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Abstract

We consider weighted anchored and ANOVA spaces of functions with first order
mixed derivatives bounded in Lp. Recently, Hefter, Ritter and Wasilkowski established
conditions on the weights in the cases p = 1 and p = ∞ which ensure equivalence of
the corresponding norms uniformly in the dimension or only polynomially dependent
on the dimension. We extend these results to the whole range of p ∈ [1,∞]. It is shown
how this can be achieved via interpolation.
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1 Introduction

In this paper we continue the study of norm equivalences of anchored and ANOVA spaces
of functions with bounded order one mixed partial derivatives. Equivalence of these norms
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in the Hilbert space case was recently shown by M. Hefter and K. Ritter in [2]. They prove
very general norm equivalences for reproducing kernel Hilbert spaces. The main point is
the possibility of transferring error bounds for algorithms and complexity bounds from one
setting to another.

One example is the multivariate decomposition method or changing dimension algorithm
introduced in [5]. This method has been shown to be very effective for the anchored de-
composition for spaces of functions with mixed partial derivatives bounded in Lp norms in
[8]. To transfer these results to the ANOVA setting, a norm equivalence is needed. In the
case p = 2 this follows from the results in [2]. In the cases p = 1 and p = ∞, such norm
equivalences where recently established by M. Hefter, K. Ritter and G. W. Wasilkowski in
[3]. Naturally, the question arises what happens for 1 < p < 2 and 2 < p < ∞. It is the
purpose of this note to derive the corresponding results via interpolation methods.

In Section 2, we introduce the considered spaces of functions with mixed derivatives and
state our main general result. In Section 3, we characterize the spaces as ℓp-sums of certain
Lp-spaces, which is a suitable characterization for interpolation. In Section 4, we proof the
main result. In Section 5, we apply the result to different classes of special weights.

2 Spaces of multivariate functions

In this section we introduce the ANOVA and anchored spaces as completions of algebraic
tensor products. This approach is slightly different from the one taken in [3] but the resulting
spaces are the same. Our approach is better suited to the direct application of complex
interpolation, which is the main technical tool later.

Let 1 ≤ p ≤ ∞. In the case d = 1 we consider the space Fp of complex valued absolutely
continuous functions on the interval [0, 1] with first derivatives bounded in Lp. We work with
complex valued functions since the direct application of the complex interpolation method
needs complex scalars. The following considerations can be done in both the real and complex
case. For complex scalars, we just need to consider a complex valued function f : [0, 1]d → C

as a sum f = g + ih of real and imaginary part and apply derivatives and integrals to both
parts. Now we consider the algebraic tensor product

Fd,p =

d
⊗

j=1

Fp

of functions on [0, 1]d. These functions have mixed derivatives of first order in Lp. We denote
by

f (u) =
∏

j∈u

∂

∂xj
f
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the mixed derivative of f with respect to the variables in the subset u ⊂ [d] = {1, . . . , d}.
To denote function values of d-variate functions emphasizing different subsets u ⊂ [d] of

coordinates we use the convention to write

f(xu; tuc) := f(xu; t) := f(y) with yj = xj for j ∈ u and yj = tj for j 6∈ u.

Given a sequence (γu)u⊂[d] of nonnegative weights, we consider two norms on Fd,p, the
anchored norm

‖f‖⋔,d,p =





∑

u⊂[d]

γ−p
u

∥

∥f (u)(·u; 0)
∥

∥

p

p





1/p

=





∑

u⊂[d]

γ−p
u

∫

[0,1]u

∣

∣f (u)(xu; 0)
∣

∣

p
dxu





1/p

(1)

and the ANOVA norm

‖f‖A,d,p =





∑

u⊂[d]

γ−p
u

∥

∥

∥

∥

∫

[0,1][d]\u
f (u)(·u; t) dt

∥

∥

∥

∥

p

p





1/p

=





∑

u⊂[d]

γ−p
u

∫

[0,1]u

∣

∣

∣

∣

∫

[0,1][d]\u
f (u)(xu; t) dt

∣

∣

∣

∣

p

dxu





1/p

. (2)

Here and in the following we do not explicitly state the standard modification required in
the case p = ∞. Moreover, if the weight γu is zero, we consider only the subspace Fd,p of
functions f for which the corresponding term in the norm vanishes.

The space Fd,p with respect to these norms will be denoted by G⋔,d,p and GA,d,p and its
completions by F⋔,d,p and FA,d,p, respectively. It was shown in [3, Proposition 13] that the
spaces F⋔,d,p and FA,d,p coincide independently of p ∈ [1,∞] if and only if the weights satisfy
the compatibility condition

γu > 0 implies γv > 0 for all v ⊂ u.

From this point on we always assume that this condition is fulfilled. Moreover, it was also
observed in [3] that F⋔,d,p and FA,d,p can be identified with Banach function spaces with
continuous point evaluations. The closed graph theorem then ensures that the identity
mappings

J⋔,A
d,p : F⋔,d,p → FA,d,p and JA,⋔

d,p : FA,d,p → F⋔,d,p

are bounded. Our main interest in this note is to estimate the corresponding operator norms.
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The cases p = 1 and p = ∞ were considered in [3]. There the following constants were
introduced

Cd,1 = max
u⊂[d]

∑

v⊂u

γu
γv

and Cd,∞ = max
u⊂[d]

∑

v⊂uc

2−|v|γu∪v
γu

. (3)

The main result in [3] formulated as Theorem 14 there reads as

Theorem 1. Let p = 1 or p = ∞. Then

‖J⋔,A
d,p : F⋔,d,p → FA,d,p‖ = ‖JA,⋔

d,p : FA,d,p → F⋔,d,p‖ = Cd,p.

Here we should observe that in [3] real valued functions are treated. But the lower bounds
for the norms proved in [3] of course also hold for complex valued functions. Moreover, the
proofs of the upper bounds remain valid also in the complex case. This is due to the fact
that the inequalities used are triangle inequalities also valid for complex scalars.

Our main result is the following interpolation theorem which extends the upper bounds
on the operator norm to 1 < p < ∞.

Theorem 2. Let 1 ≤ p ≤ ∞. Then

‖J⋔,A
d,p : F⋔,d,p → FA,d,p‖ ≤ C

1/p
d,1 C

1−1/p
d,∞ and ‖JA,⋔

d,p : FA,d,p → F⋔,d,p‖ ≤ C
1/p
d,1 C

1−1/p
d,∞ . (4)

We now recall the notions of uniform and polynomial equivalence from [3, Definition
14]. The spaces F⋔,d,p and FA,d,p are called uniformly equivalent (in d), if there is c > 0 not
depending on d, such that

max
(

‖J⋔,A
d,p ‖, ‖JA,⋔

d,p ‖
)

≤ c,

which means that

c−1 ‖f‖⋔,d,p ≤ ‖f‖A,d,p ≤ c ‖f‖⋔,d,p for all f ∈ F⋔,d,p.

The spaces F⋔,d,p and FA,d,p are called polynomially equivalent (in d), if there is τ > 0 not
depending on d, such that

max
(

‖J⋔,A
d,p ‖, ‖JA,⋔

d,p ‖
)

= O(dτ),

which means that

c−1d−τ‖f‖⋔,d,p ≤ ‖f‖A,d,p ≤ cdτ‖f‖⋔,d,p for all f ∈ F⋔,d,p

with a constant c > 0 independent of d. The infimum over all such τ is called the exponent
of polynomial equivalence. Of course, these concepts can be formulated more general for
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sequences of spaces indexed by the dimension, where each element is equipped with two
norms.

As a corollary of Theorem 2, we obtain immediately from [3, Proposition 17] the suffi-
ciency in the following corollary. The necessity will be shown in Section 5.

Corollary 3. Let 1 ≤ p ≤ ∞. For product weights γu =
∏

j∈u γj, a necessary and sufficient
condition for the uniform equivalence of F⋔,d,p and FA,d,p is that (γj)j∈N is summable.

Further applications to different classes of weights will be considered in Section 5.

3 Characterization of anchored and ANOVA spaces as

ℓp(Aj)-sums

Given normed spaces (Au)u⊂[d], a weight sequence (γu)u⊂[d] and p ∈ [1,∞], the weighted
ℓp-sum ℓp(Au) of the spaces Au is the set of 2d-tuples a = (au)u⊂[d] with au ∈ Au and norm

‖a‖ =





∑

u⊂[d]

γ−p
u ‖au‖

p





1/p

.

If γu = 0, the corresponding Au has to be the trivial normed space.
In this section we explain how the spaces F⋔,d,p and FA,d,p are characterized isometrically

as spaces ℓp (Lp([0, 1]
u)). Since the completion of ℓp(Au) is ℓp(Au), where Au is the completion

of Au we first work in the algebraic tensor products Fd,p =
⊗d

j=1 Fp equipped with the
corresponding norms, i.e. in G⋔,d,p and GA,d,p. For each function f ∈ Fd,p we consider the
operators

R⋔f =
(

f (u)(xu; 0)
)

u⊂[d]
and RAf =

(
∫

[0,1][d]\u
f (u)(·u; t) dt

)

u⊂[d]

mapping f to 2d-tuples (g⋔u) and (gAu ), respectively, where the functions gu depend only on
the coordinates in u. Note that g⋔∅ = f(0) and gA∅ =

∫

[0,1][d]
f(t) dt. Hence the norm of f in

(1) and (2) can be written as

‖f‖⋔,d,p =





∑

u⊂[d]

γ−p
u ‖g⋔u‖

p
p





1/p

and ‖f‖A,d,p =





∑

u⊂[d]

γ−p
u ‖gAu ‖

p
p





1/p

(5)

where the norms ‖g⋔u‖p and ‖gAu ‖p are Lp-norms on the domain [0, 1]u.
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We now observe that R⋔f and RAf are actually elements of the spaces ℓp(Bu) where
Bu ⊂ Au = Lp([0, 1]

u) is the algebraic tensor product Bu =
⊗

j∈u Lp[0, 1] (with B∅ = A∅ =
R). It also follows from (5) that the mappings R⋔ and RA considered as mappings from
Fd,p =

⊗d
j=1 Fp to ℓp(Bu) are isometric embeddings, i.e.

‖f‖⋔,d,p = ‖R⋔f |lp(Bu)‖ and ‖f‖A,d,p = ‖RAf |lp(Bu)‖.

We now show that they actually are isometric isomorphisms. In the anchored case, given
g = (gu) ∈ ℓp(Bu), we let

f(x) = (S⋔g)(x) =
∑

u⊂[d]

∫

[0,x]u
gu(t; 0) dt =

∑

u⊂[d]

fu(x).

If gu(x) =
∏

j∈u hj(xj) is an elementary tensor in Bu =
⊗

j∈u Lp[0, 1], then

fu(x) =

∫

[0,x]u
gu(t; 0) dt =

∏

j∈u

∫ xj

0

hj(tj) dtj

shows that

fu ∈
⊗

j∈u

Fp ⊂
d

⊗

j=1

Fp = Fd,p.

Consequently, S⋔ indeed maps ℓp(Bu) into Fd,p.

Now fu depends only on the coordinates in u, hence f
(v)
u = 0 if v 6⊂ u. Moreover, if v ⊂ u

and v 6= u, then f
(v)
u (·v; 0) = 0, since for the coordinates in u \ v the integration in

fu(x) =

∫

[0,x]u
gu(t; 0) dt

is over the trivial interval [0, 0]. Hence f
(v)
u (·v; 0) = 0 unless u = v. Consequently,

f (u)(·u; 0) = f (u)
u (·u; 0) = gu,

which shows that ‖S⋔g‖⋔,d,p = ‖g|lp(Bu)‖. Therefore S⋔ is also an isometric embedding.
Using the above notation together with (1) in [3, Lemma 1], we find that

S⋔[R⋔f ](x) = S⋔[(g
⋔

u)u](x) =
∑

u⊂[d]

∫

[0,x]u
f (u)(t; 0) dt = f(x).
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Observe that Lemma 1 in [3] is formulated only for f in the algebraic tensor product of C∞-
functions, but the proof immediately extends to f ∈ Fd,p. This shows that S⋔R⋔ = IdFd,p

.
Since injectivity of S⋔ together with S⋔R⋔ = IdFd,p

automatically implies R⋔S⋔ = Idℓp(Bu),
we have shown that S⋔ and R⋔ are isometric isomorphisms.

In the ANOVA case we use the one-dimensional identity

f(x) =

∫ 1

0

f(t) dt+

∫ 1

0

(

t− χ[x,1](t)
)

f ′(t) dt

for f ∈ Fp where χ[a,b] is the indicator function of the interval [a, b]. Taking tensor products,
this leads to the d-dimensional identity

f(x) =
∑

u⊂[d]

∫

[0,x]u

∏

j∈u

(

tj − χ[xj ,1](tj)
)

gu(t) dt (6)

for f ∈ Fd,p where

gu =

∫

[0,1][d]\u
f (u)(·u; t) dt

is the corresponding term in the ANOVA-decomposition of f , compare (2) in [3, Lemma 1].
So, given g = (gu) ∈ ℓp(Bu), we let

f(x) = (SAg)(x) =
∑

u⊂[d]

∫

[0,x]u

∏

j∈u

(

tj − χ[xj ,1](tj)
)

gu(t) dt =
∑

u⊂[d]

fu(x).

If gu(x) =
∏

j∈u hj(xj) is an elementary tensor in Bu =
⊗

j∈u Lp[0, 1], then

fu(x) =

∫

[0,x]u

∏

j∈u

(

tj − χ[xj ,1](tj)
)

gu(t) dt =
∏

j∈u

∫ xj

0

(

tj − χ[xj ,1](tj)
)

hj(tj) dtj

shows that

fu ∈
⊗

j∈u

Fp ⊂
d

⊗

j=1

Fp = Fd,p.

Consequently, SA maps ℓp(Bu) into Fd,p.

Now fu depends only on the coordinates in u, hence f
(v)
u = 0 if v 6⊂ u. Moreover, if v ⊂ u

and v 6= u, then
∫

[0,1][d]\v
f (v)
u (·v; t) dt = 0

7



since the variables xj with j ∈ u \ v lead to integrals
∫ 1

0

(

tj − χ[xj ,1](tj)
)

dxj = 0. Conse-
quently,

∫

[0,1][d]\u
f (u)(·u; t) dt = gu,

which shows that ‖SAg‖A,d,p = ‖g|lp(Bu)‖. Therefore SA is also an isometric embedding.
Using the above notation together with (6), we find that

SA[RAf ](x) = SA[(g
A
u )u](x) =

∑

u⊂[d]

∫

[0,x]u

∏

j∈u

(

tj − χ[xj ,1](tj)
)

gAu (t) dt = f(x).

This shows that SARA = IdFd,p
. Since injectivity of SA together with SARA = IdFd,p

automatically implies RASA = Idℓp(Bu), we have shown that SA and RA are also isometric
isomorphisms.

Now extending S⋔, SA, R⋔, RA to the completions and observing that the completion
of Bu is just Lp([0, 1]

u), we obtain isometric isomorphisms of the spaces F⋔,d,p and FA,d,p on
the one side and ℓp (Lp([0, 1]

u)) on the other side. Slightly abusing notation, we will denote
these extensions again with S⋔, SA, R⋔, RA, respectively.

Remark 4. If the weights γu are all positive, then we obtain that the spaces F⋔,d,p and FA,d,p

are actually the classical spaces Wmix
p of functions in f ∈ Lp whose mixed derivative ∂df

∂x1...∂xd

also belongs to Lp, see [3]. If some of the weights γu are zero, we obtain subspaces of Wmix
p

where the corresponding derivatives f (u) satisfy

f (u)(xu; 0) = 0 and

∫

[0,1][d]\u
f (u)(·u; t) dt = 0

in the anchored case or in the ANOVA case, respectively.

4 Proof of Theorem 2

In the previous section, we have shown that the spaces F⋔,d,p and FA,d,p are isometrically
isomorhic to ℓp (Lp([0, 1]

u)). Now we shortly state known results for this type of spaces for
complex interpolation. The corresponding theory is described in detail in [7], Section 1.9.
The relevant results for spaces of type ℓp(Au) with Au = Lp([0, 1]

u) are Theorem 1.18.1
(formula (4)) in [7], i.e.

[ℓp0(Aj), ℓp1(Bj)]θ = ℓp ([Aj, Bj ]θ) , (7)

complemented by the following Remark 2, and Theorem 1.18.6.2 (formula (15)) in [7], i.e.

[Lp0(A), Lp1(A)]θ = Lp(A), (8)

8



for Banach spaces A,Aj, Bj and 1/p = (1− θ)/p0 + θ/p1 with 0 < θ < 1. We want to apply
(7) and (8) to the situation corresponding to Figure 1 to prove Theorem 2.

F⋔,d,1 F⋔,d,∞F⋔,d,p

FA,d,1 FA,d,∞FA,d,p

J⋔,A
d,1 J⋔,A

d,p J⋔,A
d,∞

Figure 1: Interpolation scheme

For the operators J⋔,A
d,p and JA,⋔

d,p (with arrows in Figure 1 pointing in the opposite direc-
tion), we know from [3], see Theorem 1, that

∥

∥

∥
J⋔,A
d,1

∥

∥

∥
=

∥

∥

∥
JA,⋔
d,1

∥

∥

∥
= Cd,1 and

∥

∥

∥
J⋔,A
d,∞

∥

∥

∥
=

∥

∥

∥
JA,⋔
d,∞

∥

∥

∥
= Cd,∞,

with Cd,1, Cd,∞ from (3). Now, (7) and (8) give

[ℓ1 (L1([0, 1]
u)) , ℓ∞ (L∞([0, 1]u))]θ = ℓp (Lp([0, 1]

u)) with p =
1

1− θ
, 0 < θ < 1.

Using the isometric isomorphisms S⋔, SA, R⋔, RA, this characterizes the spaces F⋔,d,p and
FA,d,p as complex interpolation spaces

F⋔,d,p = [F⋔,d,1, F⋔,d,∞]θ and FA,d,p = [FA,d,1, FA,d,∞]θ

justifying the above diagram.
Because the corresponding interpolation functor is exact of type θ (see Theorem 1.9.3 in

[7], we get
∥

∥

∥
J⋔,A
d,p

∥

∥

∥
≤

∥

∥

∥
J⋔,A
d,1

∥

∥

∥

1−θ ∥
∥

∥
J⋔,A
d,∞

∥

∥

∥

θ

= C
1/p
d,1 C

1−1/p
d,∞ =: Cd,p,

which is the left side of (4). Since the arguments are identical for JA,⋔
d,p , we also get

∥

∥

∥
JA,⋔
d,p

∥

∥

∥
≤

∥

∥

∥
JA,⋔
d,1

∥

∥

∥

1−θ ∥
∥

∥
JA,⋔
d,∞

∥

∥

∥

θ

= Cd,p,

which completes the proof.
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Remark 5. For some potential applications it might be useful to use different weight se-
quences for different p. This is possible without much difficulties. Let the spaces F⋔,d,p and
FA,d,p be defined in (1) and (2), respectively, with a weight sequence (γu,p)u⊂[d] depending
on p. Then Theorem 1.8.10.5 in [7] shows that the complex interpolation spaces with index
θ between p = 1 and p = ∞ are just given by the interpolated weights γu,p = γ1−θ

u,1 · γθ
u,∞.

Then Theorem 2 holds verbatim.

5 Applications to different classes of weights

We now consider special classes of weights as in [3] and extend the corresponding results
from p = 1,∞ to the whole range p ∈ [1,∞], if that is possible.

We start with product weights introduced in [6], for which

γu =
∏

j∈u

γj, for u ⊂ [d]

where (γj)j∈N is a given sequence of positive numbers. Product weights were already men-
tioned in Corollary 3. To prove that corollary, it remains to show that the summability of
(γj)j∈N is necessary for the uniform equivalence of F⋔,d,p and FA,d,p in case p ∈ [1,∞]. To
this end, we consider the function

f(x) = f(x1, . . . , xd) =

d
∏

j=1

(1 + γjxj).

Then we have

f (u)(·u, 0) = γu and

∫

[0,1][d]\u
f (u)(·u; t) dt = γu

∏

j /∈u

(1 + γj/2)

and calculate

‖f‖p
⋔,d,p =

∑

u⊂[d]

γ−p
u

∫

[0,1]u
|f (u)(xu; 0)|

p dxu = 2d

as well as

‖f‖pA,d,p =
∑

u⊂[d]

γ−p
u

∫

[0,1]u

∣

∣

∣

∣

∫

[0,1][d]\u
f (u)(xu; t) dt

∣

∣

∣

∣

p

dxu =
∑

u⊂[d]

∏

j /∈u

(1 + γj/2)
p

=

d
∏

j=1

(1 + (1 + γj/2)
p).

10



Now we see
∥

∥

∥
J⋔,A
d,p

∥

∥

∥

p

≥
‖f‖pA,d,p

‖f‖p
⋔,d,p

=

d
∏

j=1

1 + (1 + γj/2)
p

2
≥

d
∏

j=1

(1 + γj/4),

which shows that, if the spaces F⋔,d,p and FA,d,p are uniformly equivalent, then (γj)j∈N must
be summable. This finishes the proof of Corollary 3.

The corresponding result for polynomial equivalence is

Corollary 6. Let 1 ≤ p ≤ ∞. For product weights γu =
∏

j∈u γj, a necessary and sufficient
condition for the polynomial equivalence of F⋔,d,p and FA,d,p is that

τ0 = sup
d∈N

∑d
j=1 γj

ln(d+ 1)
< ∞. (9)

If this holds, then the exponent τ of polynomial equivalence is at most

τ0
2

(

1 +
1

p

)

.

Proof. For the sufficiency, we now use [3, Proposition 17, (ii)] showing that polynomial
equivalence for p ∈ {1,∞} holds if and only if τ0 < ∞. Moreover, it is also shown there
that the exponents of polynomial equivalence are τ0/2 for p = ∞ and τ0 for p = 1, so the
upper bound for the exponent of polynomial equivalence for 1 < p < ∞ follows from the
interpolation inequalities

∥

∥

∥
J⋔,A
d,p

∥

∥

∥
≤

∥

∥

∥
J⋔,A
d,1

∥

∥

∥

1−θ ∥
∥

∥
J⋔,A
d,∞

∥

∥

∥

θ

= C
1/p
d,1 C

1−1/p
d,∞ = Cd,p

and
∥

∥

∥
JA,⋔
d,p

∥

∥

∥
≤

∥

∥

∥
JA,⋔
d,1

∥

∥

∥

1−θ ∥
∥

∥
JA,⋔
d,∞

∥

∥

∥

θ

= C
1/p
d,1 C

1−1/p
d,∞ = Cd,p.

The necessity of (9) follows by the same arguments (for the same function) as used above
for the uniform equivalence.

Now we discuss the class of so-called finite order weights first considered in [1] and having
the property that

γu = 0 if |u| > q ∈ N (q is called order).

Using [3, Proposition 19] we can state
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Corollary 7. Let 1 ≤ p ≤ ∞. If there exist numbers c, ω > 0, such that

γu = c ω|u| for all |u| ≤ q,

then there is polynomial equivalence of the spaces F⋔,d,p and FA,d,p equipped with finite order
weights. The corresponding exponent of polynomial equivalence is τ = q.

Remark 8. The original condition on the weights γu in [3] looks a bit different because the
cases p = 1 and p = ∞ are treated separately. There one can also see that the only known
case where uniform equivalence holds, is p = 1 for these weights. So here we can not use our
interpolation technique to establish the corresponding result for p ∈ [1,∞].

As a last application we consider here special dimension-dependent weights, introduced
in [4], where γu = d−|u|. Now [3, Proposition 20] gives immediately

Corollary 9. For p ∈ [1,∞] and weights γu = d−|u| the spaces F⋔,d,p and FA,d,p are uniformly
equivalent.
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