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Abstract
In this paper we present a generalized Cassi-Baxter equation to take into account the effect

of drop pressure on the apparent contact angle θapp. Also we determine the limiting pressure

pW which causes the impalement transition to the Wenzel state and the pull-off pressure pout

at which the drop detaches from the substrate. The calculations have been carried out for axial-

symmetric pillars of three different shapes: conical, hemispherical topped and flat topped cylindrical

pillars. Calculations show that, assuming the same pillar spacing, conical pillars may be more

incline to undergo an impalement transition to the Wenzel state, but, on the other hand, they are

characterized by a vanishing pull-off pressure which causes the drop not to adhere to the substrate

and therefore to detach very easily. We infer that this property should strongly reduce the contact

angle hysteresis as experimentally osberved in Ref. [21]. It is possible to combine large resistance to

impalement transition (i.e. large value of pW ) and small (or even vanishing) detaching pressure pout

by employing cylindrical pillars with conical tips. We also show that depending on the particular

pillar geometry, the effect of drop pressure on the apparent contact angle θapp may be more or less

significant. In particular we show that in case of conical pillars increasing the drop pressure causes

a significant decrease of θapp in agreement with some experimental investigations [16], whereas θapp

slightly increases for hemispherical or flat topped cylindrical pillars.

PACS numbers: 47.55.dr, 68.08.Bc, 46.55.+d, 68.08.-p, 65.40.gp, 67.30.hp,
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I. INTRODUCTION

Roughness-induced hydrophobicity is a well known effect observed in many plant leaves,
e.g. Sacred Lotus leaves (Nelumbo nucifera) [2], and in other biological system as water
striders [11] (Gerris remigis) or mosquito (Culex pipiens) eyes [12]. In all such cases the
surface asperities make the liquid able to be suspended on the asperity tips, resulting in
a very large contact angle (CA). The superlative water-repellency of such natural surfaces
would be very appreciated in many micro- and macro- engineering applications, as liquid
drops on super-hydrophobic surfaces may be very easily moved from one position to the
other by simply applying an external force, resulting in the possibility to create a chemical
microreactor and microfluidic microchips [13], [42]. Beside these high-tech applications, there
is a strong interest of engineers in developing new commercial products as self-cleaning paints
and glass windows [4], or super-hydrophobic optically transparent self-cleaning surfaces [9],
[34], [35], which may be used as coatings in the automotive field, as car-windshields and
biker helmets, where impacting rain drops must be easily repelled. Some studies have
shown, indeed, that falling drops may fully rebound on such water-repellent surfaces with
very high restitution coefficients ∼ 0.9 [40]. As a consequence of the high technological and
commercial impact of super-hydrophobic surfaces, in the last decade a great deal of research
has been spent trying to mimic the super-hydrorepellent surfaces of living organisms. Thus,
many artificial surfaces have been prepared attempting to achieve this objective. Fig. 1
shows some examples of super-hydrorepellent man-made surfaces. At a first sight, different
surfaces may appear equally good candidates to mimic the super-hydrophobic properties
of Natural surfaces. Indeed, being inspired by the solutions offered by Nature, several
geometries have been explored, e.g. uniform arrays of flat topped cylindrical pillars [5] [Fig.
1(a)], or tapered asperities [21], [see Fig. 1(b)], or even nanotube forests with rounded
tips [20] as shown in Fig. 1(c). Beside these few examples, also super-hydrophobic fractal
surfaces have been produced [10]-[41], which show apparent contact angles (CAs) up to 174◦.
However, the different shapes of such microstructured surface, which reflect the variety of
Natural solutions, should also have some practical implications which makes them not really
completely equivalent. Liquid drops on super-hydrophobic microstructured surfaces may be
observed mainly in two different states (although intermediate states may also exists [22],
[1]) the Cassie-Baxter [7] and the Wenzel [43] states. A drop in a Cassie-Baxter state is just
suspended on the asperities of the underlying surface, which therefore behaves as a fakir-
carpet. The Wenzel state is, instead, characterized by complete contact between the drop
and the substrate. The Wenzel state is usually unwanted as it results in a strong adherence
between the drop and the substrate and in a very pronounced CA hysteresis [16], [39]. Thus,
in order to prevent strong adhesion between the drop and substrate one has to design the
super-hydrophobic microstructured surface in such a way to prevent the Wenzel state to
be formed and make stable the fakir-droplet state. In such sense a first attempt was made
in [23] where a model employing the capillary rise of a liquid in contact with a stripwise
heterogeneous surface was developed to study the effect on contact angles. More recently
in [3] two criteria were proposed to compare the superhydrorepellent properties of different
microstuctures from a wetting point of view. However, the proposed criteria do not take
into account the effect of the internal pressure of the droplet, which is strictly related to
surface tension and curvature of the air-liquid spherical interface and therefore to its volume.
An interesting new approach with molecular dynamics was proposed in [44], to study the
behavior of liquid nanodropltes on rough surfaces. However, as shown by different authors
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FIG. 1: A few examples of artifical superhydrorepellent surfaces. (a) A uniform array of very

slender cylindrical pillars with a flat tip (adapted from Ref. [5]), (b) a uniform array of cylinders

with tapered shaped tips (adapted form Ref. [21]), and (c) an example of superhydrorepellent

carbon-nanotube forest (adapted from Ref. [20])

[16], [8], [26], [39], the drop pressure may have a critical role in determining if composite
interface may be formed at the interface between the drop and the microstructured substrate.
Large drop pressures may be generated during the impact of drops on the substrate, and
in this case, as shown in Ref. [40], [25], [26] high impact velocities (i.e. large impact
pressures) may destabilize the fakir-state, cause the transition to the Wenzel state and
make the droplet not able to bounce. Fig. 2 shows indeed two water drops of the same
volume on a microstructured super-hydrorepellent surface. The drop on left has been gently
deposited on the substrate, thus allowing the formation of a fakir-droplet state, the drop
on the right has instead undergone a transition to the Wenzel state as a consequence of an
increase of the drop pressure above a critical threshold.

The transition between the composite (Cassie) and wetted (Wenzel) states has been
investigated theoretically in many papers ([27], [28], [29], [30], [31], [32]), but usually the
effect of the liquid drop pressure is not taken into account. Only very recently an interesting
study [33] has been presented where the superhydrorepellent properties of a surface with
cavities has been investigated and the effective energy of such systems has been studied by
also including the influence of drop pressure. In this paper we study the system by means of
an energy approach of which the most general formulation has been given by Lipowsky [17],
who by means of a minimization technique proposed a generalization of the Cassie-Baxter
and Wenzel laws for liquid drop sitting on chemically heterogeneous but flat substrates,
where the area fraction of each phase was given a priori. Also, there are others paper treating
the problem of hydraulic pressure in determining the stability of Cassie-Baxter state. [45]
and [19], for example, treated this problem in the case of pillars with flat tip with sharp edges
so that the fraction of the projected area that is wet is assigned a priori. In particular, [45]
gave an expression of the critical hydraulic pressure for which the transition process between
the Cassie-Baxter wetting mode and the Wenzel one occurs, [19] also studied the effect of the
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FIG. 2: Two millimetric water drops of the same volume on a microstructured super-hydrorepellent

surface (adapted from Ref. [6]). A fakir state (i.e. Cassie-Baxter state) is obtained by gently

placing the drop on the substrate (on the left). A full-contact condition (Wenzel state) is obtained

by incresing the drop pressure, e.g. by let the drop impacing the surface with enough speed (on

the right).

contact line length by varying the shape of the pillars while maintaining constant the area.
Indeed for rounded pillars the wetted area is not fixed a priori and should be determined
as a part of the problem through a minimization technique. In [18] the authors studied the
case of a surface with an array of small spheres on it and determined the pressure required
to force the meniscus to bend sufficiently to touch the underlying surface. However, if the
pillars are sufficiently tall the transition to Wenzel state may be achieved before the meniscus
touches the underlying surface because of thermodynamic instability.

In Ref. [8] it has been shown that to prevent the impalement transition it is necessary
to increase the critical pressure pW at which this transition occurs (we refer to pW as the
Wenzel pressure); high values of pW are indeed a strict requirement in those engineering
applications where rain falling drops have to be supported by the substrate. However, in
many cases we also want the liquid drops be very easily detached from the substrate, i.e.
the pull-off pressure pout be reduced almost to zero. This property is, for example, found
in many insects, that usually walk or skate on the free liquid-air surface. Such insects not
only need not to sink into the water, but also need to detach easily from the liquid free and
surface move and run easily on it.

In a preceding paper [8] one of the authors has analyzed the wetting/non-wetting prop-
erties of a liquid drop in contact with an extremely idealized 1D rough profile, i.e. a simple
sinusoidal profile. The analysis have clarified some theoretical points (mainly from a qual-
itative point of view) of wetting non wetting behavior of super-hydrorepellent surfaces.
Here the study is extended to 2D microstructured surfaces with periodic a distribution of
axial-symmetric micropillars, which on the other hand are very commonly utilized in such
applications. Some hints to design such super-hydrophobic surfaces to achieve both the aim
of large pW values and low pull-off pressures pout are also provided.
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FIG. 3: Geometry of the conical (a), emispherical topped (b), and cylindrical (c), pillars.

II. FORMULATION

Let us consider a periodic distribution of chemically hydrophobic (e.g. fluorinated) pillars
(thermodynamic contact angle θe > π/2). We assume that the elementary cell of the periodic
structure is a square, although we can deal with any type of periodic distribution of micro-
pillars. We develop the analysis for three types of micro-pillars: conical pillars, hemispherical
topped cylindrical pillars, and flat topped cylindrical pillars. We assume that the micropillars
are stiff enough to consider negligible their deformation under the action of the drop pressure.
This, indeed, is a very good approximation in many practical cases, and is always employed
in theoretical investigations dealing with super-hydrorepellence. We also assume that the
liquid is incompressible (i.e. we neglect the contribution of the liquid elastic energy) and
the drop is very slowly evaporating (i.e. the time scale to reach the equilibrium is much
shorter than the time scale of the evaporation). We observe that, being the diameter of the
liquid drop in the range of millimeters, whereas the linear spacing 2λ between the pillars
in the range of micro- or even nano-meters, the drop can be considered as a semi-infinite
liquid space when we analyze the problem at the microscale. Thus, when we look the
drop-substrate interface at very large magnifications the state of the systems is completely
determined by the following state parameters: the drop-pressure p at the liquid-substrate
interface, the real solid-liquid contact area, the liquid-air free surface at the interface, and
the penetration ∆ (see below) of the liquid drop inside the pillar forest.

Fig. 3 shows the geometry of the pillars and the parameters we use to describe the
position of the triple line. The reference plane (x, y, 0) is placed at the base of the pillars,
and the z-coordinate is directed toward the top of the pillars. The z-coordinate of the free
liquid surface will be referred to as u (x, y). Because of the substrate corrugation, the liquid
can either wet the whole substrate surface or be in stable or metastable partial contact
with it. In case of partial contact the liquid/air interface must satisfy the Laplace formula.
Assuming that the slope of the liquid-air interface is sufficiently small, which simply requires

5



that pλ/ (2γLA) ≪ 1, the Laplace formula reads

∇2u (x, y) = uxx (x, y) + uyy (x, y) =
p

γLA
(1)

where uxx = ∂2u/∂x2, uyy = ∂2u/∂y2 and γLA is the liquid-air surface tension. The condition

pλ/ (2γLA) ≪ 1 is satisfied in most cases, e.g. in case of water γLA = 72 mJ/m2 and assuming
λ ≈ 1µm one obtains p < 1.4 bar which is in most cases true. This then implies the angle
which the free surface forms with the pillar, for the geometry we have investigated and
R ≤ λ (where R is the radius of the pillars), need to be less than 30◦.

Eq. (1), because of periodicity, can be solved over a quarter of the elementary square cell.
However we need also to specify boundary conditions. A first boundary condition has to be
written at the triple-line, which represents the contour delimiting the liquid-solid interface.
Let us call the projection of this contour on the (x, y, 0) reference plane with the symbol
L. We observe that, in general, the curve L (for which the mathematical expression in
implicit form can be given as fL (x, y) = 0) is not known a priori and has to be determined
by requiring that the total energy of the system is stationary at equilibrium (see below).
Therefore at the triple line the following equation must hold true

u (x, y) = h0 (x, y) ; (x, y) ∈ L (2)

where L = {(x, y) ∈ ℜ2 | fL (x, y) = 0}, and h0 (x, y) is the function describing the shape of
the pillars. Eq. (2) simply states that the liquid-air interface and the solid-liquid interface
must intersect at the triple line. Also the following Neumann boundary conditions must be
satisfied to account for periodic conditions

ux (0, y > y0) = 0; ux (λ, y) = 0

uy (x > x0, 0) = 0; uy (x, λ) = 0 (3)

where ux = ∂u/∂x, uy = ∂u/∂y, x0 satisfy the condition fL (x0, 0) = 0 and, similarly, y0

satisfies the condition fL (0, y0) = 0.
Observe, that for flat topped cylindrical pillars the function fL (x, y) is known a priori

being simply fL (x, y) = x2 + y2 − R2, where R is the radius of the pillar. In the other two
cases fL (x, y) is not known a priori and must be determined as a part of the solution of
the problem. Indeed, the physical problem, we are dealing with, belongs to the class of free
boundary problems, and requires an additional condition to achieve the complete solution.
This additional condition is simply the requirement that at equilibrium, for any given drop
pressure p, the total energy of the system (in our case the Gibbs energy G) is stationary.
Of course, in the general case, the Gibbs energy is a functional defined on the vector space
of functions fL (x, y), and one should require that it is stationary at equilibrium to find
the Euler-Lagrange equations and determine the quantity fL (x, y), making the problem
belonging to the class of variational problems. Therefore, the complete solution seems to be
very complicated and expensive from a numerical point of view. However we can strongly
reduce the complexity of the problem if we recall that pλ/ (2γLA) ≪ 1, in such a case the
slope of the free liquid-air surface is small. This implies that also the slope of the contour
representing the triple line is small and we conclude that under this assumption the triple
line will only negligibly deviate from a circumference in case of axial-symmetric pillars ([19]
showed the variation of the angle that the free surface forms with the pillars, due to the
tortuosity of the triple line, is negligible (being limited to only 3%). Thus, the unknown
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r 0

FIG. 4: The domain of integration of Eq. (1).

function fL (x, y) takes a much simpler form fL (x, y) = x2+y2−r2

0
, where r0 is the unknown

radial position of the triple-line, and the total energy of the system simply becomes a function
of the free parameter r0. Thus, r0 can be determined by enforcing the equilibrium condition,
i.e. requiring that ∂G/∂r0 = 0. However, despite the apparent simplicity of Eq. (1), the
particular shape of the domain of integration (see Fig. 4) does not make it possible to obtain
a solution in closed form. We, therefore, have employed a finite difference approach to solve
Eq. (1) with the mixed boundary conditions Eqs. (2) and (3).

For isothermal conditions and constant pressure the Gibbs energy is

G (r0, p) = H (r0, p) − pλ2∆ (r0, p) (4)

where ∆ (r0, p) is the penetration of the rigid substrate into the semi-infinite liquid and H
is the Helmholtz free energy. The penetration ∆ is given by

∆ (r0, p) = h − s (r0, p) (5)

where s is the average profile of the liquid. Eq. (5) represents the equation of state of the
system since it allows to determine one of the three quantities ∆, r0, p once known the other
two. To define the Gibbs energy we first need to express the Helmholtz free energy H which in
our case is just the total surface energy of the system H (r0, p) = γLSSLS +γLASLA+γSASSA,
where γLSSLS, γLASLA and γSASSA are the surface energies at the interfaces liquid/solid,
liquid/air and solid/air, respectively. Utilizing the Young’s equation γLA cos θe+γLS−γSA =
0, with θe being the Young’s CA at equilibrium, the Helmholtz free energy reads

H (r0, p) = γLA (SLA − SLS cos θe) + γSASS (6)

and the Gibbs energy becomes

G (r0, p) = γLA (SLA − SLS cos θe) − pλ2∆ + γSASS (7)

7



In Eqs. (6) and (7) SS represent the total surface of the substrate over the single square
cell. We now require that at fixed load (i.e. at fixed drop pressure p) the Gibbs energy
is stationary to enforce equilibrium conditions and close the system of equations with the
following condition

∂G

∂r0

= 0 (8)

Stability or instability of equilibrium can be easily determined by looking at the sign of
∂2G/∂r2

0
: Local stability is guaranteed when the energy has a local minimum, i.e. when

∂2G/∂r2

0
> 0, whereas instability is detected when ∂2G/∂r2

0
≤ 0.

A. The apparent contact angle

At the macroscopic scale the miscrostructure of the substrate is not observable, therefore
at the macro-scale the observer will measure an apparent liquid solid surface energy (γLS)eff

equal to
(γLS)eff = H/λ2 (9)

using Eq. (7) (γLS)eff becomes

(γLS)eff =
γLA (SLA − SLS cos θ)

λ2
+ (γSA)eff (10)

where we have defined (γSA)eff = (γSASS) /λ2 as the effective solid-air interfacial energy.

At equilibrium the above definition Eq. (10) allows to write a modified Young’s equation
and evaluate the apparent contact angle θapp as

cos θapp = −
(γLS)eff − (γSA)eff

γLA

= −
SLA − SLS cos θ

λ2
(11)

The above Eq. (11) represents a generalization of the Cassie-Baxter equation [7], which
takes into account the influence of the interfacial drop pressure, and, of course, holds true
only at equilibrium.

The above simple considerations make clear that a design criteria based on the maximiza-
tion of the apparent contact angle is effective only if we include the effect of the pressure.
Therefore, an optimization of the surface topography only based on the apparent contact
angle evaluated by the Cassie-Baxter equation can lead to misleading conclusions.

III. EQUILIBRIUM CONDITION: A SIMPLIFIED APPROACH

The general approach considered above which leads to an optimization procedure to find
Gibbs energy stationary points is very time consuming. For this reason here we present
a much simpler procedure to determine the equilibrium conditions without the need of a
complicated and time-consuming minimization procedure. Indeed, if we were able to enforce
the equilibrium condition before solving Eq. (1), we would have the advantage of strongly
reducing the complexity of the problem, since, as we are going to show, this allows to
readily calculate the contact radius r0 for any given drop pressure p and hence to ’bypass’
the minimization of the Gibbs energy. This, indeed, can be done by requiring that the CA
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FIG. 5: The forces acting on the emispherical topped pillars, (a); and on the conical pillar, (b).

Note that we have assumed that the triple line contact is circumference of radius r0 and that the

CA angle is just equal to the Young’s contact angle θe.

at the triple line is just equal to the Young’s contact angle θe. Therefore, as shown above,
that the triple line negligibly deviates from a circumference this condition allows to calculate
the real liquid-solid contact area for any given drop pressure. Of course the determination
of the complete thermodynamic state of the system still requires the calculation of the
free liquid-air interface u (x, y) to determine the total interfacial energy and therefore the
apparent contact angle θeff and penetration ∆. However, this calculation can be carried
out a posteriori by solving Eq. (1), with the conditions (2) and (3), without handling the
minimization problem of the total energy.

A. Conical pillars

Let us observe Fig. 5 (b) where the forces acting on a conical pillar are shown to be the
force F that the rigid substrate applies to the pillar, the surface tension γLA at the triple
line, and the pressure p of the liquid. Thus, the equilibrium writes as

2πr0γLA cos (θe − α) + F − πr2

0
p = 0 (12)

where α is the half-cone angle. Now let be A the measure of the area covered by the
elementary cell (not necessarily square) of our periodic distribution of asperities, (in the
case of a square cell the quantity λ is simply λ = A1/2/2), and enforce the equilibrium of
the whole single cell. Because of the Neumann boundary condition Eq. (3) the liquid-air
surface tension at the outer boundaries of the single cell will not give any contribution to
the equilibrium along the z-direction. Therefore we can write F = pA and the above Eq.
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(12) becomes

p̂ = −
π (r̂/2) cos (θe − α)

1 − π (r̂/2)2
(13)

where r̂ = r0/λ and p̂ = pλ/γLA, being λ = A1/2/2 a characteristic length. Notice when
α > θe − π/2 the pressure becomes negative and the drop wets the substrate in a Wenzel
state. Hence the angle α has to satisfy the condition 0 < α < θe − π/2 to guarantee a
positive value of the drop pressure p̂ > 0. In such case the drop pressure p̂ continuously
increases with the radius r̂, i.e. stability of equilibrium is always guaranteed. The pull-off
pressure can be easily evaluated as p̂out = p̂ (r̂ = 0), which as shown by Eq. (13) is zero, i.e.
drops on conical pillars can be very easily detached from the substrate. We observe that
in all practical cases the conical tip will never present a real sharp corner. However this
does not change our conclusion. The conical pillar will always guarantee a negligible pull-off
pressure, as the radius of curvature of its rounded tip is always much smaller than radius of
the pillar itself. Moreover, notice that since the effect of the real extension of the liquid-solid
contact area on adhesion between the drop and surface is already taken into account when
we calculate the contribution of the surface energy to the total energy of the system the
detachment of a liquid drop from a conical pillar requires a vanishing small force even if the
liquid-solid contact area can be larger than in cases of hemispherical or flat topped pillars.

B. Hemispherical topped cylindrical pillars

For hemispherical pillars (see Fig. 5 (a)), we can follow the same procedure as outlined
above to write the equilibrium

2π (R sin ϕ) γLA sin (θe + ϕ) + F − π (R sin ϕ)2 p = 0 (14)

where R is the radius of the sphere and ϕ represents the angular coordinate of the liquid-
pillar triple line [see Fig. 5(a)]. Eq. (14) can be conveniently rewritten in a dimensionless
form as

p̂ = −
(π/2) R̂ sin ϕ sin (θe + ϕ)

1 − (π/4) R̂2 sin2 ϕ
(15)

where we have still used that p̂ = pλ/γLA and R̂ = R/λ. At fixed load, stability implies
dp̂/dϕ > 0 which is equivalent to have ∂2G/∂r2

0
> 0, whereas unstable equilibrium conditions

are characterized by value of dp̂/dϕ ≤ 0, i.e. ∂2G/∂r2

0
≤ 0. Therefore, the threshold value of

pressure at which instability occurs can be determined by enforcing the condition dp̂/dϕ = 0,
i.e.

− πR̂2 sin θe − 8 cos (2ϕ) sin θe + πR̂2 cos (2ϕ) sin θe − 8 cos θe sin (2ϕ) = 0 (16)

We observe that two unstable conditions can be found in general: the first one corresponds
to the impalement transition to the Wenzel state and is reached when the pressure increase
over a value p̂W (see below), the second one is achieved when the pressure decreases below
a value p̂out which we call pull-off pressure. In particular we stress that the pull-off pressure
p̂out represents the lowest value of the pressure at which it is still possible to find a stable
minimum of the total energy of the system. If the liquid pressure decreases below this
threshold value the liquid drop detaches from the substrate. However the drop does not
detach as a whole, but rather via the edge propagation of the triple line toward the inner

10



FIG. 6: The two limiting states that a liquid drop in contact with a flat-topped cylindrical pillars

can assume. Limiting conditions at pull-off, (a); and limiting condition at the transition from

Cassie-Baxter to Wenzel state, (b).

region of the liquid-pillar. We also observe that from a conceptual point of view, the pull-off
pressure defined in the present paper is analogous to the maximum detachment force defined
in Ref. [24] for capillary bridges. In fact, in our case the thermodynamic contact angle is
θe > π/2 and in this case the maximum detaching force for capillary bridges occurs exactly
at the transition I point defined in Ref. [24] (see figure 5 of the cited paper). Beyond this
point stable contact conditions cannot be achieved and the drop will necessarily detach from
the substrate.

As in case of hemispherical topped pillars 0 < ϕ < π/2, the equation dp̂/dϕ = 0 gives
just one solution ϕ = ϕout, which corresponds to the pull-off condition p̂out = p̂ (ϕout). The
impalement transition to the Wenzel state is instead obtained at ϕ = ϕW = π/2

p̂W = p̂ (ϕW ) = − cos θe
πR̂/2

1 − πR̂2/4
(17)

C. Flat topped cylindrical pillars

In case of flat topped cylindrical pillars the liquid-solid contact area on each pillar is
fixed, and equal to πR2. In such case, depending on the drop pressure values, the slope of
the liquid profile at the triple line can vary between two different limiting values as clearly
shown in Fig. 6. We can, therefore, easy determine the critical pressure p̂out at pull-off [see
Fig. 6(a)] as

p̂out = − sin θe
πR̂/2

1 − πR̂2/4
(18)

11



and the critical dimensionless pressure p̂W [see Fig. 6(b)] as (see also [22])

p̂W = − cos θe
πR̂/2

1 − πR̂2/4
(19)

which, as expected, is exactly equal to the value found for hemispherical pillars [see Eq. (17)].
It is noteworthy that, in case of flat topped cylindrical pillars, the ratio |p̂out/p̂W | = tan θe

non depending on the cylinder radius.

IV. RESULTS

In what follows we assume that the Young’s contact angle is θe = 109◦, i.e. we assume
that the underlying microstructured surface is chemically hydrophobic.

A. Conical pillars

Conical pillars have been analyzed assuming that R̂ = R/λ = 0.5, where R is the radius
of the base circle. Fig. 7 shows the contact radius r̂ as a function of the dimensionless
drop pressure p̂ for different values of the dimensionless pillar height ĥ. The black solid
curves are obtained by Eq. (13) whereas the red-dashed ones are obtained by minimizing
the total energy of the system as explained in Sec. II. Notice the very good agreement
between the two approaches. Also Fig. 7 shows that r̂ initially increase proportionally
to the drop-pressure p̂, as indeed predicted by Eq. (13), however, as the drop pressure is
increased further, the contact radius also increases and the denominator in Eq. (13) may
become not negligibly smaller than one. This, in turn, causes the drop pressure p̂ to increase
more than linearly with r̂ thus explaining the deviation of curves in Fig. 7 from linearity.
Since for conical pillars the partial fakir-droplet state is always stable (i.e. increasing the
pressure does not force the system to undergo a spontaneous transition to the Wenzel state),
a different threshold pressure p̂L has to be defined. This is simply the drop pressure at which
the free liquid-air interface touches for the first time the basal of the pillars. This condition,
indeed, has been shown experimentally to easily trigger a sharp transition to the Wenzel
state [22]. Fig. 8 shows the dimensionless limiting pressure p̂L as a function of the pillar

aspect ratio ĥ. Observe that increasing ĥ also increases the limiting pressure p̂L, since (at
fixed λ) the liquid-air interface will be farther from the bottom of the pillar. However, p̂L

cannot increase above the limiting asymptotic values obtained for ĥ → ∞, i.e. α → 0.
When this happens, the conical pillar becomes an infinitely tall cylinder of dimensionless
radius R̂ for which the Cassie-Baxter state becomes unstable when the drop-pressure reaches
the values p̂W given by Eq. (19) which indeed is just the asymptotic value (p̂L)

∞
shown by

the dashed line in Fig. 8.
Figure 9 shows the dimensionless penetration ∆̂ = ∆/λ of the liquid drop into the pillar

forest as a function of the dimensionless pressure p̂. As expected ∆̂ increases as the pressure
p̂ and aspect ratio ĥ are increased. Indeed, increasing h, at fixed R and λ, makes the
cone sharper and sharper. This would in turn reduces the liquid-solid contact radius if the
penetration were maintained fixed. But, since the dimensionless pressure p̂ at equilibrium
decreases if the contact radius r̂ is reduced [see Eq. (13)], the drop actually needs to increase
the penetration to increase r̂ and, thus, sustain the applied pressure p̂.

12



0 0.1 0.2 0.3

p̂

0

0.1

0.2

0.3

0.4

0.5

r̂

ĥ   = 2 ĥ   = 4
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FIG. 7: The dimensionless radius of contact r̂ as a function of the dimensionless pressure p̂ at

equilibrium, for a drop in contact with a periodic distribution of conical pillars. The red-dashed

curves are results of the minimization procedure as explainen in Sec. II, black continuous lines

are instead determined by the simplified approach of Sec. III. The matching between the two

methodologies is excellent. Result are presented for different values of ĥ = 2, 4, 6, 8, and R̂ = 0.5,

the Young’s contact angle is θe = 109◦.

It is noteworthy to observe that if the dimensionless height of the conical pillar is strongly
reduced, we should expect an increase, instead of a decrease, of the dimensionless penetration
∆̂ as a function of ĥ. Indeed, in such case the half-cone angle α would increase toward the
limiting value θe−π/2 at which the drop spontaneously undergoes a transition to the Wenzel

state (which is obviously characterized by ∆̂ = ĥ). This increase of the penetration, as a

consequence of strong reduction of ĥ, is, indeed, also observed in Fig. 9 for ĥ = 2, where
the corresponding ∆̂ values are larger than those obtained for ĥ = 4 over a large range of p̂.

Figure 10 shows the calculated apparent contact angle θapp [see Eq. (11)], as a function of

the radius of the base circle R̂ and different drop pressures p̂. In the limit case of zero pressure
θapp = 180◦ independently of R̂, since in this case the stable state is a perfect Cassi-Baxter
state with the drop just touching the tip of the conical pillars. Increasing p̂ the apparent
contact angle decreases in qualitative agreement with some experimental observations [16].
The reason of this decrement is related to the significant increase of penetration ∆ which
in turn determines a strongly increase of the energy term p∆ a therefore a reduction of the
apparent contact angle [see Eq. (11)]. Notice that for each given pressure p̂ > 0 a minimum
value of the base radius is needed in order to stabilize the composite interface and avoid the
transition to the Wenzel state. This explains why the curves at different drop pressures in

13



FIG. 8: The threshold pressure pL as a function of the pillar aspect ratio ĥ. Results are presented

for R̂ = R/λ = 0.5 and θe = 109◦.Observe that increasing ĥ the limiting pressure reaches an

asymptotical value (pL)
∞

which is just the values given by Eq. (17).

Fig. 10 are plotted starting from different values of the base radius R̂.

B. Hemispherical topped pillars

To analyze the behavior of hemispherical topped pillars we use the simplified approach
described in Sec. III to calculate the area of liquid-solid contact as a function of pressure,
then we solve Eq. (1) to determine the shape of the free liquid-air interface and therefore
the penetration of the liquid drop and the apparent contact angle. Fig. 11 shows the di-
mensionless liquid-pillar contact radius r̂ at equilibrium [Fig. 11 (a)] and the dimensionless

penetration ∆̂ [Fig. 11 (b)], as a function of the dimensionless drop pressure p̂. Two types of
lines are shown. Solid lines are stable equilibrium branches, whereas dashed lines represent
unstable branches at fixed load. As expected, also in this case the contact radius and the
penetration increase with the applied drop pressure, but this time the r̂ vs. p̂ law strongly
differs from being linear. Finite negative values of |pout| are related to the finite size of the
liquid-solid contact that still exists when the drop is about to detach from the substrate.
This is often strongly unwanted since, beside the large detaching force, it usually leads also
to large contact angle hysteresis [15], [38]. Also observe that for hemispherical topped cylin-
drical pillars impalement transition occurs spontaneously when the drop pressure reaches
the limiting value pW (at which the penetration ∆̂ jumps to ĥ), in contrast with what we
have found for the conical pillars. Therefore, for hemispherical pillars the height should be
chosen by taking care that at p = pW the free liquid-air interface does not touch the bottom
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FIG. 9: The dimensionless drop penetration ∆̂, as a function of the drop pressure p̂. Results are
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FIG. 10: The apparent contact angle θapp as a function of the base radius R̂ for conical pillars.

Results are shown for different drop pressures p̂. The aspect ratio of conical pillars is ĥ = 8.
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FIG. 11: The dimensionless radius r̂ at equilibrium, (a); and the dimensionless penetration ∆̂

at equilibrium, (b); as a function of the dimensionless drop pressure p̂ for hemispherical pillars.

Full lines are stable branches, wherease dashed lines are unstable branches at fixed load (at fixed

penetration the stability extends till to the point where ∆̂ has a minimum). Results are presented

for different values of the dimensionless sphere radius R̂ = 0.2, 0.3, 0.4, 0.5 and for θe = 109◦. Each

curve ends at a certain value of p̂ = p̂W , which only depends on the pillar radius and contact angle

θe. When this value of drop pressure is reached the penetration sharply jumps to the unit value,

i.e. the drop ungergoes a sharp transition to the Wenzel state.

of the pillars forest.
In case of hemispherical topped pillars, Fig. 12 shows that the apparent contact angle

slightly increases with pressure p̂ because in this case the liquid/air surface term γLASLA

increases more than the other two energy terms pλ2∆ and γLSSLS. Fig. 12 also shows the
original Cassie-Baxter solution which corresponds to p̂ = 0.

C. Flat topped cylindrical pillars

In this case, for any value of the drop-pressure between the two limits pout given by Eq.
(18) and pW given by Eq. (19), the contact liquid-pillar area will be always equal to πR2

with R the radius of the cylinder. This makes the problem (1) (2) and (3) linear, and, in
turn, leads to a direct proportionality between the drop pressure p and the penetration ∆, as
indeed confirmed experimentally in Ref. [22]. Notice that, since |pout/pW | = |tan θe| and θe

is usually not larger than 120◦, the pull-off pressure is always larger than pW . Therefore we
expect that, although a forest of flat topped cylinders can stabilize the Cassi-Baxter state,
a drop suspended on such a microstructured surface is relatively difficult to detach from it
and should suffer of strong contact angle hysteresis.

Fig. (13) shows the variation of the apparent contact angle θapp as a function of the

cylinder radius R̂ for different drop pressures. Similarly to the case of hemispherical pillars
the apparent contact angle grows with the pressure, although in this case this increment is
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FIG. 12: The apparent contact angle θapp as a function of the radius R̂ for hemispherical topped

pillars. Results are shown for different dimensionless drop pressure p̂.
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FIG. 13: The apparent contact angle θapp as a function of the radius R̂. Results are shown for

cylindrical pillars and different dimensionless drop pressure p̂.

less pronounced.

V. DISCUSSION AND DESIGN SUGGESTIONS

Very robust super-hydrorepellent surfaces should possess the ability to support large drop
pressures, and should also allow the drops to easy abandon the substrate, roll on it with
almost zero contact angle hysteresis, or even easily bounce on it. As already stated, these
properties are very desirable in applications such as micro-fluidic-chips and micro-chemical
reactors, where drops have to be easily moved and positioned. But, also at the macro-

17



scale, they represent a strict requirement for self-cleaning windows, water-hydrorepellent
windshields, or even hydrorepellent clothing. In these latter cases, the droplet pressure may
reach large values as a consequence of large inertia forces due to the impact of rain drops.
As an example, assuming the rain drop falls at the speed of about v0 = 10 m/s we can
easily estimate the maximum impact pressure pmax ≈ ρv2

0
= 1 × 105 Pa. Therefore, a self-

cleaning super-hydrorepellent window should be necessarily characterized by large values of
the critical Wenzel pressure such that pW > pmax. Thus, assuming that the substrate is
constituted of hemispherical topped cylindrical pillars distribution, and recalling Eq. (19)
we found

λ < p̂W
γLA

pmax

= − cos θe
πR̂/2

1 − πR̂2/4

γLA

pmax

= λmax (20)

So taking for R̂ the value 0.5, recalling that the liquid-water surface tensions is γLA ≈
72× 10−3 J/m2, and assuming a thermodynamic contact angle θe = 109◦, one ends up with
the value λ < 230 nm, i.e. nanotube forests [20] should be employed in such applications,
provided that the pillar height is sufficiently large to avoid direct contact between the free
liquid-air interface and the bottom of the solid surface (we also observe incidentally that
nanometer spacing between the pillar is also necessary not to alter the transparency of the
glass). However, we underline that the present paper is focused on steady-state conditions
and a correct treatment for impactig drops should take in account that the curvature of the
free surface is determined by the non uniform pressure distribution at the interface.

In case of conical pillars the critical pressure pL is determined by the condition that the
air-liquid interface touches the pillar forest ground. It has been observed that the pressure
p̂L is always smaller than the critical Wenzel pressure p̂W calculated for hemispherical and
flat topped cylindrical pillars, and approaches this value only for infinitely large values of
ĥ. Therefore, one may be tempted to conclude that if large drop pressures have to be
supported, the conical pillar shape is not a viable solution. However, we can easily correct
for this by simply slightly modifying the pillar design to turn it in a cylinder with a conical
tip on the top, i.e. in a conical topped cylindrical pillar. The new conical pillar design
guarantees the same critical Wenzel pressure p̂W as given by Eqs. (17) or (19), but has
the fundamental benefit to present a vanishing or negligibly pull-off pressure p̂out. As a
consequence, drop on a forest of conical topped cylindrical pillars should not suffer from
CA hysteresis, as indeed experimentally observed in Ref. [21], and should be able to easily
roll or slide on the substrate or even to bounce on it with very high restitution coefficients.
This, should also explain why some biological systems as water striders, which usually walk
on the free surface of the water, possess a conically shaped distribution of asperities on their
super-hydrorepellent legs [11]. Also note that it is useless to have pillars taller than the
minimum height necessary to prevent the contact of the liquid surface with the bottom of
the pillars forest, in contrast to what is often asserted, i.e. that the taller the pillars the
more the super-hydrorepellence of the surface. The argument, which is usually provided, is
that as the pillar height is increased, more energy has to be spent to push the drop in full
contact with the substrate. Thus, making pillars taller and taller should lead to a very large
resistance against the impalement transition [38]. However, one should observe that this
energy can always be provided by the pressure pW acting inside the drop independently of
the pillar height, and that the real critical condition for the transition to the Wenzel state to
occur is p = pW . Only in case of very small drops (diameter comparable with the spacing λ
between the pillars) the physical scenario may slightly change. In this case, it may be shown
that the pillar height can actually play an additional role: because of mass conservation, an
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additional resistance against impalement transition and drop penetration is generated [22].

VI. CONCLUSIONS

In this paper the behaviour of a liquid drop on super-hydrorepellent surfaces constituted of
periodic distribution of pillars has been analyzed. In particular the critical drop pressure pW

which destabilize the fakir-droplet state causing a transition to a Wenzel (full contact) state
and the critical pressure pout which causes the detachment of the drop from the substrate have
been studied for three types of periodic micro-structured surfaces: conical, hemispherical
topped and flat topped cylindrical pillars, regularly disposed on a rigid substrate. Both pW

and pout are equally important to assess the superhydrorepellent properties of surfaces. In
fact high pW values are requested in all those applications in which very high pressures must
be supported, e.g. self-cleaning glasses and super-hydrorepellent windshields, whereas small
values of pout are desirable to guarantee very small contact angle hysteresis and allow the
drop to easily move on the substrate (e.g. microfluidic chemical reactor, micro-fluidic-chips)
or, in case of impacting drops, easily rebound from it (e.g. self-cleaning windows, super-
water-repellent windshields and biker helmet visors). We have shown that the conical pillars
have a pull-off pressure pout vanishing small (that is an advantage in those applications in
which liquid drops have to be easily removed from the surface), but the Cassi-Baxter state
is destabilized for pressures smaller than the critical value pW found for hemispherical or
flat topped cylindrical pillars. However, a surface microstructured with cylindrical pillars
with conical tips would have both advantages of large pressure pW and zero pull-off pressure
pout. Finally, the effect of the pressure on the apparent contact angle θapp has been studied.
The analysis has shown that θapp reduces significantly with the pressure in case of conical
pillars (in agreement with previous experimental observation), whereas it slightly increases
for hemispherical or flat topped cylindrical pillars.
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[38] Quéré D., Wetting and Roughness, The Annual Review of Materials Research, 38, 71-99

(2008)
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