. (a) Suppose that the rank of E is n (n ∈ N), i.e. E = An within an
A-isomorphism, so that E(U) is A(U)-isomorphic to An(U) for every open
U ⊆ X. Now, let us fix an open subset U of X; then we have

G(U) = Ak(U)(U) ≡ Ak(U)

within an A(U)-isomorphism and such that 1 ≤ k ≤ n. Next, let {eUi }1≤i≤n

be the canonical basis of E(U), obtained from the Kronecker gauge {εUi }1≤i≤n

(cf. Mallios[[10], p.123]) through the A-isomorphism E = An. Since F(U)
is A(U)-isomorphic to E(U) = E(U)∗ = E∗(U), we can find, see Blyth[[3],
Theorem 9.1, p.116], a basis {fUj }1≤j≤n such that, using Proposition 1.1, we
have

ϕU(eUi , f
U
j ) =

{
0U , i 6= j
1U , i = j.

We assert that {fUk+1, . . . , f
U
n } is a basis of G(U)⊥. This is clearly established

as {eUi }1≤i≤n is a basis of G(U), ϕU(eUi , f
U
j ) = 0U , for all 1 ≤ i ≤ k, k + 1 ≤

j ≤ n, and fUk+1, . . . , f
U
n are linearly independent and generate G(U)⊥. To

see that fUk+1, . . . , f
U
n generate G(U)⊥, let s =

∑n
i=1 αif

U
i ∈ G(U)⊥. Since

ϕU(eUi , s) = 0U , 1 ≤ i ≤ k, we have that αi = 0 for 1 ≤ i ≤ k. Thus,
assertion (a) is proved.

(b) We have, for every open U ⊆ X,

G(U) ⊆ (G⊥(U))⊥ = (G(U)⊥)⊥ ≡ G(U)⊥⊥.

From part (a), we have, for all open U ⊆ X,

dim(G⊥(U))⊥ = dimF(U) − dimG⊥(U)

= dimF(U) − (dim E(U) − dimG(U))

= dimG(U),
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form which we deduce that for all open U ⊆ X,

G(U) = (G⊥(U))⊥

within an A(U)-isomorphism. Hence, the A(U)-isomorphisms G(U) = (G⊥(U))⊥,
U running over the open subsets of X, along with the restriction maps σUV
yield a complete presheaf, defined by

U 7−→ G⊥⊥ ≡ (G(U))⊥⊥ := (G⊥(U))⊥.

It follows that if (G⊥)⊥ ≡ G⊥⊥ is the sheaf corresponding to the preceding
(complete) presheaf, then we have

(G⊥)⊥ = G

within an A-isomorphism.

(c) For every open U ⊆ X, one has

(G⊥ ∩H⊥)(U) = G⊥(U) ∩H⊥(U)

= G(U)⊥ ∩H(U)⊥

= (G(U) + H(U))⊥

= ((G + H)(U))⊥

= (G + H)⊥(U);

it follows that G⊥ ∩H⊥ = (G + H)⊥ within an A-isomorphism.

(d) is shown by combining (b) and (c).

(e) Clearly for all open U ⊆ X, G(U) ⊆ H(U) implies that

G⊥(U) = G(U)⊥ ⊇ H(U)⊥ = H⊥(U).

So, if

{
(
(σ⊥)

)U
V

: G⊥(U) −→ G⊥(V )| V , U are open in X and V ⊆ U}

is the set of restriction maps for the (complete) presheaf of sections of the
annihilator sheaf G⊥, then by taking

(
λ⊥

)U
V

:=
(
σ⊥

)U
V
|H⊥(U) = ρUV |H⊥(U)
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we obtain the (complete) presheaf of sections of the sheaf H⊥. Therefore,
we have H⊥ ⊆ G⊥. For the one-to-one property, suppose that G⊥ = H⊥.
Applying (b), we have

G =
(
G⊥

)⊥
=

(
H⊥

)⊥
= H,

where the previous equalities are actually A-isomorphisms. The proof that
every sub-A-module N of the A-module F has the form G⊥ for some sub-
A-module G of E is immediate. In effect, applying (b), we have

N =
(
N⊥

)⊥

within an A-isomorphism. Taking G = N⊥ corroborates the assertion.

(f) It suffices to show that if U is an open subset of X, then E(U) =
G(U) ⊕H(U) implies that F(U) = G⊥(U) ⊕ (H)⊥(U). But this is shown in
Curtis[[5], p.242, part (d) of proof of Theorem (27.12)].

(g) That ϕ̃ is well defined is immediate. In fact, fix an open subset U
of X; then for every s ∈ G(U) and ṫ = ṫ′ ∈ (F/(E)⊥)(U) = F(U)/(G)⊥(U),
we have

ϕU(s, t′) = ϕU(s, t+ z) = ϕU(s, t)

since s ∈ G(U), and t′ = t+ z with z ∈ G(U)⊥ = (G)⊥(U). it is obvious that
ϕ̃ is bilinear. The proof that ϕ̃U is non-degenerate for all open U ⊆ X can
be found in Curtis[[5], p242, part (e) of proof of Theorem (27.12)].

(h) We show first that T (G⊥) ⊆ G⊥, that is

T (G⊥)(U) := TU(G⊥(U)) = TU(G(U)⊥) ⊆ G⊥(U) = G(U)⊥,

for all open U ⊆ X. Let us consider arbitrarily any open subset U ⊆ X, and
let s ∈ G(U) and t ∈ G(U)⊥. Then,

ϕU(s, TU(t)) = ϕU(SU(s), t) = 0U ,

because SU(G(U)) ⊆ G(U); therefore TU(G(U)⊥) ⊆ G(U)⊥. For the remain-
ing part of (f), we start by noticing that for every open U ⊆ X,

(T ∗)U ◦ qU = qU ◦ TU
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where q is the quotient A-morphism F −→ F/G⊥. It is sufficient to prove
that for s ∈ G(U), t ∈ F(U),

ϕ̃U(SU |G(U)(s), ṫ) = ϕ̃U(s, (T ∗)U(ṫ));

this statement is equivalent to showing that

ϕU(SU(s), t) = ϕU(s, TU(t)),

which is exactly the condition that S and T are transposes of each other.

The last part of this section concerns with the A-isomorphism of the
A-annihilator of a sub-A-module F of an A-module E and the dual (E/F)∗

of the quotient A-module E/F . This question requires some preparation.

Definition 1.10 Let E and F be A-modules on a topological space X, U
an open subset of X, and ϕ ∈ HomA(E ,F)(U) = HomA|U (E|U ,F|U). For
any A-module G on X, we define an A(U)-morphism

HomA(G, E)(U)
ϕ∗

// HomA(G,F)(U)

by setting

ϕ∗(f) = ϕ ◦ f ≡ (ϕV ◦ fV )U⊇V,open ≡ ((ϕV )∗(fV ))U⊇V,open

for all f ∈ HomA(G, E)(U). Likewise, we can define an A(U)-morphism

HomA(E ,G)(U)
ϕ∗

// HomA(F ,G)(U)

by the assignment

ϕ∗(f) = f ◦ ϕ ≡ (fV ◦ ϕV )U⊇V,open ≡ ((ϕV )∗(fV ))U⊇V,open

for all f ∈ HomA(E ,G)(U).

Proposition 1.2 Let E , F , and G be A-modules on X, ϕ ∈ HomA(E ,F)(U)
and ψ ∈ HomA(F ,G)(U), where U is an open subset of X. Then, we have
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(1) (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗

(2) (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

Proof. Immediate.

Our main interest in the above induced A(U)-morphisms ϕ∗ and ϕ∗

transpires in the following theorem.

Theorem 1.4 Consider a short exact sequence

0 // E ′
ϕ

// E
ψ

// E ′′ // 0

of A-modules (on X) and A-morphisms. For an arbitrary A-module F , the
induced sequences of A(X)-modules and A(X)-morphisms

(1) 0 // HomA(F , E ′)(X)
ϕ∗

// HomA(F , E)(X)
ψ∗

// HomA(F , E ′′)(X)

(2) 0 // HomA(E ′′,F)(X)
ψ∗

// HomA(E ,F)(X)
ϕ∗

// HomA(E ′,F)(X)

are exact. The diagrams above are A-isomorphic to the diagrams

(1′) 0 // HomA(F , E ′)
ϕ∗

// HomA(F , E)
ψ∗

// HomA(F , E ′′)

(2′) 0 // HomA(E ′′,F)
ψ∗

// HomA(E ,F)
ϕ∗

// HomA(E ′,F)

Proof. We shall show that (1) is exact. The sequence (2) is established in a
similar way.

First, let f ∈ kerϕ∗. We have 0 = ϕ∗(f) = ϕ ◦ f ∈ HomA(F , E)(X),
whence f = (0U)X⊇U,open with 0U : F(U) −→ E(U), 0U(s) = 0 for all s ∈
F(U) and all open subset U ⊆ X, which means that ϕ∗ is one-to-one.
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Next, let us show that imϕ∗ is an A(X)-submodule of the A(X)-module
kerψ∗. (See Mallios[[10], pp 108, 109] for a proof of the statement: Given
A-modules E , F , and an A-morphism φ : E −→ F . Then, kerφ := {z ∈ E :
φ(z) = 0} and imφ := φ(E) ⊆ F are A-modules; consequently ker φ(X) and
imφ(X) are A(X)-modules.) If f ∈ imϕ∗, there exists f ′ ∈ HomA(F , E ′)(X)
such that f = ϕ∗(f

′) = ϕ ◦ f ′. Consequently

ψ∗(f) = ψ∗(ϕ∗(f
′)) = (ψ ◦ ϕ)∗(f

′) = 0

because ψ ◦ ϕ = 0. Thus, f ∈ kerψ∗, and we have established that

imϕ∗ ⊆ kerψ∗.

Finally, let us show that kerψ∗ is an A(X)-submodule of imϕ∗. To this
end, let f ∈ kerψ∗; then for every s ∈ F(U) where U is an open subset of X,

ψU (fU(s)) = (ψU ◦ fU)(s) = [(ψU)∗(fU)](s) = 0 ∈ E ′′(U)

and so fU(s) ∈ kerψU = imϕU . Thus, there exists s′ ∈ E ′(U) such that
fU(s) = ϕU(s′); and since ϕ is one-to-one, such an element s′ is unique. We
can therefore define a mapping f ′

U : F(U) −→ E ′(U) by setting f ′
U(s) = s′.

Clearly, f ′
U yields an A(U)-morphism of A(U)-modules F(U) and E ′(U),

which by abuse of language we also call f ′
U . But

fU = ϕU ◦ f ′
U = (ϕU)∗(f

′
U) ∈ im(ϕU)∗,

where U is an arbitrary subset of X. Thus, ker(ψU)∗ ⊆ im(ϕU)∗, for every
open U ⊆ X. Hence, kerψ∗ ⊆ imϕ∗, which ends the proof.

For the notion in the following definition, we refer to Mallios[[10], pp.
301, 302] for specific details.

Definition 1.11 Let E and F be A-modules on a topological space X. By
the transpose of an A-morphism ϕ : E −→ F , we mean the A-morphism

tϕ ≡ (tϕU)X⊇U,open : F∗ −→ E∗,

given by the assignment

tϕU(u) := (uV ◦ ϕV )U⊇V,open

for every u ∈ F∗(U), with U open in X. �
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The principal properties of transposition in classical module theory ap-
ply in the setting as well, and are easily verified.

Proposition 1.3 Let E , F , G be A-modules on a topological space X. Then

(1) t(idE) = idE∗ .

(2) If ϕ, ψ ∈ HomA(E ,F), then t(ϕ+ ψ) = tϕ+ tψ.

(3) If ϕ ∈ HomA(E ,F) and ψ ∈ HomA(F ,G), then t(ψ ◦ ϕ) = tϕ ◦ tψ.

Corollary 1.3 If ϕ : E −→ F is an A-isomorphism of the A-modules E and
F , then so is tϕ : F∗ −→ E∗; and we also have in this case that (tϕ)−1 =
t(ϕ−1).

Proof. By hypothesis and items (1), (3) of Proposition 1.3, we have

tϕ ◦ tϕ−1 = t(ϕ−1 ◦ ϕ) = t(idE) = idE∗

and
tϕ−1 ◦ tϕ = t(ϕ ◦ ϕ−1) = t(idF) = idF∗ .

The proof is finished.

Corollary 1.4 If F is a sub-A-module of E , then

(E/F)∗ = F⊥,

within an A-isomorphism.

Proof. Let q : E −→ E/F be the quotient A-morphism and

0 // F
ι // E

q
// E/F // 0
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the natural short exact sequence (see Mallios[[10], Lemma 2.1, p.116]). By
Theorem 1.4, we have the induced short exact sequence

F∗ E∗
tιoo (E/F)∗

tq
oo 0oo .

Then, since
ker(tι) = (imι)⊥,

it follows from the exactness of the foregoing sequence that

(E/F)∗ = im(tq) = ker(tι) = (imι)⊥ = F⊥.

2 Properties of exterior A-2-forms

In this section, we examine some properties of exterior A-2-forms. The most
useful property is the normal (or Darboux ) form for exterior A-2-forms, see
[[12], Theorem 3.3], which we prove this time by following Libermann and
Marle[[8], Theorem 2.3, pp. 4,5] and Sternberg[[13], Theorem 5.1, p. 24].

Throughout this section, E stands for an A-module on a topological
space X ≡ (X, τ), and ω : E ⊕ E −→ A for an exterior bilinear A-form,
unless otherwise specified.

Definition 2.1 Let η : E ⊕ . . .⊕ E −→ A be a non-zero exterior A-k-form.
For every s ≡ (sU)U∈T ∈

∏
U∈T E(U), let

i : HomA(E , HomA(
∧

kE∗,
∧

(k−1)E∗))

be an A-morphism, whose U -component, for an arbitrary open subset U of
X, is the A(U)-morphism

iU ∈ HomA(U)(E(U), HomA(U)((
∧

kE∗)(U), (
∧

(k−1)E∗)(U)))

≡ HomA(U)(E(U), HomA(U)((
∧

kE)∗(U), (
∧

(k−1)E ) ∗ (U))),
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which is given by

i(sU)ηU(s1U , . . . , sk−1U) = ηU(sU , s1U , . . . , sk−1U)

for all s1U , . . . , sk−1U ∈ E(U). We call

i(s)η ≡ (iU(sU)ηU)U∈τ : E ⊕ . . .⊕ E −→ A

the inner A-product of η and s. �

Now, let us move our attention to A-2-forms. Suppose ω : E ⊕E −→ A
is an A-2-form on a free A-module E ; for a family s ≡ (sU)U∈τ ∈

∏
U∈τ E(U),

the following mapping in HomA(E , E∗∗ = E = E∗), see Mallios[[10], relation
5.4, p. 298], given by

s 7−→ −i(s)ω ≡ −(i(sU)ωU)U∈τ ,

will be denoted, keeping with Libermann and Marle[[8], p. 3], by ω♭. Next,
for every open U ⊆ X, we consider the canonical basis (eUi )1≤i≤n ⊆ E(U).
Suppose that ω ≡ (ωU)U∈T is such that

ωUij ≡ ωU(eUi , e
U
j )

for any open subset U ⊆ X, and such that

rank (ωUij) = rank (ωVij ),

then the rank of ω is by definition the rank of the matrix (ωUij) for any open
U ⊆ X. Throughout this paper, all exterior A-2-forms ω : E ⊕ E −→ A on
the free A-module E of rank n are assumed to have a rank. We shall call
such A-2-forms rankwise A-2-forms.

As in Libermann and Marle[[8], pp. 3, 4], given an exterior A-2-form
ω : E⊕E −→ A on a free A-module E , we denote by ♭E the sub-A-module im
ω♭ ⊆ E∗ = E ; see Mallios[[10], p. 109] for a proof of the following statement:

If ϕ ≡ (ϕU) ∈ HomA(E ,F), then im ϕ := ϕ(E) is a subsheaf of
the sheaf F .



Symplectic Reduction of Sheaves of A-modules 25

Since ω♭U(E(U)) is an A(U)-submodule of E∗(U) = E(U)∗ = E(U) for
every open U ⊆ X, it follows that im ω♭ is a sub-A-module of E∗ = E .

It is worth noting too that ♭E = (kerω♭)⊥ within an A-isomorphism. If
kerω♭ 6= 0, we have

E/ kerω♭ = ♭E

within an A-isomorphism, see Mallios[[10], Lemma 2.1, p. 116, relation
(2.19), p. 110].

The first part of the following theorem was proved in our previous
paper, see [12], however, here, we are presenting another proof for the same
first part of the theorem; the relevance of this approach consists in the fact
it provides hints, which are necessary for the proof of the second part of
the theorem. This theorem in its classical form is proved in Libermann and
Marle[[8], Theorem 2.3, p. 4] and Sternberg[[13], Theorem 5.1, p. 24].

Theorem 2.1 Let (X,A,P, | · |) be an ordered R-algebraized space, endowed
with an absolute value morphism (see [12] ), such that every strictly positive
section of A is invertible. Moreover, let ω be a rankwise A-2-form on the
free A-module E of rank n. Then, for every x ∈ X, there exist an open
neighborhood U ⊆ X of x and a basis

s1
U , . . . , s

2m
U ∈ ♭E(U), 2 ≤ 2m ≤ n

such that

ωU =

m∑

k=1

s2k−1
U ∧ s2k

U ;

furthermore, s2
U may be chosen arbitrarily in ♭E(U).

Proof. Let (e1X , . . . , enX) ≡ (e1, . . . , en) be a basis of E(X), whose corre-
sponding dual basis is (e1X , . . . , e

n
X) ≡ (e1, . . . , en). The X-component of the

A-2-form ω may be expressed as

ωX =
1

2

∑

(i,j)

aije
i ∧ ej ,
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where the coefficients aij are sections of A overX, i.e. aij ∈ A(X) ≡ Γ(X,A),
and satisfy the condition aji = −aij , 1 ≤ i, j ≤ n. By hypothesis, at every
x ∈ X, the coefficients aij(x) are not all zero. Let us fix a point x ∈ X; we
can rearrange the basis (e1, . . . , en) as to obtain a12(x) 6= 0. Therefore, for
some open neighborhood U of x, we have

|ρXU (a12)| ∈ P∗(U),

where P∗ := P − {0} ⊆ A•, cf. Mallios[[10], relation (10.1), p. 335], and the
(ρVW )V⊇W,open, with V running over the open subsets of X, are the restriction
maps for the (complete) presheaf of sections of the coefficient sheaf A. Let
us assume likewise that the restriction maps for the (complete) presheaf of
sections of E are maps (σVW )V⊇W,open, with V being any open set in X; we set

s1
U =

1

|ρXU (a12)|
i(σXU (e1))ωU ,

and
s2
U = i(σXU (e2))ωU

i.e.

s1
U = σXU (e2) +

1

|ρXU (a12)|

n∑

k=3

ρXU (a1k)σ
X
U (ek),

and

s2
U = −|ρXU (a12)|σ

X
U (e1) +

n∑

k=3

ρXU (a2k)σ
X
U (ek).

It is clear that (s1
U , s

2
U , σ

X
U (e3), . . . , σXU (en)) is a basis of E(U). Next, we set

ω1U = ωU − s1
U ∧ s2

U ;

ω1U does not contain any expression involving σXU (e1) or σXU (e2). If ω1U = 0,
then ωU = s1

U ∧ s2
U , and we are done. Otherwise, we continue the same

process until we achieve the desired form, that is if

ω1U =
1

2

n∑

i,j=3

bijρ
X
U (ei) ∧ ρXU (ejU)

with bji = −bij ∈ A(U), 3 ≤ i, j ≤ n, then there exists a bij ∈ A(U) such
that bij(x) 6= 0. As above, there exists an open neighborhood V ⊆ U such
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that ρUV (bij) 6= 0. Through a convenient rearrangement of the basis vectors
ρXU (e3), . . . , ρXU (en), we may assume that ρXU (b34) 6= 0. So, as before, we shall
get an A-2-form

ω2V = ω1V − s3
V ∧ s4

V ,

where
s3
V = 1

|ρU
V

(b34)|
i(σUV (e3)ω1V , s4

V = i(σUV (e4)ω1V ,

and so on · · ·

Let t be a non-zero element in ♭E(U). There exists a non-zero vector
s2 ∈ E(U) such that t = i(s2)ωU . Since t 6= 0, there exists a section s1 ∈ E(U)
such that t(s1) 6= 0, hence ωU(s1, s2) 6= 0. We choose the basis (e1, . . . , en) of
E(X) such that σXU (e1) = s1, and σXU (e2) = s2 so that s2

U = t.

3 Symplectic Reduction

We start by observing that Definition 1.5 hints that if E is a free A-module
of rank n, then an A-bilinear morphism ω : E ⊕E −→ A is non-degenerate if
and only if ω is rankwise, and of rank n. A pair (E , ω), where E is an arbitrary
A-module and ω : E ⊕ E −→ A a non-degenerate A-bilinear morphism, is
called a symplectic A-module.

Throughout this section, we will be particularly interested in symplectic
free A-modules of finite rank.

The most important examples of sub-A-modules of a symplectic A-
module (E , ω) (E is not assumed necessarily free) are the following

Definition 3.1 Let (E , ω) be a symplectic A-module and F ⊆ E a sub-A-
module. We say that

(i) F is isotropic if F ⊆ F⊥, that is ω|F⊕F ≡ ω|F = 0.

(ii) F is co-isotropic if F⊥ ⊆ F , that is ω|F⊥ = 0.
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(iii) F is a symplectic sub-A-module if ω|F : F ⊕ F −→ A is non-
degenerate.

(iv) F is Lagrangian if it is isotropic and has an isotropic complement,
that is E = F ⊕ G, where G is isotropic. �

The next result will often be used to define Lagrangian sub-A-modules.

Proposition 3.1 Let (E , ω) be a symplectic A-module of finite rank on X,
and F ⊆ E a sub-A-module. Then, the following assertions are equivalent:

(i) F is Lagrangian.

(ii) F = F⊥, within an A-isomorphism.

(iii) F is isotropic and rank F = 1
2

rank E .

Proof. The following proof is derived from the proof of Proposition 5.3.3,
in Abraham and Marsden[[1], p. 404].

First, we prove that (i) implies (ii). We have F ⊆ F⊥ by hypothesis.
Next, we have to show the converse, i.e. F⊥ ⊆ F . To this end, for every open
subset U of X, let sU ∈ F⊥(U) = F(U)⊥; since E(U) = F(U)+G(U), where
G, according to Definition 3.1(iv), is an isotropic complement of F , write
sU = sU0 +sU1 for some sU0 ∈ F(U) and sU1 ∈ G(U). We shall show that sU1 = 0.
Indeed, let sU1 ∈ G(U) ⊆ G⊥(U) = G(U)⊥, and sU1 = sU−sU0 ∈ F⊥(U). Thus,

sU1 ∈ G⊥(U) ∩ F⊥(U) = (G(U) + F(U))⊥, by virtue of Theorem 1.3(c)

= E⊥(U)

= {0}, by the non-degeneracy of ωU .

Thus, sU1 = 0, so F⊥(U) ⊆ F(U); since U is arbitrary, F⊥ ⊆ F , that is (ii)
holds.

The implication (ii) =⇒ (iii) is immediate.
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Finally, we prove that (iii) implies (i). First, observe that (iii) implies
dimF(U) = dimF⊥(U) for any open subset U of X. Since F ⊆ F⊥, we
have that F = F⊥. Now, we construct the isotropic complement G of F as
follows. For every open U ⊆ X, choose arbitrarily sU1 /∈ F(U), and let

F1(U) := {asU1 | a ∈ A(U)} ≡ AsU1 .

It is easy to see that the correspondence

U 7−→ F1(U) (8)

along with the obvious restrictions yield a complete presheaf of A-modules.
(If ρUV : E(U) −→ E(V ) is a restriction map, ρUV |F1(U) : F1(U) −→ F1(V ) is
the corresponding restriction map for the presheaf defined in (8).) The sheaf
F1 generated by the presheaf defined in (8) is clearly a free A-module of rank
1. For every open U ⊆ X, F(U) ∩ F1(U) = {0}; consequently

F(U)⊥⊥ + F(U)⊥ = (F(U)⊥ ∩ F1(U))⊥, by virtue of Theorem 1.3

= (F(U) ∩ F1(U))⊥, since F = F⊥

= {0}⊥

= E(U).

Now, choose, for every open U ⊆ X, an element sU2 ∈ F1(U)⊥ = F⊥
1 (U) such

that sU2 /∈ F(U) + F1(U). Next, let

F2(U) := F1(U) + AsU2 ;

proceed inductively as before until one gets

F(U) + Fk(U) = E(U) (9)

for every open U ⊆ X. The correspondence

U 7−→ F2(U)

defines a complete presheaf of A-modules. The sheaf F2 generated by the
foregoing presheaf is a free A-module of rank 2. Similarly, the sheaf Fk

obtained by sheafifying the complete presheaf, given by

U 7−→ Fk(U)
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is a free A-module of rank k. Equation (9) yields the following A-isomorphism

F + Fk = E .

By construction, F(U)∩Fk(U) = {0} for every open U ⊆ X, so E = F⊕Fk.
Also, by construction,

F⊥
2 (U) = F2(U)⊥ = (F1(U) + AsU2 )⊥

= F1(U)⊥ + (AsU2 )⊥

⊇ AsU1 + AsU2
= F2(U).

It follows that F2 ⊆ F⊥
2 . In the same way, one shows that Fk is isotropic as

well. Thus, E = F ⊕ Fk, with Fk ⊆ F⊥
k as desired.

Lemma 3.1 Let (E , ω) be a symplectic A-module, and F ⊆ E a sub-A-
module. Then, F/F ∩ F⊥ has a natural symplectic structure.

Proof. Indeed, let

ω̂U(s+ (F ∩ F⊥)(U), s′ + (F ∩ F⊥)(U)) := ωU(s, s′) (10)

for all s, s′ ∈ F(U), where U is an open set in X. Equation (10) can equiva-
lently be written as

ω̂U(s+ (F(U) ∩ F⊥(U)), s′ + (F(U) ∩ F⊥(U))) = ωU(s, s′),

because F∩F⊥ is a sub-A-module of E and (F∩F⊥)(U) = F(U)∩F⊥(U) =
F(U) ∩ F(U)⊥ for all open subset U ⊆ X. Now, denote by

((F/F ∩ F⊥)(U) := F(U)/F(U) ∩ F⊥(U), σUV )

the (complete) presheaf of sections associated with the sheaf F/F ∩F⊥, and
by

(A(U), λUV )
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the corresponding presheaf of sections for the coefficient sheaf A. It is clearly
easy to see that

(F/F ∩ F⊥)(U) ⊕ (F/F ∩ F⊥)(U)
bωU //

σU
V ⊕σU

V

��

A(U)

λU
V

��

(F/F ∩ F⊥)(V ) ⊕ (F/F ∩ F⊥)(V )
bωV

// A(V )

commutes for all open subsets U, V ⊆ X such that V ⊆ U . Thus,

ω̂ : F/F ∩ F⊥ ⊕ F/F ∩ F⊥ −→ A

is an A-morphism.

We need now show that ω̂ is well defined and is a symplectic A-form.
Indeed, let t, t′ ∈ F(U) ∩ F⊥(U), where U is open in X; then

ωU(s+ t, s′ + t′) = ωU(s, s′) + ωU(s+ t, t′) + ωU(t, s′)

= ωU(s, s′),

since ωU(s + t, t′) = 0 = ωU(t, s′). Thus, ω̂ is well defined. It is easy to see
that ω̂ is A-bilinear. Let us now show that ω̂ is non-degenerate. Suppose
s ∈ F(U) such that

ω̂U(s+ F(U)F⊥(U), s′ + F(U) ∩ F⊥(U)) = 0 (11)

for all s′ ∈ F(U). By virtue of the definition of ω̂, see (10), Equation (11)
becomes

ωU(s, s′) = 0

for all s′ ∈ F(U). Therefore, s ∈ F⊥(U), so in (F/F ∩ F⊥)(U), is zero.

We now introduce some terminology in connection with the preceding
lemma.

Definition 3.2 Let (E , ω) be a symplectic A-module, and F ⊆ E a co-
isotropic sub-A-module of E . The symplectic A-module (F/F⊥, ω̂), where
ω̂ is given by (10), is called a reduced symplectic A-module or the A-

module E reduced by F . The notation E/F will also be used to denote the
underlying A-module F/F⊥ of the reduced symplectic A-module (F/F⊥, ω̂).
�
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Proposition 3.2 Let (E , ω) be a symplectic free A-module of finite rank,
G ⊆ E a Lagrangian sub-A-module and F ⊆ E a co-isotropic sub-A-module
of E . Then,

(G ∩ F)/F⊥ ⊆ EF

is Lagrangian in the reduced symplectic A-module.

Proof. Take an open subset U ⊆ X and s, s′ ∈ (G ∩F)(U) = G(U) ∩F(U).
One has

ω̂U(s+ F⊥(U), s′ + F⊥(U)) = ωU(s, s′) = 0;

therefore (G ∩ F)/F⊥ is isotropic.

Next, we need show that

dim((G ∩ F)/F⊥)(U) =
1

2
dim(F/F⊥)(U),

for every open U ⊆ X, to complete the proof of the proposition. The proof
of this fact can be found in Abraham and Marsden[[1], Proposition 5.3.10,
pp 407-408].
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