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COX RINGS OF MODULI OF QUASI PARABOLIC PRINCIPAL BUNDLES AND

THE K−PIERI RULE

CHRISTOPHER MANON

Abstract. We study a toric degeneration of the Cox ring of the moduli of principal SLm(C) bundles
on the projective line, with quasi parabolic data given by the the stabilizer of the highest weight

vector in Cm and its dual
∧

m−1(Cm). The affine semigroup algebra resulting from this degeneration
is described using the K−Pieri rule from Kac-Moody representation theory. Along the way we give a
proof of the K−Pieri rule which utilizes the classical Pieri rule and elements of commutative algebra,
and we describe a relationship between the Cox ring and a classical invariant ring studied by Weyl.
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1. Introduction

For a smooth, projective curve C, with a choice ~p ⊂ C of marked points, and an assignment pi → Pi

of parabolic subgroups Pi ⊂ SLm(C) to these points, a quasi-parabolic principal bundle of type ~P is
a principal bundle E on C and a choice ρi ∈ [E ×G G/Pi]pi

from the fiber of the G/Pi associated

bundle at the marked point pi. The moduli stacks MC,~p(~P ) of these objects have been widely studied
due to their place in algebraic geometry as a generalization to the Jacobian variety, and because of
their relationship to conformal field theory and representation theory, which we will describe further
below. In [M4] we began a program to study these stacks by describing the algebras formed by the
global sections of their line bundles, sometimes called non-Abelian theta functions. Our primary object
of interest is the algebra formed by all of the non-Abelian theta functions, obtained by endowing the
direct sum of all global sections of line bundles on the stack with global section multiplication. This

algebra is known as the Cox ring or total coordinate ring of the stack MC,~p(~P ).

In this paper we describe this algebra in a special caseMP1,~p(~P , ~P ∗), where the curve C is a projective
line, and the parabolic structure at each marked point is given by the stabilizers P, P ∗ ⊂ SLm(C) of

the highest weight vector in the representation Cm or its dual
∧m−1

(Cm). We let a be the number of
marked points with parabolic data P and b be the number of marked points with parabolic data P ∗.
Line bundles L(~r, ~s,K) on this stack are indexed by a tuple ~r of a non-negative integers, a tuple ~s of b
non-negative integers, and a non-negative integer K called the level.

(1) Pic(MP1,~p(~P , ~P ∗)) = Z
a+b+1
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(2) V~p(a, b) =
⊕

~r,~s,K

H0(MP1,~p(~P , ~P ∗),L(~r, ~s,K))

By definition the algebra V~p(a, b) contains each of the projective coordinate rings R~p(~r, ~s,K) defined

by the line bundle L(~r, ~s, L) ∈ Pic(MP1,~p(~P , ~P ∗)) as a graded subalgebra. We prove the following
theorem.

Theorem 1.1. For generic arrangements of points ~p, the algebra V~p(a, b) is minimally generated by the
non-Abelian theta functions with K = 1. The relations which hold among these generators are generated
by the quadratic relations.

In the case m = 2, the parabolic subgroups P, P ∗ are equal, in this case we set n = a+ b. This case
is studied by Castravet and Tevelev in [CT], where the algebra V~p(n) is shown to be a Cox-Nagata ring.
This means that V~p(n) is the algebra of invariants by a certain non-reductive (additive) group action on
a polynomial ring, and can be identified with the Cox ring of a blow-up of a projective space. Sturmfels
and Xu also study this case in [StXu], where they construct a SAGBI (Subalgebra Analogue of Gröbner
Bases for Ideals) degeneration VT (n) of V~p(n) for generic ~p, for each trivalent tree T with n leaves.
The degenerations VT (n) constructed in [StXu] are notable as they are affine semigroup algebras which
have also been studied by Buczyńska and Wísniewski [BW] in the context of mathematical biology.
The algebras VT (n) are the coordinate rings of the Z/2Z group-based phylogenetic statistical models.
Generators for the ideal of relations presenting these coordinate rings are important for applications of
these models, to that end Buczyńska and Wísniewski prove results for VT (n) which imply Theorem 1.1
in the SL2(C) case, via the degeneration techniques in [StXu].

In this paper we also employ degeneration methods, developed in [M4] from elements of conformal
field theory (see below). The tree combinatorics is still present, however it stems from a relationship to
the moduli of marked genus 0 curves M̄0,n, rather than a SAGBI construction. It would be interesting
to find a SAGBI construction for V~p(a, b) in the general case, and also an interpretation of this algebra
as the invariants of an additive group action on a polynomial ring.

1.1. Degeneration and the K−Pieri rule. We choose the standard set of positive roots αij , i <
j for SLm(C), with corresponding Weyl chamber ∆. Dominant weights λ of SLm(C) and positive
dominant weights of GLm(C) in this Weyl chamber are weakly descreasing lists of m − 1 and m
numbers, respectively.

(3) λ = [λ1 ≥ λ2 ≥ . . .]

We let V (λ) denote the irreducible representation corresponding to a dominant weight λ. The fundamen-
tal weight ωk is the list with k 1′s followed by m−k 0′s, and its corresponding irreducible represention is

the exterior product V (ωk) =
∧k

(Cm). Note that V (ωm) is the determinant representation of GLm(C)
and therefore the trivial representation of SLm(C).

In order to prove Theorem 1.1, we first degenerate V~p(a, b) to an affine semigroup algebra, using
Theorem 1.1 in [M4]. When specialized to the case we consider here, this theorem says that for any
trivalent tree T with a+b labelled leaves, there is a degeneration of V~p(a, b) to an algebra VT (a, b). The
algebra VT (a, b) is built out of the total coordinate rings of moduli of SLm(C) quasi-parabolic principal
bundles on a triple marked projective line, P1, 0, 1,∞ according to a specific recipe dictated by T . The
structure of VT (a, b) depends on the tree T , so it is critical to choose a tree topology which gives an
algebra with advantageous properties. From now on, we consider the ”caterpillar” tree T0, depicted in
Figure 1. This tree has the property that each vertex of T0 is connected to a leaf by a single edge.

Each leaf-edge of this tree corresponds to a marked point, and is assigned a P or P ∗, the internal
edges are each assigned a copy of the Borel subgroup B ⊂ P, P ∗ ⊂ SLm(C). Each internal vertex of
T0 now has three parabolic subgroups assigned to its incident edges, so following [M4], we think of this
vertex as corresponding to the total coordinate ring of the moduli of quasi-parabolic principal bundles
on P1, 0, 1,∞ with parabolic structure coming from the corresponding parabolic subgroups. Four types
of total coordinate rings appear, V0,3(P, P,B), V0,3(B,P,B), V0,3(B,P ∗, B), and V0,3(B,P ∗, P ∗), we
call these the K−Pieri algebras for reasons that will be made clear. The following theorem expresses
the degeneration of V~p(a, b) in terms of these algebras, it follows from Theorem 1.1 from [M4].
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Theorem 1.2. The algebra V~p(a, b) has a flat degeneration to the following algebra.

(4) VT0
(a, b) = [V0,3(P, P,B) ⊗ [V0,3(B,P,B)]⊗a−2 ⊗ [V0,3(B,P ∗, B)]⊗b−2 ⊗ V0,3(B,P ∗, P ∗)]T

This is the algebra of invariants in a tensor product of K−Pieri algebras by a torus T. This torus is a
product of a+ b− 3 copies of T×C∗, one for each internal edge of T0, where T ⊂ SLm(C) is the torus
of diagonal matrices, we describe the action of this torus below.

Equation 1 is a special case of a more general theorem due to Laszlo and Sorger, [LS], which

expresses the Picard group of the moduli MC,~p(~P ) of quasi-parabolic principal bundles on a curve C
with parabolic structure Pi at pi in terms of the character groups X (Pi) of the associated parabolic
subgroups.

(5) Pic(MC,~p(~P )) = X (P1)× . . .×X (Pn)× Z

When each Pi is the Borel subgroup B, we let VC,~p(SLm(C)) denote the corresponding Cox ring. This
algebra contains the Cox rings of all other moduli of principal bundles as a multigraded subalgebra, in
particular V0,3(SLm(C)) contains each of the K−Pieri algebras as multigraded subalgebras. By Laszlo
and Sorger’s theorem, the Cox rings V0,3(P, P,B), V0,3(B,P,B), V0,3(B,P ∗, B), V0,3(B,P ∗, P ∗) are
multigraded by triples of dominant SLm(C) weights. The algebra V0,3(B,P,B) is given as an example
below.

(6) V0,3(B,P,B) =
⊕

λ,η∈∆,r,K∈Z≥0

V0,3(λ, rω1, η,K)

Here V0,3(λ, rω1, η,K) = H0(M0,3(B,P,B),L(λ, rω1 , η,K)). The weights λ, η are allowed to vary
over all dominant weights in the Weyl chamber ∆, whereas rω1 is always taken from the ray through
ω1 ∈ ∆, corresponding to the parabolic subgroup P ⊂ SLm(C). The analogous expression holds for
V0,3(B,P,B), V0,3(B,P ∗, B), V0,3(B,P ∗, P ∗), this implies that the tensor product

(7) V0,3(P, P,B) ⊗ [V0,3(B,P,B)]⊗a−2 ⊗ [V0,3(B,P ∗, B)]⊗b−2 ⊗ V0,3(B,P ∗, P ∗)

is a multigraded sum of spaces

(8) V0,3(r1ω1, r2ω1, η1,K1)⊗ V0,3(λ2, r3ω1, η2,K2)⊗ . . .

. . .⊗ V0,3(λa−1, ra, ηa−1,Ka−1)⊗ V0,3(λa, s1ωm−1, ηa,Ka)⊗ . . .

. . .⊗ V0,3(λa+b−3, sb−2ωm−1, ηa+b−3,Ka+b−3)⊗ V0,3(λa+b−2, sb−1ωm−1, sbωm−1,Ka+b−2)
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The torus T action on these spaces is by the characters determined by the weight information (ηi −
λ∗
i+1,Ki −Ki+1). A graded component of the invariant algebra VT0

(a, b) of the torus T therefore has
ηi = λ∗

i+1 and Ki = Ki+1.
This allows us to understand properties of the degeneration VT0

(a, b) by studying the K−Pieri
algebras. In order to understand the structure of these algebras, in particular their multigraded com-
ponents, we exploit a connection between moduli of principal bundles on curves and mathematical
physics. The moduli of quasi-parabolic principal bundles on a smooth marked curve have a close con-
nection with conformal field theory, in particular the non-Abelian theta functions are identified with
the partition functions from the Wess-Zumino-Witten model of conformal field theory, and so-called

conformal blocks. This theory associates a space of conformal blocks VC,~p(~λ,K) to each stable, marked
curve C, ~p, assignment of dominant weights pi → λi, and non-negative integer K. The theorem estab-
lishing this relationship in various cases is due to Narasimhan, Ramanathan, Kumar; Beauville, Laszlo,
Sorger; Faltings; and Pauly.

Theorem 1.3. For C, ~p a smooth marked curve, L(~λ,K) ∈ Pic(MC,~p(~P )),

(9) H0(MC,~p(~P ),L(~λ,K)) = VC,~p(~λ,K)

Conformal blocks are also the structure spaces of a monoidal operation called the fusion product on

integrable highest-weight representations of the affine Kac-Moody algebra ˆslm(C). As a consequence, we
may bring in the associated combinatorial representation theory to analyze the graded pieces of VT0

(a, b).
In particular, we use a result called the K−Pieri rule, that each graded component of V0,3(P, P,B),
V0,3(B,P,B), V0,3(B,P ∗, B), and V0,3(B,P ∗, P ∗) is multiplicity free. For a description of the K−Pieri
rule in the context of fusion coefficients see Section 3 of [MS]. This result implies that each K−Pieri
algebra has a basis labelled by the weight data (λ, r, η) of their graded components V0,3(λ, rω1, η,K),
and multiplication of basis members is simple addition on this weight data. Formally then we say
that the K−Pieri algebras are affine semigroup algebras for semigroups of weight data P3(P, P,B),
P3(B,P,B), P3(B,P ∗, B), P3(B,P ∗, P ∗). We must first determine the structure of these semigroups.

Proposition 1.4. [The K-Pieri rule (reformulated)] The space V0,3(λ, rω1, η,K) has dimension 0 or
1. This space has dimension 1 if and only if there is a positive GLm(C) dominant weight λ̄ such that
the following hold.

(1) λ∗ = λ̄− λ̄mωm

(2)
∑

j λ̄j −
∑

i ηi = r

(3) r, λ̄1 ≤ K

(4) λ̄i − ηi, ηi − λ̄i+1 ≥ 0

The entries of the dominant weights η, λ̄ from Proposition 1.4 can be placed in an interlacing diagram,
shown in Figure 1.1 for m = 5. Notice that λ̄ can be recovered from the data λ, η, r, namely λ̄ =
λ∗ + λ̄mωm, λ̄m = 1

m
(r +

∑
i ηi −

∑
j λ̄1 − λ̄j).

λ̄1 λ̄2 λ̄3 λ̄4 λ̄5

η1 η2 η3 η4

∑
j λ̄j −

∑
i ηi = r

λ̄1 ≤ K
✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

For such a pattern b we define its boundary weights as follows.

(10) ∂1(b) = η
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(11) ∂2(b) = (λ̄1 − λ̄m, . . . , λ̄1 − λ̄2) = λ

By duality considerations, the space V0,3(λ, rω1, η,K) is non-zero with dimension 1 if and only if
the same is true for V0,3(λ

∗, rωm−1, η
∗,K). For this reason, interlacing patterns also give a mech-

anism to label the (multiplicity free) graded components of the algebra V0,3(B,P ∗, B). The space
V0,3(λ, sωm−1, η,K) is labelled by GLn(C) weights λ

∗ and η̄, which satisfy the following.

(1) η̄ = η + η̄mωm

(2)
∑

j η̄j −
∑

i λ
∗
i = s

(3) s, η̄1 ≤ K

(4) η̄i − λ∗
i , λ

∗
i − η̄i+1 ≥ 0

We illustrate interlacing patterns b∗ for the spaces V0,3(λ, sωm−1, η) with the opposite orientation.

λ∗
1 λ∗

2 λ∗
3 λ∗

4

η̄1 η̄2 η̄3 η̄4 η̄5

∑
j η̄j −

∑
i λ

∗
i = s

η̄1 ≤ K
✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

We apply the boundary maps ∂1, ∂2 to interlacing patterns b∗ as follows.

(12) ∂1(b
∗) = (η̄1 − η̄m, . . . , η̄m−1 − η̄m) = η

(13) ∂2(b
∗) = (λ∗

1, λ
∗
1 − λ∗

m−1, . . . , λ
∗
1 − λ∗

2) = λ

Each such interlacing pattern labels one of the multiplicity-free spaces in the multigraded decompo-
sition of V0,3(P, P,B) and V0,3(B,P,B) and likewise V0,3(B,P ∗, B) and V0,3(B,P ∗, P ∗). The algebra
VT0

(a, b) is also graded by multiplicity-free components, and is therefore an affine semigroup algebra for
an affine semigroup P (a, b). The elements of P (a, b) are lists of elements (b1, . . . ,ba−1,b

∗
1, . . . ,bb−1)

from the semigroups above, which can be glued along their boundary data, ∂1(bi) = ∂2(bi+1)
∗,

∂1(b
∗
i ) = ∂2(b

∗
i+1)

∗, ∂1(ba−1) = ∂2(b
∗
1)

∗. We will present this semigroup explicitely, by first ana-
lyzing each of the four algebras V0,3(P, P,B), V0,3(B,P,B), V0,3(B,P ∗, B), V0,3(B,P ∗, P ∗), and then
by controlling the ”gluing” procedure. The following proposition, proved in Section 4, says that the
four algebras we consider as our building components are not very complicated.

Proposition 1.5. The algebras V0,3(B,P,B), V0,3(B,P ∗, B) are polynomial rings on 2m variables.
The algebras V0,3(P, P,B), V0,3(B,P ∗, P ∗) are polynomial rings on 4 variables.

We will prove this proposition by carefully reproving the K−Pieri rule using elements of commutative
algebra. This continues a theme first established in [M4] and continued in [M10], that the combinatorics
of the conformal blocks are related to toric degenerations of the moduli of quasi-parabolic principal
bundles.

The gluing operation described above should be a familiar operation for researchers who study affine
semigroup algebras. The following proposition is a consequence of the description of VT0

(a, b) as an
algebra of torus invariants in a tensor product of the K−Pieri algebras.

Proposition 1.6. The affine semigroup P (a, b) is a toric fiber product of the affine semigroups asso-
ciated to the K−Pieri algebras.

Toric fiber products of affine semigroups are defined in [S], and further explored in [M6]. Informally
we may think of the toric fiber product as a way to glue the K−Pieri semigroups corresponding to the
above interlacing diagrams together to produce a composite semigroup P (a, b), and indeed we describe
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the defining inequalities and corresponding diagram of this semigroup in Section 5. In Section 5 we also
describe a polytope P (~r, ~s,K) whose graded affine semigroup algebra is induced the degeneration of the
projective coordinate ring R~p(~r, ~s,K) ⊂ V~p(a, b.) We make use of the fiber product structure on P (a, b),
and general theorems on toric fiber products from [S] and [M6], to prove an explicit presentation of
VT0

(a, b).

Definition 1.7. The set Xa,b is defined to be the set of all tuples [~i] of a+ b− 1 elements from Z/mZ

such that the first and last entries are m−1 or 0, and the difference ik−ik+1 is in {0, 1} if 1 ≤ k ≤ a−1
and in {0,−1} if a ≤ k ≤ a+ b− 1.

Definition 1.8. On the set of tuples above, a swap is a quadratic polynomial of the following form,

(14) [~i1, i, ~i2][~i1
∗
, i, ~i2

∗
]− [~i1, i, ~i2

∗
][~i1

∗
, i, ~i2]

Theorem 1.9. The algebra VT0
(a, b) is presented by generators Xa,b, subject to all possible swap rela-

tions.

This is a presentation of VT0
(a, b) by generators and relations. The fiber product structure of P (a, b)

also allows us to prove that the algebra VT0
(a, b) is Gorenstein, and that it possesses a quadratic square-

free Gröbner basis given by the swap relations above, in Section 4. These properties then lift to the
algebra V~p(a, b) for generic ~p by general properties satisfied by algebras in flat families, see the proof
of Theorem 1.11 in [M6]. In order to prove these results, in particular Proposition 1.5, we study an
auxiliary semigroup Q(a, b), which comes from a classical algebra from invariant theory.

1.2. Relation to Weyl’s invariant ring. One of our motivations in studying the algebra VP1,~p(a, b)
is that it bears a resemblance to the object of study in a classical theorem in invariant theory due to
Weyl. We let R(a, b) be the algebra of SLm(C) invariants in the coordinate ring of the affine space

[
∧m−1

(Cm)]a × [Cm]b.

(15) R(a, b) = C[[

m−1∧
(Cm)]a × [Cm]b]SLm(C)

We view the algebra C[[
∧m−1

(Cm)]a× [Cm]b] as a polynomial ring on m×(a+b) variables, arranged
in a matrix, with the columns labelled by elements of [a+ b] = [a]

∐
[b].

x11 . . . xa1 y11 . . . yb1
x12 . . . xa2 y12 . . . yb2
. . . . . . . . . . . . . . . . . .
x1m . . . xam y1m . . . ybm

We let ∆I be the determinant form on the variables determined by a subset I ⊂ [a] in [
∧m−1(Cm)]a

of size m, and ∆J be the dual determinant in [Cm]b, for J ⊂ [b]. We let Pij be the column-wise inner
product of the variables on the indices i ∈ [a] with those in j ∈ [b]. Each of the elements ∆I ,∆J , Pij

is an SLm(C) invariant, and therefore a member of R(a, b). Weyl described a collection of quadratic
relations on these elements, known as the Plücker relations.

Theorem 1.10 (Weyl’s first fundamental theorem of invariant theory). The algebra R(a, b) is generated
by the ∆I ,∆J , Pij , and all relations among these generators are generated by the Plücker relations.

The algebra R(a, b) is multigraded by an action of a + b copies of the maximal diagonal torus
T ⊂ SLm(C). The components of this multigrading are the SLm(C) invariant spaces in the tensor
products,

(16) V (~rω1, ~sωm−1) = V (r1ω1)⊗ . . .⊗ V (raω1)⊗ V (s1ωm−1)⊗ . . .⊗ V (sbωm−1)

In [M4] a relationship is established between R(a, b) and V~p(a, b).
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Theorem 1.11. For any collection of a+b points ~p ⊂ P1, the algebra V~p(a, b) is a Za+b+1−multigraded
subalgebra of the polynomial ring over Weyl’s invariant ring, R(a, b)⊗ C[t].

(17) VP1,~p(~rω1, ~sωm−1, L) ⊂ V (~rω1, ~sωm−1)
SLm(C)tL

Theorem 1.11 in [M4] implies that the degeneration of V~p(a, b) corresponding to T0 we use here also
applies to the algebra R(a, b). This connection allows us to use the algebra R(a, b) to study V~p(a, b). We
will show how a similar analysis of R(a, b) using the classical Pieri rule yields the following presentation
of this degeneration, RT0

(a, b). Let Ya,b ⊂ Xa,b by the subset of tuples which are unbroken strings of
non-zero entries.

Theorem 1.12. The algebra RT0
(a, b) is presented by Ya,b with respect to the swap relations on these

generators.

This gives a presentation of RT0
(a, b), in Section 3 we will describe an explicit affine semigroup Q(a, b)

such that C[Q(a, b)] = RT0
(a, b).

The elements ∆I , ∆J , and Pij from Weyl’s presentation correspond to minimal generators in the
degeneration RT0

(a, b), as follows. For the set I ⊂ [a], we let tI be the tuple with ti+1−ti = 1 exactly for
i ∈ I, and we define tJ for J ⊂ [b] similarly. We let tij be the tuple with ti+1−ti = 1, tj+1−tj = −1,and
all other differences equal to 0. These elements constitute a proper subset of Ya,b, so the presentation
emerging from the degeneration RT0

(a, b) is perhaps not as efficient as Weyl’s presentation, however it
is better suited to aid in our description of VT0

(a, b).

1.3. Organization. The paper is organized as follows. In Section 2, we review the toric fiber product
construction and some of its properties. In Section 3, we review the classical Pieri rule from the
representation theory of SLm(C). In Section 4, we study a valuation on the algebra of tensor product
invariants which will help us to understand the semigroup algebra P (a, b), we prove the K−Pieri rule
from the classical Pieri rule, we prove Theorem 1.1. In Section 5, we construct P (a, b) as a set of
weightings on an interlacing pattern.

2. Toric fiber products

In this section we review the toric fiber product operation on affine semigroup algebras. This is the
”gluing” operation we will need to build the affine semigroup algebras RT0

(a, b), VT0
(a, b) from their

component semigroup algebras. To this end, we will pay special attention to toric fiber products of
simplicial cones over a simplicial cone base. We will review results from [S] and [M6] which control the
algebraic behavior of these semigroups.

Definition 2.1. For P1 ⊂ R
n, P2 ⊂ R

k, D ⊂ R
m polyhedral cones, and πi : R

n → R
m linear maps

with πi(Pi) ⊂ D, the toric fiber product is the set,

(18) P1 ×D P2 = {(x, y)|π1(x) = π2(y)} ⊂ R
n × R

k

The fiber product P1×DP2 is also a polyhedral cone. If L1 ⊂ Rn, L2 ⊂ Rk, and L ⊂ Rm are lattices,
with πi(Li) ⊂ L, then the set L1 × L2 ∩ P1 ×D P2 is called the fiber product semigroup of the affine
semigroups L1 ∩ P1 and L2 ∩ P2. From now on we abuse notation and refer to the semigroup by its
defining cone.

If the generators of the affine semigroups of these bodies behave well with respect to the maps π1, π2,
then the affine semigroup of the associated toric fiber product also behaves well. The following can be
found in [S], and a variant appears in [M6].

Proposition 2.2. Let S1 ⊂ P1, S2 ⊂ P2, and T ⊂ D denote the generating sets of the affine semigroups
associated to polyhedral cones P1, P2, D with respect to lattices L1,L2,L. Suppose that πi(Si) ⊂ T , and
that D is a simplicial cone, then the set S1 ×T S2 generates the product semigroup P1 ×D P2.

Proof. For any semigroup element (x, y) ⊂ P1 ×D P2, we can factor x = s1 + . . .+ si, y = t1 + . . .+ tj .
We then get factorizations,

(19) π1(x) = π2(y) = π1(s1) + . . .+ π1(si) = π2(t1) + . . .+ π2(tj).
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The affine semigroup D has unique factorization, because it is a simplicial cone. It follows then
that i = j and the sets {π1(s1), . . . , π1(si)}, {π2(t1), . . . , π2(tj)} are equal. The elements of the sets
{s1, . . . , si} and {t1, . . . , ti} can be matched in some way sk → t′k, so that the resulting pairs have the
same image under π1, π2. We therefore obtain a factorization,

(20) (x, y) = (s1, t
′
1) + . . .+ (si, t

′
i).

�

Several of the elements {s1, . . . , si} may have the same image under π1, this could lead to distinct
assignments sk → t′k which produce different factorizations of the element (x, y). These factorizations
are related by swap relations. Let a, b ∈ P1, c, d ∈ P2 with π1(a) = π2(c) = π1(b) = π2(d), then the
following is a swap relation in P1 ×D P2.

(21) (a, c) + (b, d) = (b, c) + (a, d)

Proposition 2.3. With the assumptions of Proposition 2.2, the relations of P1 ×D P2 are generated
by those which generate relations for the P1, P2 and the swap relations.

Proof. We consider a relation in P1 ×D P2,

(22) (x1, y1) + . . .+ (xk, yk) = (X1, Y1) + . . .+ (Xl, Yl)

Once again, the sets images of these two sets of elements inD must agree, so k = l. The word x1+. . .+xk

can be transformed to X1 + . . .+Xk by a series of generating relations in P1. We claim that each such
relation can be lifted to a relation on generators in P1 ×D P2. If s1 + . . .+ sm = S1 + . . .+Sm is such a
relation, then the image sets under π1 must agree, so each relation can be performed without changing
the set {π1(x1), . . . , π1(xk)}. This implies that at each stage, these sets can be assigned to elements in
the set {y1, . . . , ym} to form elements from the fiber product. It follows that (x1, y1) + . . . + (xk, yk)
can be transformed to (X ′

1, Y
′
1) + . . . + (X ′

k, Yk) by relations lifted this way from P1 and P2, where
the X ′

i and Y ′
i are the Xi and Yi matched in a different way. Now this word can be rearranged into

(X1, Y1) + . . .+ (Xk, Yk) using swap relations. �

In [S] and [M6] it is shown that if the ideals defining C[P1],C[P2] under presentation by S1, S2

have quadratic, square-free Gröbner bases, then so does the ideal defining C[P1 ×D P2]. In particular,
if P1, P2, D are simplicial cones with πi(Si) ⊂ T , the ideal defining C[P1 ×D P2] has a quadratic,
square-free Gröbner basis made of swap relations. From this we can deduce the following proposition.

Proposition 2.4. Let P = ∆k1
×∆m1

. . .×∆mt
∆kt+1

be a fiber product of simplicial cones over simplicial
cones, by maps which take generators to generators. Then the swap relations define a quadratic, square-
free Gröbner basis on the defining ideal of C[P ] under the presentation by the fiber product generating
set.

Affine semigroup algebras are appealing because their inherent combinatorial nature allows many of
their commutative algebra properties to be expressed in therms of polyhedral geometry. The following
is Corollary 6.3.8 of [BH].

Theorem 2.5. Let C be an affine semigroup algebra, with int(C) ⊂ C the set of interior lattice points.
The algebra C[C] is Gorenstein if and only if int(C) = w + C for some w ∈ int(C).

In [M10], we gave the following condition for a fiber product semigroup algebra of Gorenstein semi-
groups to be Gorenstein. The conditions of this proposition are satisfied for the semigroups we consider
in this paper, and indeed are satisfied for any fiber product of simplices over simplices, where the maps
in question are surjective on generating sets.

Proposition 2.6. Let P1, P2, D be semigroups with Gorenstein semigroup algebras, and let w1, w2, w be
the corresponding generators of the interior sets. Then if πi(wi) = w, the semigroup algebra P1 ×D P2

is Gorenstein.
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3. The classical Pieri rule

In this section we decribe the algebra R(a, b) in terms of the representation theory of SLm(C), and an
associated flat degeneration to an affine semigroup algebra C[Q(a, b)]. In order to define the affine semi-
group Q(a, b) we will recall the Pieri rule for decomposing tensor products of SLm(C) representations,
and describe how this rule informs the combinatorial commutative algebra of R(a, b).

3.1. The algebra of SLm(C) invariant tensors. First we introduce the algebra Rn(SLm(C)) of
invariant vectors in n−fold tensor products of irreducible SLm(C) representations. We let RSLm(C)

denote the Cox ring of the full flag variety of SLm(C), as a vector space, this algebra is a multiplicity-
free direct sum of all irreducible representations of SLm(C).

(23) RSLm(C) =
⊕

λ∈∆

V (λ)

The multiplication operation in this algebra is given by projecting on the highest weight component of
a tensor product.

(24) V (λ)⊗ V (η) → V (λ+ η)

This algebra is multigraded by the dominant weights λ ∈ ∆, and can also be constructed as the
algebra of invariants in C[SLm(C)] with respect to the unipotent group of upper triangular matrices.
We define Rn(SLm(C)) to be the algebra of SLm(C) invariants in an n−fold tensor product of copies
of RSLm(C). As a vector space, this is a direct sum of all invariant spaces in n−fold tensor products of
SLm(C) representations.

(25) Rn(SLm(C)) =
⊕

~λ∈∆n

[V (~λ)]SLm(C)

The coordinate rings of
∧m−1

(Cm) and Cm are graded subalgebras of RSLm(C), they can be identified
with the sums of those representations of the form V (rω1) and V (sωm−1, respectively. It follows that
the algebra R(a, b) is a multigraded subalgebra of Ra+b(SLm(C)).

In [M5] and [M4] we describe a flat degeneration of Rn(SLm(C)) for each trivalent tree T with n
leaves. In [M4], it is shown that the lift of these degenerations to Rn(SLm(C)) ⊗ C[t] is compatible
with the corresponding degeneration on V~p(a, b) under the inclusion map in Equation 17. In particular,

for the tree T0, Rn(SLm(C)) degenerates to the algebra of invariants [R3(SLm(C))⊗n−2]T
n−3

, where
T n−3 is a product of n− 3 copies of the maximal torus T ⊂ SLm(C), acting as in Theorem 1.2.

In order to pass this description to R(a, b), we define four subalgebras of R3(SLm(C)). The algebras
R3(B,P,B) and R3(B,P ∗, B) are the multigraded subalgebras of R3(SLm(C)) whose componants have
middle dominant weight equal to a multiple of ω1 and ωm−1, respectively. The algebras R3(P, P,B) and
R3(B,P ∗, P ∗) are defined accordingly. We call the algebrasR3(B,P,B), R3(B,P ∗, B), R3(P, P,B), and
R3(B,P ∗, P ∗) the Pieri algebras. Theorem 1.11 from [M4] implies that R(a, b) has a flat degeneration
to the following invariant algebra.

(26) RT0
(a, b) = [R3(P, P,B) ⊗ [R3(B,P,B)]⊗a−2 ⊗ [R3(B,P ∗, B)]⊗b−2 ⊗R3(B,P ∗, P ∗)]T

a+b−3

Here, once again, T a+b−3 is a product of a+ b− 3 copies of the maximal torus of SLm(C), and taking
invariants by T ensures that all graded components of RT0

(a, b) are of the following form.

(27) V (r1ω1, r2ω1, λ1)
SLm(C) ⊗ V (λ∗

1, r3ω1, λ2)
SLm(C) ⊗ . . .

. . .⊗ V (λ∗
a−2, raω1, λa−1)

SLm(C) ⊗ V (λ∗
a−1, s1ωm−1, λa)

SLm(C) ⊗ . . .

. . .⊗ V (λ∗
a+b−4, sb−2ωm−1, λa+b−3)

SLm(C) ⊗ V (λ∗
a+b−3, sb−1ωm−1, sbωm−1)

SLm(C)



10 CHRISTOPHER MANON

The following is the classical Pieri rule, it is a basic component of SLm(C) representation theory.
We refer the reader to any basic text covering this subject, for example the book of Fulton and Harris,
[FH].

Proposition 3.1. [The Pieri rule] The invariant space V (λ, rω1, η)
SLm(C) is multiplicity free, and it

has dimension 1 precisely when there is a GLm(C) weight λ̄ such that the following hold.

(1) λ∗ = λ̄− λ̄mωm

(2)
∑

j λ̄j −
∑

i ηi = r

(3) λ̄i − ηi, ηi − λ̄i+1 ≥ 0

Weights which satisfy these conditions can be arranged in interlacing patterns, as depicted in Figure 2.

λ̄1 λ̄2 λ̄3 λ̄4 λ̄5

η1 η2 η3 η4

∑
j λ̄j −

∑
i ηi = r

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

Figure 2. Interlacing patterns for R3(B,P,B)

Interlacing conditions governing the spaces V (λ, sωm−1, η)
SLm(C) can be derived by duality. For this

space to have dimension 1, there must be a GLm(C) weight η̄ such that the following hold, see Figure
3.

(1) η = η̄ − η̄mωm

(2)
∑

j η̄j −
∑

i λ
∗
i = s

(3) η̄i − λ∗
i , λ

∗
i − η̄i+1 ≥ 0

λ∗
1 λ∗

2 λ∗
3 λ∗

4

η̄1 η̄2 η̄3 η̄4 η̄5

∑
j η̄j −

∑
i λ

∗
i = s

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

Figure 3. Interlacing patterns for R3(B,P ∗, B)

We define boundary maps ∂1, ∂2 for these patterns as in theK−Pieri case. The algebraR3(P, P,B) is
composed of components of the form V (r1ω1, r2ω1, η)

SLm(C), following the recipe above, the interlacing
inequalities give us patterns as in Figure 4. Dual patterns are depicted in Figure 5 for spaces of the
form V (λ, s1ωm−1, s2ωm−1)

SLm(C).
Notice that both of these diagrams are determined by 3 parameters. Since each multigraded com-

ponent of the Pieri algebras is dimension 0 or 1, these algebras are all affine semigroup algebras, we
refer to their underlying semigroups by Q(B,P,B), Q(B,P ∗, B), Q(P, P,B), and Q(B,P ∗, P ∗). The
following proposition shows that each of these semigroups has a simple structure.

Proposition 3.2. The algebras R3(B,P,B) and R3(B,P ∗, B) are polynomial algebras on 2m − 1
variables. The algebras R3(P, P,B) and R3(B,P ∗, P ∗) are polynomial algebas on 3 variables.
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r1 + λ̄5 r1 + λ̄5 r1 + λ̄5 r1 + λ̄5 λ̄5

r1 + λ̄5 r1 + λ̄5 r1 + λ̄5
η4
✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡

��

✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡

��

✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡

��

✹✹✹✹✹✹✹✹

ZZ

Figure 4. Interlacing diagram when two weights are rank 1, here λ̄5 = 1
2 (r2 + η4 − r1)

s2 + η5 s2 + η5 s2 + η5 λ∗
4

s2 + η5 s2 + η5 s2 + η5 s2 + η5 η5
✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

Figure 5. Interlacing diagram when two weights are rank 1, here η5 = 1
2 (s1 + λ∗

4 − s2)

Proof. Duality is a linear operation on dominant weights, so it follows that the statement for the algebras
R3(B,P ∗, B) and R3(B,P ∗, P ∗) is a consequence of the statement for R3(B,P,B) and R3(P, P,B)
respectively, so we present proofs for these cases. From Figure 4 we directly compute that the algebra
R3(P, P,B) is generated by the patterns in Figure 6.

1 1 1 1 1

1 1 1 1

λ̄5( )
✎✎
✎✎
✎

��

✴✴✴✴✴

WW

✎✎
✎✎
✎

��

✴✴✴✴✴

WW

✎✎
✎✎
✎

��

✴✴✴✴✴

WW

✎✎
✎✎
✎

��

✴✴✴✴✴

WW

1 1 1 1 0

1 1 1 1

η4 − λ̄5( )
✎✎
✎✎
✎

��

✴✴✴✴✴

WW

✎✎
✎✎
✎

��

✴✴✴✴✴

WW

✎✎
✎✎
✎

��

✴✴✴✴✴

WW

✎✎
✎✎
✎

��

✴✴✴✴✴

WW

1 1 1 1 0

1 1 1 0

r1 − η4( )
✎✎
✎✎
✎

��

✴✴✴✴✴

WW

✎✎
✎✎
✎

��

✴✴✴✴✴

WW

✎✎
✎✎
✎

��

✴✴✴✴✴

WW

✎✎
✎✎
✎

��

✴✴✴✴✴

WW

Figure 6. Decomposition of an element from Q(P, P,B)

Any element of R3(P, P,B) is a unique product of the elements reprsented by these patterns. We
label these elements by recording their boundary fundamental GLm(C) weights, from top down they
are [m,m−1], [m−1,m−1], and [m−1,m−2]. The identity 1 ∈ R3(P, P,B) corresponds to the trivial
invariant in V (0, 0, 0), we label this element with [0, 0]. In general, we let [i, i] and [i + 1, i] denote the
patterns in Figure 7.

An interlacing pattern b is decomposed uniquely into a sum of these patterns by finding the smallest
non-zero entry, and pulling the pattern above with the first 1 occuring at this entry off until this entry
is 0.

(28) b = (am − 0)[m,m− 1] + (bm−1 − am−1)[m− 1,m− 1] + . . .+ (a1 −
∑

j>1

aj + bj−1)[1, 0]

�

The indices i, j in the generators [i, j] of these semigroups range between 1 and m. As m corresponds
to the trivial dominant weight (1, . . . , 1), we consider these elements as members of Z/mZ, in particular
[0, 0] = [m,m]. The multigraded components of RT0

(a, b) all have dimension 1 or 0, and have dimension
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1 1

1 1

. . .
1 0

1 0

. . .
0 0

0
✎✎
✎✎
✎

��

✴✴✴✴✴

WW✴✴✴✴✴

WW

✎✎
✎✎
✎

��

✴✴✴✴✴

WW✴✴✴✴✴

WW

✎✎
✎✎
✎

��

✴✴✴✴✴

WW

1 1

1 1

. . .
1 1

1 0

. . .
0 0

0
✎✎
✎✎
✎

��

✴✴✴✴✴

WW✴✴✴✴✴

WW

✎✎
✎✎
✎

��

✴✴✴✴✴

WW✴✴✴✴✴

WW

✎✎
✎✎
✎

��

✴✴✴✴✴

WW

Figure 7. [i, i] (top) and [i+ 1, i] (bottom), 1 ≤ i ≤ m− 1

a1 a2

b1 b2

. . .

ai ai+1

bi bi+1

. . .

am−1 am

bm−1
✎✎
✎✎
✎

��

✴✴✴✴✴

WW✴✴✴✴✴

WW

✎✎
✎✎
✎

��

✴✴✴✴✴

WW✴✴✴✴✴

WW

✎✎
✎✎
✎

��

✴✴✴✴✴

WW

Figure 8. An interlacing pattern b.

1 exactly when each part of the tensor product satisfies the conditions of Proposition 3.1. We use this
fact to describe an affine semigroup Q(a, b) such that RT0

(a, b) = C[Q(a, b)]. We define Q(a, b) to be
the affine semigroup obtained by taking the following fiber product over the boundary maps ∂1, ∂2.
The image of these boundary maps is the affine semigroup for the simplicial cone ∆m−1 with m − 1
generators.

(29) Q(a, b) = Q(P, P,B)×∆m−1
Q(B,P,B)×∆m−1

. . .

. . .×∆m−1
Q(B,P,B)×∆m

Q(B,P ∗, B)×∆m−1
. . .

. . .×∆m−1
Q(B,P ∗, B)×Q(B,P ∗, P ∗)

The boundary maps ∂1, ∂2 were defined to capture the operation of taking invariants by the torus
T a+b−3, so the semigroup algebra of Q(a, b) can be identified with RT0

(a, b) by definition. Proposition
2.2 then implies that elements composed of generators of Pieri semigroups suffice to generate Q(a, b),
and therefore RT0

(a, b). The semigroups Q(P, P,B), Q(B,P,B), Q(B,P ∗, B), and Q(B,P ∗, P ∗) are
generated by elements labelled by pairs [i, j], where i, j are elements of Z/mZ. It is easily checked from
the definition of the boundary maps ∂1, ∂2 that two of these generators [i, j], [k, l] can be glued when
j = k. This implies that a generating set of Q(a, b) is given by a+ b− 1 tuples of elements from Z/mZ,

(30) [i1, i2, . . . , ia+b−2, ia+b−1]

where i1 and ia+b−1 can be m or m− 1, the first a− 1 differences ij − ij+1 must be 0 or 1 and the last
b − 1 differences must be 0 or −1, all of these conditions holding modulo m. By Proposition 2.3 the
relations on these generators are generated by the swap relations. Since the element [0, . . . , 0] represents
1 ∈ R(a, b), the swap relations tell us that an element of the form [i1, . . . , ik, 0, ik+2, . . . , ia+b−1] may
be factored,

(31) [i1, . . . , ik, 0, ik+2, . . . , ia+b−1][0, . . . , 0, . . . , 0] = [i1, . . . , ik+2, 0, . . . , 0][0, . . . , 0, ik+2, . . . , ia+b−1]

From this it follows that Q(a, b) is generated by unbroken strings of nonzero entries from Z/mZ.

4. Structure of VT0
(a, b)

In this section we study the four K−Pieri algebras, V0,3(B,P,B), V0,3(B,P ∗, B), V0,3(P, P,B),
V0,3(B,P ∗, P ∗). We will use the results of the previous section to prove that each of these algebras is
a polynomial ring, and then use this fact to find a presentation of the algebra VT0

(a, b).
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4.1. Conformal blocks, invariant tensors, and the level valuation. Conformal blocks VP1,~p(~λ,K)
in the genus 0 case can be recovered as a subspace of the space of SLm(C)−invariant vectors in the

tensor product V (~λ) = V (λ1) ⊗ . . . ⊗ V (λn). The precise subspace depends on the data ~p ⊂ P1. The
moduli of 3−marked projective lines is a single point, so in this case there is a unique space of conformal
blocks, V0,3(λ, η, µ,K), which can be explicitely defined as a subspace of [V (λ) ⊗ V (η) ⊗ V (µ)]SLm(C)

using elements of the classical representation theory of SLm(C).
We consider the copy of SL2(C) inside SLm(C) which corresponds to the longest root α1m = θ.

Each representation V (λ), V (η), V (µ) can be decomposed into isotypical components of this subgroup
V (λ) =

⊕
i≥0 Wλ,i. In [U], Ueno defines the following subspace WK ⊂ V (λ) ⊗ V (η) ⊗ V (µ).

(32) WK =
⊕

i+j+k≤2K

Wλ,i ⊗Wη,j ⊗Wµ,k

The following proposition can also be found in [U].

Proposition 4.1. The space of conformal blocks V0,3(λ, η, µ,K) can be identified with the space WK ∩

[V (λ)⊗ V (η)⊗ V (µ)]SLm(C).

Proposition 4.1 can be used to define a function vθ : R3(SLm(C)) → R as follows. On pure graded
components of R3(SLm(C)) we define vθ on T ∈ V (λ, η, µ)SLm(C), using the subspace WK ,

(33) vθ(T ) = min{K|T ∈ WK},

this is extended to mixed grade components using the max function,

(34) T =
∑

Ti, Ti ∈ V (λi, ηi, µi), vθ(T ) = max{. . . , vθ(Ti), . . .}.

By convention we set vθ(0) = −∞. This function was studied in [M10], where it was shown to be a
valuation on R3(SLm(C)), see also page 87 in [G]. This means that vθ has the following properties.

(1) vθ(ab) = vθ(a) + vθ(b)

(2) vθ(a+ b) ≤ max{vθ(a), vθ(b)}

(3) vθ(C) = 0, C ∈ C∗

In terms of this function, the graded components of V0,3(SLm(C)) are the following subspaces of the
graded components of R3(SLm(C)).

(35) V0,3(λ, η, µ,K) = {T |vθ(T ) ≤ K} ⊂ [V (λ∗)⊗ V (η∗)⊗ V (µ∗)]SLm(C)

There are corresponding inclusions of theK−Pieri algebras into polynomial rings over the Pieri algebras.

(36) V0,3(B,P,B) ⊂ R3(B,P,B) ⊗ C[t]

(37) V0,3(B,P ∗B) ⊂ R3(B,P ∗, B)⊗ C[t]

(38) V0,3(P, P,B) ⊂ R3(P, P,B) ⊗ C[t]

(39) V0,3(B,P ∗, P ∗) ⊂ R3(B,P ∗, P ∗)⊗ C[t]
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4.2. Generators of the K−Pieri algebras. Now our task is to establish explicitely the vθ value
for a non-trivial vector in each graded component of the Pieri algebras, this will allow us to compute
a presentation for the K−Pieri algebras. In order to do this, we find vθ(T ) for each generator T of
R3(B,P,B), R3(B,P ∗, B), R3(P, P,B), and R3(B,P ∗, P ∗), and use this calculation to find the vθ value
for each monomial in the generators.

The generators of the Pieri algebras are precisely the unique invariants in tensor products of the

form
∧k

(Cm) ⊗ Cm ⊗
∧j

(Cm) and
∧k

(Cm) ⊗
∧m−1

(Cm) ⊗
∧j

(Cm), where k + j + 1 ∈ mZ, and∧k
(Cm)⊗

∧j
(Cm), where k + j ∈ mZ. Note that the sum of these indices must be equal to 2m or m.

Both invariant types can be viewed as a representation of the determinant, and have the following form
as alternating tensors.

(40) Ti,1,j =
∑

|I|=i,|J|=j

(−1)σ(I,k,J)zI ⊗ zk ⊗ zJ

Ti,m−1,j =
∑

|I|=i,|K|=m−1,|J|=j

(−1)σ(I,K,J)zI ⊗ zK ⊗ zJ

Pi,j =
∑

|I|=i,|J|=j

(−1)σ(I,J)zI ⊗ zJ

Here zI is a wedge product of basis vectors over the indicated index set, and (−1)σ(I,K,J) is a sign
function. The following is well known in the type A conformal blocks literature.

Proposition 4.2. Each generating invariant of the Pieri algebras has vθ value equal to 1.

Proof. To evaluate vθ on these elements, we reduce to the case where the sum of the indices is m, as
the 2m case is related to this case by duality. In this case, each of the terms in the expansion above is
of the form zI ⊗ zK ⊗ zJ with I

∐
J
∐

K = [m].
When this term is considered with respect to the θ subgroup isomorphic to SL2(C), its properties are

determined by whether or not the indices 1, n show up in the sets I, J,K. There are two possibilities. If
1 and n are in separate index sets, the term corresponds to an invariant in the SL2(C) representation
V (1)⊗V (1), and therefore has vθ value 1 = 1

2 (1+1). If both 1 and n appear in the same index set, the

term is the trivial invariant in V (0) =
∧2

(V (1)), and has vθ value 0. The value on the sums of these
terms is therefore 1. �

We focus briefly on a particular K−Pieri algebra, V0,3(B,P,B). We associate each generator
[i, i], [i + 1, i] to the elements [i, i]t, [i + 1, i]t ∈ V0,3(B,P,B) ⊂ R3(B,P,B) ⊗ C[t]. Now consider a

non-trivial element btK ∈ V0,3(η, rω1, λ,K) ⊂ (V (η, rω1, λ)
SLm(C)tK . The invariant represented by b

has a monomial decomposition into the generators above.

(41) b =
∏

[i+ 1, i]ni[j, j]mj

Multiplicative properties of valuations then give us vθ(b) =
∑

ni +
∑

mj . This implies that in the
K−Pieri algebra we have

(42) btK =
∏

([i+ 1, i]t)ni([j, j]t)mj tK−
∑

ni−
∑

mj .

The same argument applies for the other K−Pieri algebras. As a consequence we obtain the following
theorem.

Theorem 4.3. The algebras V0,3(B,P,B) and V0,3(B,P ∗, B) are polynomial algebras on 2m genera-
tors. The algebras V0,3(P, P,B) and V0,3(B,P ∗, P ∗) are polynomial algebras on 4 generators.

The generators of these algebras are the generators of the corresponding Pieri algebras, along with
the identity [0, 0], multiplied by the auxiliary variable t. This also gives the following characterization
of the non-zero spaces V0,3(λ, rω1, µ, L).

Corollary 4.4. The space of conformal blocks V0,3(λ, rω1, µ,K) is multiplicity free, and dimension 1
if and only if the conditions in Proposition 1.4 hold.
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Proof. This follows from equation 42 and the fact that the vθ of the patterns [i, i], [i+1, i] are given by
the first entry on the top row.

a1 a2

b1 b2

. . .

ai ai+1

bi bi+1

. . .

am−1 am

bm−1
✎✎
✎✎
✎

��

✴✴✴✴✴

WW✴✴✴✴✴

WW

✎✎
✎✎
✎

��

✴✴✴✴✴

WW✴✴✴✴✴

WW

✎✎
✎✎
✎

��

✴✴✴✴✴

WW

Figure 9.

(43) b = (am − 0)[m,m− 1] + (bm−1 − am−1)[m− 1,m− 1] + . . .+ (a1 −
∑

j>1

aj + bj−1)[1, 0]

�

4.3. Fiber product structure of P (a, b). We are now in a position to construct the affine semigroup
P (a, b). As polynomial algebras, the K−Pieri algebras V0,3(B,P,B), V0,3(B,P ∗, B), V0,3(P, P,B), and
V0,3(B,P ∗, P ∗), are affine semigroup algebras on simplicial cones, with 2m, 2m, 4, 4 generators respec-
tively. We construct P (a, b) as a toric fiber product of the corresponding semigroups following a
procedure similar to the construction of Q(a, b). The only extra detail is that, in addition to the bound-
ary maps ∂1, ∂2 on the interlacing patterns for these algebras, we must also include the level data. This
implies that two interlacing patterns can be glued only if they share the same boundary weight data
and level. The semigroup P (a, b) is obtained as fiber product over the affine semigroup of the simplicial
cone ∆m with m generators.

(44) P (a, b) = P3(P, P,B) ×∆m ×P3(B,P,B)×∆m × . . .

. . .×∆m P3(B,P,B) ×∆m P3(B,P ∗)×∆m . . .

. . .×∆m P3(B,P ∗, B)×∆m P3(B,P ∗, P ∗)

By Proposition 2.2, a generating set of P (a, b) is obtained by taking all tuples of level 1 generating
elements ([i1, j1], . . . , [ia+b−2, ja+b−2], where jk = ik+1. Note that, as all generators are tuples of level 1
elements, and any product of level 1 elements is a level 2 element, this is already a minimal generating
set of P (a, b). By the descriptions of the Pieri algebra generators above, the generators of P (a, b) are
exactly those a+ b−1 tuples which satisfy the following properties, all elements are members of Z/mZ.

(1) The difference ik − ik+1 is {1, 0} for 1 ≤ k ≤ a− 1.

(2) The difference ik − ik+1 is {−1, 0} for a ≤ k ≤ a+ b− 2.

(3) The first and last entries are members of {m− 1,m}.

By Proposition 2.3, the relations for P (a, b) are generated by the swap relations among these gen-
erators. This gives the presentation of VT0

(a, b), and completes the proof of Theorem 1.9. Note that
Propositions 2.6 and 2.4 also imply that both VT0

(a, b) and RT0
(a, b) are Gorenstein algebras with

quadratic, square-free Gröbner bases. This in turn implies the following.

Theorem 4.5. The algebras R(a, b) and V~p(a, b) are Gorenstein, Koszul algebras when ~p is generic.

Furthermore, since V~p(a, b) is graded by the level data, and the only elements of level 0 are multiples
of the identity 1 ∈ V~p(a, b), the level 1 elements constitute a minimal generating set of this algebra.
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5. Interlacing Patterns

In this section we describe elements of the fiber product semigroups P (a, b) and Q(a, b) as labellings
of interlacing diagrams. We have defined the interlacing patterns for the K−Pieri and Pieri semigroups
and their boundary maps ∂1, ∂2 specifically with the gluing operation in mind. We slightly modify
these boundary maps, after taking ∂1, or ∂2, we always then pass from a positive GLm(C) weight to
the underlying SLm(C) weight.

We consider a tensor product, V (λ, r1ω1, η)
SLm(C) ⊗ V (η∗, r2ω1, µ)

SLm(C). By the Pieri rule, this
space is non-zero if and only if there are two interlacing patterns b1,b2 such that ∂1(b1) = η, ∂2(b1) = λ,
∂1(b2) = µ, and ∂2(b2) = η∗. These conditions can be represented with a 2−step interlacing diagram
with entries as depicted in Figure 5.

λ1 + λ̄5 λ1 − λ4 + λ̄5 λ1 − λ3 + λ̄5 λ1 − λ2 + λ̄5 λ̄5

η1 + η̄5 η2 + η̄5 η3 + η̄5 η4 + η̄5 η̄5

µ1 µ2 µ3 µ4 0

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

1
5 (r2 +

∑
j µj −

∑
i ηi) = η̄5

1
5 (r1 + r2 +

∑
j µj +

∑
i λi − 5λ1) = λ̄5

Figure 10. gluing interlacing patterns

Notice that the top two rows of this diagram have been modified from what they would have been had
we considered the space V (λ, r1ω1, η)

SLm(C) by itself. In particular, the the following diagram has been
added to the top two rows.

1 1 1 1 1

1 1 1 1 1

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

✡✡
✡✡
✡✡
✡✡
✡

��

✹✹✹✹✹✹✹✹✹

ZZ

Figure 11. The null diagram

This does not change the boundary values of the pattern as it represents the trivial tensor product
invariant in C⊗ C⊗ C. This operation is performed to make the gluing procedure easier, namely one
pattern is modified until its boundary weights match, which is always possible when ∂1(b1) = ∂2(b2)

∗.
Then it is simply stacked on top of the lower pattern.

Patterns as in Figure 5 label the graded components of the algebra [R(B,P,B) ⊗ R(B,P,B)]T . To
represent more complicated tensor products, we simply stack the appropriate patterns, taking care to
modify pairs of rows by the null pattern to correctly identify the weights when necessary. We define
Lm(a, b) to be the ”wedge” interlacing pattern in Figure 12, with rows of length m, a steps before the
switch in direction, and b steps after the switch in direction.

The next two propositions then follow from our combinatorial descriptions of the algebras RT0
(a, b)

and VT0
(a, b). The level condition in Proposition 1.4 has been altered to account for the possible

addition of the null diagram to a pair of rows.

Proposition 5.1. There is a basis of the space of invariants V (~rω1, ~sωm−1)
SLm(C) in bijection with

the labellings of Lm(a, b) which satisfy the following properties.
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Figure 12. The diagram Lm(a, b)

(1) The boundary value of the top row is r1ω1.

(2) The boundary value of the bottom row is sbωm−1.

(3) The difference between the sums of the i and i + 1st rows is ri+1 if 1 ≤ i ≤ a, and si+1 is
1 ≤ i ≤ a+ b

Proposition 5.2. There is a basis of the space V~p(~rω1, ~sωm−1,K) in bijection with the labellings of
Lm(a, b) which satisfy the following properties.

(1) The boundary value of the top row is r1ω1.

(2) The boundary value of the bottom row is sbωm−1.

(3) The difference between the sums of the i and i + 1st rows is ri+1 if 1 ≤ i ≤ a, and si+1 is
1 ≤ i ≤ a+ b

(4) For rows 1 ≤ i ≤ a, the difference between the first entry of row i and the last entry of row i+1
is ≤ K.

(5) F rows a + 1 ≤ i ≤ a + b, the difference between the last entry of row i and the first entry of
row i+ 1 is ≤ K.

The labellings in Proposition 5.2 are the lattice points in a polytope P (~r, ~s,K). The graded affine
semigroup algebra determined by this polytope, C[P (~r, ~s, L)] is the degeneration of the projective
coordinateR~p(~r, ~s, L) induced from the degeneration of V~p(a, b) to VT0

(a, b). This algebra is considerably
more complicated than VT0

(a, b), it would be interesting to find a generating set of lattice points for
this semigroup, or a classification of which P (~r, ~s, L) yield a Gorenstein algebra.
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