It is the cache of ${baseHref}. It is a snapshot of the page. The current page could have changed in the meantime.
Tip: To quickly find your search term on this page, press Ctrl+F or ⌘-F (Mac) and use the find bar.

Synthesis, characterization and luminescence properties of long afterglow Phosphor Ba4Al14O25:Eu,Dy | Emen | European Journal of Chemistry

Synthesis, characterization and luminescence properties of long afterglow Phosphor Ba4Al14O25:Eu,Dy

Fatih Mehmet Emen, Nevzat Külcü, Ahmet Necmeddin Yazıcı

Abstract


Long persistent afterglow phosphor, Ba4Al14O25:Eu2+,Dy3+ was prepared at high temperature by a solid state reaction in a weak reductive atmosphere. The crystal structure of Ba4Al14O25:Eu2+,Dy3+ has been determined as an orthorhombic Pmmm space group with a=18.200(6) Å, b=16.923(6) Å, c=5.131(21) Å, V=1580.3(9) Å3 and Z=8. The reflectance measurement was obtained by using the Diffuse Reflectance Spectrophotometer and the band gap energy of the undoped host phase of Ba4Al14O25 was calculated by using Kubelka-Munk treatment on the diffuse reflectance spectra, and found to be 4.72 eV. The excitation and emission peaks are broad bands and the main emission peak at 520 nm with shoulder at 496 nm belongs to the intrinsic defect of the host and 4f65d1→4f7 transition of Eu2+, respectively. The afterglow decay curve implied that this phosphor contains fast and slow-decay processes. The thermoluminescence glow curve showed one dominant glow peak observed at 50 oC and two weak glow peaks at around 140 oC and 220 oC which are related to the defects at different trap depths. 1_1_28_32_800

Keyword(s)


Phosphorescence; Aluminates; Afterglow; Phosphors; Optical Materials

European Journal of Chemistry, 1 (1), (2010), 28-32

Full Text:

PDF    /    /

DOI: http://dx.doi.org/10.5155/eurjchem.1.1.28-32.8

 

Cited-By

[1]. Optical properties of rare earth-doped barium aluminate synthesized by different methods-A Review
Jagjeet Kaur, Beena Jaykumar, Vikas Dubey, Ravi Shrivastava, N. S. Suryanarayana
Research on Chemical Intermediates  Year: 2013  
/

[2]. COMBUSTION SYNTHESIS AND CHARACTERIZATION OF NANOCRYSTALLINE ALKALINE EARTH ALUMINATE Sr4Al14O25:RE(RE = Eu, Dy, Sm)
V. P. HEDAOO, V. B. BHATKAR, S. K. OMANWAR
International Journal of Nanoscience  Volume: 12  Issue: 04  First page: 1350023  Year: 2013  
/

 


References

[1]. Kenyon A. J.; Chryssou C. E.; Pitt C. W.; Iwayama T. S.; Hole D. E.; Sharma N.; Humphreys C. J. J. Appl. Phys., 2002, 91, 367-374.

[2]. Schmechel R.; Kennedy M.; Seggern H. V.; Winkler H.; Kolbe M.; Fischer R. A.; Li X. M.; Benker A.; Winterer M.; Hahn H. J. Appl. Phys. 2001, 89, 1679-1686.

[3]. Wakefield G.; Holland E.; Dobson P. J.; Hutchison J. L. Adv. Mater. 2001, 13, 1557-1560.
doi:10.1002/1521-4095(200110)13:20<1557::AID-ADMA1557>3.0.CO;2-W

[4]. Li Q.; Gao L.; Yan D. S. Chem. Mater. 1999, 11, 533-535.
doi:10.1021/cm9810180

[5]. Bartko A. P.; Peyser L. A.; Dickson R. M.; Mehta A.; Thundat T.; Bhargava R.; Barnes M. D.; Chem. Phys. Lett. 2002, 358, 459-465.
doi:10.1016/S0009-2614(02)00630-9

[6]. Wang D.; Wang M.; Lu G. J. Mater. Sci. 1999, 34, 4959-4964.
doi:10.1023/A:1004759621850

[7]. Nag A.; Kutty T. R. N. J. Alloys Comp. 2003, 354, 221–31.
doi:10.1016/S0925-8388(03)00009-4

[8]. Peng M.; Pei Z.; Hong G.; Su Q. Chem. Phys. Lett. 2003, 371, 1-6.
doi:10.1016/S0009-2614(03)00044-7

[9]. Yuan Z. X.; Chang C. K.; Mao D. L.; Ying W. J. Alloys Compd., 2004, 377, 268-268.
doi:10.1016/j.jallcom.2004.01.063

[10]. Chang C.; Yuan Z.; Mao D. J. Alloys Compd. 2006, 415, 220-224.
doi:10.1016/j.jallcom.2005.04.219

[11]. Eremina E. A.; Chekanova A. E.; Kazin A. P.; Rumyantseva M. N.; Kazin P. E.; Tret’yakov Y. D. Inorg. Mater. 2007, 43, 853-859.
doi:10.1134/S0020168507080079

[12]. Nadzhina T. N.; Pobedimskaya E. A.; Belov N. V.; Kristallografiya 1980, 25, 938-943.

[13]. Nag A.; Kutty T. R. N. Mater. Res. Bull. 2004, 39, 331–42 (2004).
doi:10.1016/j.materresbull.2003.11.007

[14]. Morales A. E.; Mora E. S.; Pal U. Revista Mecsicana De Fisica S, 2007, 53, 18-22.

[15]. Zhou F.; Kang K.; Maxisch T.; Ceder G.; Morgan D. Solid State Commun. 2004, 132, 181-186.
doi:10.1016/j.ssc.2004.07.055

[16]. Pankove J. N., Absorption, Dover Puplications, Inc. New York, 1975.

[17]. Erat S.; Metin H.; Arı M. Mater. Chem. Phys. 2008, 111, 114-120.
doi:10.1016/j.matchemphys.2008.03.021

[18]. Oladeji O. I.; Chow L.; Thin Solid Films, 2005, 474, 77-83.
doi:10.1016/j.tsf.2004.08.114

[19]. Maity R.; Chatopadhyay K. K. J. Nanopart. Res., 2006, 8, 125-130.
doi:10.1007/s11051-005-8595-y

[20]. Ropp R. C. The Point Defect. Studies in Inorganic Chemistry 21, Luminescence and the Solid State, 2nd Edition, Elsevier, 138 Mountain Avenue, 2004, pp. 39-112.

[21]. Matsuzawa T.; Nabae T.; Katsumata T.; Sasajima K. J. Electrochem. Soc. 1997, 144, L243-L245.
doi:10.1149/1.1837931

[22]. Lin Y.; Tang Z.; Zhang Z.; Nan C. W. Appl. Phys. Lett., 2002, 81, 996-998.
doi:10.1063/1.1490631

[23]. McKeever S.W. S., Thermoluminescence Analysis. Thermoluminescence of Solids, Cambridge Solid State Science Series, Cambridge University Press, New York, 1985, pp.64-122.

[24]. Horowitz Y. S.; Yossian D. Radiat. Protect. Dosim. 1995, 60, 1-114.

[25]. Misra S. K.; Eddy N. W. Nucl. Inst. Meth. 1979, 166, 537-540.
doi:10.1016/0029-554X(79)90546-9

[26]. Chen R. J. Electrochem. Soc. 1969, 116, 1254-1257 (1969).

[27]. Jahan M. S.; Cooke D. W.; Hults W. H.; Bennett J. L.; Maez M. A. J. Lumin., 1990, 47, 85-91.
doi:10.1016/0022-2313(90)90003-T

[28]. Sakai R.; Katsumata T.; Kumuro S. J. Lumin, 1999, 85, 149-154.
doi:10.1016/S0022-2313(99)00061-7

[29]. Dorenbos P. J. Lumin. 2007, 315, 122-123.


Refbacks

  • There are currently no refbacks.