It is the cache of ${baseHref}. It is a snapshot of the page. The current page could have changed in the meantime.
Tip: To quickly find your search term on this page, press Ctrl+F or ⌘-F (Mac) and use the find bar.

Synthesis and evaluation of L-glutamic acid analogs as potential anticancer agents Viswanathan C L, Deb S, Jain A, Lokhande T, Juvekar A - Indian J Pharm Sci
Indian Journal of Pharmaceutical Sciences
Users online: 110
Scientific Publication of the Indian Pharmaceutical Association
Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
The Journal Search Current Issue Archives Instructions Online submission Login  


 
SHORT COMMUNICATION
Year : 2008  |  Volume : 70  |  Issue : 2  |  Page : 245-249
Synthesis and evaluation of L-glutamic acid analogs as potential anticancer agents


1 Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai-400 098, India
2 Department of Chemotherapy, Tata Memorial Centre, Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Kharghar, New Mumbai-410 208, India

Date of Submission 28-Mar-2007
Date of Decision 22-Oct-2007
Date of Acceptance 20-Apr-2008

Correspondence Address:
C L Viswanathan
Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai-400 098
India
Login to access the Email id


DOI: 10.4103/0250-474X.41467

PMID: 20046724

Get Permissions

   Abstract  

Four N-(benzenesulfonyl)-L-glutamic acid bis(p-substituted phenylhydrazides) were synthesized and evaluated for anticancer activity in vitro in DU-145 and PC-3 prostate cancer and in COLO-205 colon cancer cell lines by MTT assay. The analog with the nitro group substitution exhibited potent activity (% Inhibition 84.7 and 72.0 in DU-145 and PC-3 respectively at 80 mg/ml concentration). Another series of substituted 1-(benzenesulfonyl)-5-oxopyrrolidine 2-carboxamides (11a-f) were synthesized and evaluated for anticancer activity in vitro in colon (COLO-205), breast (Zr-75-1) and prostate (PC-3) cancer cell lines by MTT assay using adriamycin as standard. Test compounds 11a-c showed potent activity (% Inhibition 61.2 to 79.2 at 20 mg/ml and 67.2 to 87.2 at 40 mg/ml) in PC-3 cell line which is superior to the activity of Adriamycin. In comparison compounds 11d-f were less potent. In Zr-75-1 cell line 11a-e showed % inhibition ranging from 32.4 to 54.9 at 10 mg/ml concentration while in COLO-205 cell line 11a-f showed poor activity.


Keywords: L-glutamic amides, L-glutamic acid hydrazides, anticancer activity


How to cite this article:
Viswanathan C L, Deb S, Jain A, Lokhande T, Juvekar A. Synthesis and evaluation of L-glutamic acid analogs as potential anticancer agents. Indian J Pharm Sci 2008;70:245-9

How to cite this URL:
Viswanathan C L, Deb S, Jain A, Lokhande T, Juvekar A. Synthesis and evaluation of L-glutamic acid analogs as potential anticancer agents. Indian J Pharm Sci [serial online] 2008 [cited 2014 Mar 5];70:245-9. Available from: http://www.ijpsonline.com/text.asp?2008/70/2/245/41467


L-Glutamic acid plays an important role in the biosynthesis of purine and pyrimidine bases of DNA and RNA [1] . It is metabolized to L-glutamine by L-glutamine synthetase and this metabolic process is essential for normal maintenance of cells. The synthesis of L-glutamine is hindered in neoplastic cells due to lower reactivity of L-glutamine synthetase. Thus antagonists of this enzyme can interfere with the metabolic role of L-glutamine and act as anti-cancer agents [2] . Azaserine and 6-diaza-5-oxo-L-norleucine antagonized the metabolic process involving L-glutamine and exhibited antitumor activity in animal models [3]. L-glutamic acid γ-(4-hydroxyanilide) a growth regulatory substance isolated from mushroom Agaricus bisporous was found to inhibit B16 mouse melanoma cells in culture [4]. Similarly an arylamide derivative of L-threo-γ-hydroxy glutamic acid isolated from Justica ghiesbreghtiana was found to be active against various tumors [5] . The synthetic amides of L-glutamic acid also exhibited activity against Ehrlich ascites carcinoma [6] . In the present work it is proposed to synthesize novel N-(benzenesulfonyl)-L-glutamic acid bis(p-substituted phenylhydrazides) and substituted 1-(benzenesulfonyl)-5-oxopyrrolidine-2-carboxamides and evaluate them in cancer cell lines to ascertain their anticancer activity.

All melting points were recorded on Thermonik melting point apparatus and are uncorrected; Fourier-Transform Infrared (FT-IR) spectra (KBr discs) were recorded in Jasco FT-IR 5300 instrument. 1 H-NMR spectra were recorded in Varian spectrophotometer at 60 MHz for first set of compounds and at 300 MHz for second set of compounds. The chemical shift values are reported in δ units (ppm) relative to internal standard tetramethylsilane (TMS). Elemental analysis values for final compounds were within ±0.4 % of theoretical value.

A group of four N-(benzenesulfonyl)-L-glutamic acid bis(p-substituted phenylhydrazides) were synthesized by condensing L-glutamic acid with benzenesulfonyl chloride in presence of aqueous NaOH at 70 o followed by acidification with aqueous HCl and extraction in dry ethyl acetate. The sulfonamide formed was converted to acid chloride using thionyl chloride and then condensed with excess of p-substituted phenylhydrazines to get bisamides (1-4). The physical constant and spectral characteristics are given in [Table 1].

General procedure used for the synthesis of N-substituted-5-oxopyrrolidine-2-carboxylic acid is as follows, in a 250 ml round bottom flask fitted with a CaCl 2 guard tube, 20 g (0.066 mol) of N-p-toluenesulfonyl-L-glutamic acid (7) was taken and 25 ml (0.264 mol) of freshly distilled POCl 3 was added to it gradually with cooling of the flask in ice bath. Then 2-3 drops of DMF was added and the reaction mixture stirred for 3-4 h at room temperature. The reaction mixture was poured with stirring into crushed ice and the precipitate formed was extracted in chloroform. Chloroform extract dried over anhydrous MgSO 4 . Removal of solvent gave 8 in pure form. Compound 8 (R=CH 3 ), Yield: 95 %; Mp 178-180°. IR (KBr, cm -1 ): 3414 (O-H stretch), 2932 (C-H stretch), 1736 (C=O stretch, lactam), 1707 (C=O stretch, acid), 1356 (S=O stretch). 1 H NMR (CDCl 3 ) δ ppm: 1.9 (2H, m, -CH 2 ), 2.1 (3H, s, -CH 3 ), 2.2 (2H, t, -CH 2 -C=O), 4.9 (1H, t, NC-H), 7.3 (2H, d, Ar-H), 8.0 (2H, Ar-H), 9.0 (1H, s, -OH).

The above formed acid was converted to acid chloride by heating for an hour with 15 ml of SOCl 2 and with addition of 2 drops of DMF and removing the excess of SOCl 2 by vacuum distillation. Compound 9 (R=CH 3 ), Yield: 95 %; Mp 71-72°. Synthesis of substituted 1-(benzenesulfonyl)-5-oxopyrrolidine 2-carboxamides (11a-f) was achieved by adding gradually to a solution of 3.9 g (0.012 mol) of 9 (R=CH 3 ) in 5 ml of chloroform 1.46 g (0.020 mol) t-butylamine (10b) dissolved in 5 ml of chloroform with temperature maintained at 0°. The temperature was then raised to 50° and the mixture heated for 5-6 h. The chloroform solution was washed several times with water to remove unreacted amine, dried and then concentrated in vacuum. The amide obtained was purified by recrystallization with aqueous methanol or with ethyl acetate-hexane mixture (4:1). Compound 11b: Yield: 78 %; Mp 202-203°. IR (KBr, cm -1 ): 3290 (N-H stretch), 2966 (C-H stretch); 1751 (C=O stretch, lactam), 1651 (C=O amide). 1 H NMR (CDCl 3 ) δ ppm: 1.0 (3H, t, -CH 3 ), 1.2 (2H, m, -CH 2 ), 1.4 (2H, q, -CH 2 ), 1.8 (2H, m, -CH 2 ), 2.2 (2H, t, H 2 C-CO), 2.4 (2H, t, N-CH 2 ), 2.5 (3H, s, Ar-CH 3 ), 5.3 (1H, m, -N-C-H), 7.3 (2H, d, Ar-H), 8.0 (2H, dd, Ar-H).

Test compounds 1-4 were evaluated for cytotoxicity in DU-145, PC-3 (prostate) and colo-205 (colon) cancer cell lines, while test compounds 11a-f were tested in PC-3, colo-205 and Zr-75-1 (breast) human cancer cell lines. All compounds were evaluated in vitro at 10, 20, 40 and 80 mg/ml concentrations using Adriamycin as standard and using MTT assay [7] .

Cell suspension 90 ml /well (5×10 3 cells) was added to 96 wells and incubated at 37° for 24 h in 5% CO 2 incubator. Ten microlitres of either solutions of test compounds or solution of Adriamycin were added to the wells and the plates were incubated at 37° for 48 h in 5 % CO 2 incubator. MTT reagent 10 ml (0.5%) was then added to the wells and further incubated for 6 h. The supernatant was then carefully removed and the formazan crystals formed were dissolved in 100 ml of acidified isopropanol (0.04 N HCl in isopropanol) and the absorbance of the solution was then read on spectrophotometer at a wavelength of 540 nm. The absorbance values were used to calculate % inhibition at various concentrations. The results are average values of three experiments.

A series of substituted 1-(benzenesulfonyl)-5-oxopyrrolidine-2-carboxamides (11a-f) were synthesized by cyclizing compound 7 using PCl 5 and reacting with amines (10a-f). This method gave colored impurities which were difficult to remove. The above reaction when carried out with excess POCl 3 , instead of PCl 5 , generated less colored impurities but complete removal of excess POCl 3 at the end of the reaction was difficult. Hence in the reaction with POCl 3 after cyclisation of 7, the reaction mixture was poured into crushed ice to destroy excess POCl 3 and the product isolated was the free acid (8). The free acid was then converted to the acid chloride using SOCl 2 (Scheme 1)-[Figure 1]. The structure & physical constants & yields of the final steps are given in [Table 2].

Test compound 2 was found to be potent with % inhibition of 84.7, 86.6 and 42.2 in DU-145, PC-3 colo-205 cancer cell lines respectively at 80 mg/ml concentration, but was less potent at lower concentrations. Compounds 1, 3 and 4 exhibited poor activity at all doses studied [Table 3].

Test compounds 11a-f exhibited significant inhibitory activity in PC-3 cell line and 11a-c were more active than Adriamycin at 10, 20 and 40 mg/ml concentrations. In Zr-75-1 cell line the % inhibition ranged from 31.5 to 54.9 at 10 mg/ml concentrations but activity dropped with increasing concentrations. In colo-205 cell line, test compounds 11a-f as well as Adriamycin showed reduced activity at all concentrations. The percentage inhibition determined is reported in [Table 4]. The present work led to synthesis of two series of L-glutamic acid amides and among these, tests compounds 2 and 11a-c exhibited potent anticancer activity in some of the cell lines tested.


   Acknowledgements   Top


Authors are thankful to Amrut Mody Research Foundation (AMRF), Mumbai for financial support for this project.

 
   References   Top

1. Rodwell VW. Metabolism of purine and pyrimidine nucleotides. In, Murray KR, Granner DK, Mayes PA, Rodwell VW, editors. Harper's biochemistry. 25th ed. Stamford, Connecticut: Appleton and Lange; 2000. p. 386-401.  Back to cited text no. 1    
2. Livingston RB, Venditti JM, Cooney DA, Carter SK. Glutamine antagonists in chemotherapy. In, Garattini S, Goldin A, Hawking F, Kopin IJ, editors. Advances in pharmacology and chemotherapy, Vol. 8. New York: Academic Press; 1970. p. 57-120.   Back to cited text no. 2    
3. Dewald HA, Moore AM. 6-Diazo-5-oxo-L-norleucine, a New Tumor-inhibitory Substance. 1a Preparation of L-, D- and DL-Forms 1b. J Am Chem Soc 1958;80:3941-5.   Back to cited text no. 3    
4. Rosowsky A, Wick MM, Kim SH. Structural analogs of L-glutamic acid .gamma.-(4-hydroxyanilide) and .gamma.-(3,4-dihydroxyanilide) as potential agents against melanoma. J Med Chem 1979;22:1034-7.  Back to cited text no. 4    
5. Luzzio FA, Thomas EM, Figg WD. Thalidomide metabolites, Part 1: Derivatives of (+)-2-(N-phthalimido)-γ-hydroxyglutamic acid. Tetrahedron Lett 2000;41:2275-8.  Back to cited text no. 5    
6. Srikanth K, Kumar CA, Ghosh B, Jha T. Synthesis, screening and quantitative structure-activity relationship (QSAR) studies of some glutamine analogues for possible anticancer activity. Bioorg Med Chem 2002;10:2119-31.  Back to cited text no. 6    
7. Twentyman PR, Fox NE, Rees JK. Chemosensitivity testing of fresh leukemia cells using the MTT colourimetric assay. Br J Haematol 1989;71:19-24.  Back to cited text no. 7    


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4]

This article has been cited by
1 Glutamic acid as anticancer agent: An overview
Satyajit Dutta,Supratim Ray,K. Nagarajan
Saudi Pharmaceutical Journal. 2013; 21(4): 337
[Pubmed]
2 Glutamic acid and its derivatives: candidates for rational design of anticancer drugs
Imran Ali,Waseem A Wani,Ashanul Haque,Kishwar Saleem
Future Medicinal Chemistry. 2013; 5(8): 961
[Pubmed]
3 Design and synthesis of harzialactone analogues: Promising anticancer agents
Vishwas U. Pawar,Sougata Ghosh,Balu A. Chopade,Vaishali S. Shinde
Bioorganic & Medicinal Chemistry Letters. 2010; 20(24): 7243
[Pubmed]
4 Design and synthesis of harzialactone analogues: Promising anticancer agents
Pawar, V.U., Ghosh, S., Chopade, B.A., Shinde, V.S.
Bioorganic and Medicinal Chemistry Letters. 2010; 20(24): 7243-7245
[Pubmed]



 

Top
Print this article  Email this article
 
  Search
   
   Next article
   Previous article 
   Table of Contents
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Article in PDF (195 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
    Acknowledgements
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed 4215    
    Printed 50    
    Emailed 1    
    PDF Downloaded 370    
    Comments  [Add]    
    Cited by others  4    

Recommend this journal