This article is part of the series Advances in Electrocardiogram Signal Processing and Analysis.

Open Access Research Article

Multichannel ECG and Noise Modeling: Application to Maternal and Fetal ECG Signals

Reza Sameni12*, Gari D Clifford3, Christian Jutten2 and Mohammad B Shamsollahi1

Author Affiliations

1 Biomedical Signal and Image Processing Laboratory (BiSIPL), School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran , Iran

2 Laboratoire des Images et des Signaux (LIS), CNRS - UMR 5083, INPG, UJF, Grenoble Cedex 38031, France

3 Laboratory for Computational Physiology, Harvard-MIT Division of Health Sciences and Technology (HST), Massachusetts Institute of Technology, Cambridge, MA 02139, USA

For all author emails, please log on.

EURASIP Journal on Advances in Signal Processing 2007, 2007:043407  doi:10.1155/2007/43407


The electronic version of this article is the complete one and can be found online at: http://asp.eurasipjournals.com/content/2007/1/043407


Received: 1 May 2006
Revisions received: 1 November 2006
Accepted: 2 November 2006
Published: 16 January 2007

© 2007 Sameni et al.

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A three-dimensional dynamic model of the electrical activity of the heart is presented. The model is based on the single dipole model of the heart and is later related to the body surface potentials through a linear model which accounts for the temporal movements and rotations of the cardiac dipole, together with a realistic ECG noise model. The proposed model is also generalized to maternal and fetal ECG mixtures recorded from the abdomen of pregnant women in single and multiple pregnancies. The applicability of the model for the evaluation of signal processing algorithms is illustrated using independent component analysis. Considering the difficulties and limitations of recording long-term ECG data, especially from pregnant women, the model described in this paper may serve as an effective means of simulation and analysis of a wide range of ECGs, including adults and fetuses.

References

  1. O Dössel, Inverse problem of electro- and magnetocardiography: review and recent progress. International Journal of Bioelectromagnetism 2(2) (2000)

  2. A van Oosterom, Beyond the dipole; modeling the genesis of the electrocardiogram. 100 Years Einthoven (The Einthoven Foundation, Leiden, The Netherlands, 2002), pp. 7–15

  3. Malmivuo JA, Plonsey R (eds.), Bioelectromagnetism, Principles and Applications of Bioelectric and Biomagnetic Fields (Oxford University Press, New York, NY, USA, 1995)

  4. T Oostendorp, in Modeling the fetal ECG, Ph.D. dissertation

  5. PP Kanjilal, S Palit, G Saha, Fetal ECG extraction from single-channel maternal ECG using singular value decomposition. IEEE Transactions on Biomedical Engineering 44(1), 51–59 (1997). PubMed Abstract | Publisher Full Text OpenURL

  6. P Gao, E-C Chang, L Wyse, Blind separation of fetal ECG from single mixture using SVD and ICA. Proceedings of the Joint Conference of the 4th International Conference on Information, Communications and Signal Processing, and the 4th Pacific Rim Conference on Multimedia (ICICS-PCM '03), December 2003, Singapore 3, 1418–1422

  7. D Callaerts, W Sansen, J Vandewalle, G Vantrappen, J Janssen, Description of a real-time system to extract the fetal electrocardiogram. Clinical Physics and Physiological Measurement 10(B), 7–10 (1989). PubMed Abstract | Publisher Full Text OpenURL

  8. L De Lathauwer, B De Moor, J Vandewalle, Fetal electrocardiogram extraction by blind source subspace separation. IEEE Transactions on Biomedical Engineering 47(5), 567–572 (2000). PubMed Abstract | Publisher Full Text OpenURL

  9. F Vrins, C Jutten, M Verleysen, Sensor array and electrode selection for non-invasive fetal electrocardiogram extraction by independent component analysis. in Proceedings of 5th International Conference on Independent Component Analysis and Blind Signal Separation (ICA '04), September 2004, Granada, Spain, Lecture Notes in Computer Science, vol. 3195, , ed. by Puntonet CG, Prieto A, pp. 1017–1014

  10. B Azzerboni, F La Foresta, N Mammone, FC Morabito, A new approach based on wavelet-ICA algorithms for fetal electrocardiogram extraction. Proceedings of 13th European Symposium on Artificial Neural Networks (ESANN '05), April 2005, Bruges, Belgium, 193–198

  11. R Sameni, C Jutten, MB Shamsollahi, What ICA provides for ECG processing: application to noninvasive fetal ECG extraction. Proceedings of the International Symposium on Signal Processing and Information Technology (ISSPIT '06), August 2006, Vancouver, Canada, 656–661

  12. Cichocki A, Amari S (eds.), Adaptive Blind Signal and Image Processing (John Wiley & Sons, New York, NY, USA, 2003)

  13. PE McSharry, GD Clifford, L Tarassenko, LA Smith, A dynamical model for generating synthetic electrocardiogram signals. IEEE Transactions on Biomedical Engineering 50(3), 289–294 (2003). PubMed Abstract | Publisher Full Text OpenURL

  14. PE McSharry, GD Clifford, ECGSYN - a realistic ECG waveform generator (http://www), . physionet.org/physiotools/ecgsyn/ webcite

  15. P Bergveld, WJH Meijer, A new technique for the suppression of the MECG. IEEE Transactions on Biomedical Engineering 28(4), 348–354 (1981). PubMed Abstract | Publisher Full Text OpenURL

  16. WJH Meijer, P Bergveld, The simulation of the abdominal MECG. IEEE Transactions on Biomedical Engineering 28(4), 354–357 (1981). PubMed Abstract | Publisher Full Text OpenURL

  17. DB Geselowitz, On the theory of the electrocardiogram. Proceedings of the IEEE 77(6), 857–876 (1989). Publisher Full Text OpenURL

  18. Bronzino J (ed.), The Biomedical Engineering Handbook, 2nd edn. (CRC Press, Boca Raton, Fla, USA, 2000)

  19. E Frank, An accurate, clinically practical system for spatial vectorcardiography. Circulation 13(5), 737–749 (1956). PubMed Abstract | Publisher Full Text OpenURL

  20. GF Fletcher, G Balady, VF Froelicher, LH Hartley, WL Haskell, ML Pollock, Exercise standards: a statement for healthcare professionals from the American Heart Association. Circulation 91(2), 580–615 (1995). PubMed Abstract OpenURL

  21. GE Dower, HB Machado, JA Osborne, On deriving the electrocardiogram from vectorcardiographic leads. Clinical Cardiology 3(2), 87–95 (1980). PubMed Abstract OpenURL

  22. L Hadžievski, B Bojović, V Vukčević, et al. A novel mobile transtelephonic system with synthesized 12-lead ECG. IEEE Transactions on Information Technology in Biomedicine 8(4), 428–438 (2004). PubMed Abstract | Publisher Full Text OpenURL

  23. L Edenbrandt, O Pahlm, Vectorcardiogram synthesized from a 12-lead ECG: superiority of the inverse Dower matrix. Journal of Electrocardiology 21(4), 361–367 (1988). PubMed Abstract | Publisher Full Text OpenURL

  24. GD Clifford, PE McSharry, A realistic coupled nonlinear artificial ECG, BP, and respiratory signal generator for assessing noise performance of biomedical signal processing algorithms. Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems II, May 2004, Maspalomas, Spain, Proceedings of SPIE 5467, 290–301

  25. R Sameni, MB Shamsollahi, C Jutten, M Babaie-Zade, Filtering noisy ECG signals using the extended Kalman filter based on a modified dynamic ECG model. Proceedings of the 32nd Annual International Conference on Computers in Cardiology, September 2005, Lyon, France, 1017–1020

  26. GD Clifford, A novel framework for signal representation and source separation: applications to filtering and segmentation of biosignals. Journal of Biological Systems 14(2), 169–183 (2006). Publisher Full Text OpenURL

  27. J Ben-Arie, KR Rao, Nonorthogonal signal representation by Gaussians and Gabor functions. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 42(6), 402–413 (1995). Publisher Full Text OpenURL

  28. Fetal positions, WebMD (http://www), . webmd.com/content/tools/1/slide_fetal_pos.htm webcite

  29. GD Clifford, A Shoeb, PE McSharry, BA Janz, Model-based filtering, compression and classification of the ECG. International Journal of Bioelectromagnetism 7(1), 158–161 (2005)

  30. C Bishop, Neural Networks for Pattern Recognition (Oxford University Press, New York, NY, USA, 1995)

  31. L Weixue, X Ling, Computer simulation of epicardial potentials using a heart-torso model with realistic geometry. IEEE Transactions on Biomedical Engineering 43(2), 211–217 (1996). PubMed Abstract | Publisher Full Text OpenURL

  32. L Frenkel, M Feder, Recursive expectation-maximization (EM) algorithms for time-varying parameters with applications to multiple target tracking. IEEE Transactions on Signal Processing 47(2), 306–320 (1999). Publisher Full Text OpenURL

  33. R Sameni, MB Shamsollahi, C Jutten, GD Clifford, A nonlinear Bayesian filtering framework for ECG denoising to appear in IEEE Transactions on Biomedical Engineering

  34. GM Friesen, TC Jannett, MA Jadallah, SL Yates, SR Quint, HT Nagle, A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Transactions on Biomedical Engineering 37(1), 85–98 (1990). PubMed Abstract | Publisher Full Text OpenURL

  35. G Moody, W Muldrow, R Mark, Noise stress test for arrhythmia detectors. Proceedings of Annual International Conference on Computers in Cardiology, 1984, Salt Lake City, Utah, USA, 381–384

  36. X Hu, V Nenov, A single-lead ECG enhancement algorithm using a regularized data-driven filter. IEEE Transactions on Biomedical Engineering 53(2), 347–351 (2006). PubMed Abstract | Publisher Full Text OpenURL

  37. Gelb A (ed.), Applied Optimal Estimation (MIT Press, Cambridge, Mass, USA, 1974)

  38. MP Tarvainen, SD Georgiadis, PO Ranta-Aho, PA Karjalainen, Time-varying analysis of heart rate variability signals with a Kalman smoother algorithm. Physiological Measurement 27(3), 225–239 (2006). PubMed Abstract | Publisher Full Text OpenURL

  39. G Moody, W Muldrow, R Mark, The MIT-BIH noise stress test database (http://www), . physionet.org/physiobank/database/nstdb/ webcite

  40. A Härmä, Frequency-warped autoregressive modeling and filtering, Doctoral thesis

  41. The MIT-BIH PTB diagnosis database (http://www), . physionet.org/physiobank/database/ptbdb/ webcite

  42. R Bousseljot, D Kreiseler, A Schnabel, Nutzung der EKG-signaldatenbank CARDIODAT der PTB über das internet. Biomedizinische Technik 40(1), S317–S318 (1995). Publisher Full Text OpenURL

  43. D Kreiseler, R Bousseljot, Automatisierte EKG-auswertung mit hilfe der EKG-signaldatenbank CARDIODAT der PTB. Biomedizinische Technik 40(1), S319–S320 (1995). Publisher Full Text OpenURL

  44. B De Moor, Database for the identification of systems (DaISy) (http://homes), . esat.kuleuven.be/~smc/daisy/ webcite

  45. MJO Taylor, MJ Smith, M Thomas, et al. Non-invasive fetal electrocardiography in singleton and multiple pregnancies. BJOG: An International Journal of Obstetrics and Gynaecology 110(7), 668–678 (2003). Publisher Full Text OpenURL

  46. J-F Cardoso, Blind source separation and independent component analysis (http://www), . tsi.enst.fr/~cardoso/guidesepsou.html webcite

  47. R Sameni, MB Shamsollahi, C Jutten, Filtering electrocardiogram signals using the extended Kalman filter. Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '05), September 2005, Shanghai, China, 5639–5642

  48. EJ Gumbel, Statistics of Extremes (Columbia University Press, New York, NY, USA, 1958)

  49. GH Golub, CF van Loan, Matrix Computations, 3rd edn. (Johns Hopkins University Press, Baltimore, Md, USA, 1996)