
ar
X

iv
:1

41
1.

20
07

v1
  [

m
at

h.
A

P]
  7

 N
ov

 2
01

4

ON LARGE TIME BEHAVIOR AND SELECTION PRINCIPLE

FOR A DIFFUSIVE CARR-PENROSE MODEL

JOSEPH G. CONLON, MICHAEL DABKOWSKI AND JINGCHEN WU

Abstract. This paper is concerned with the study of a diffusive perturbation
of the linear LSW model introduced by Carr and Penrose. A main subject
of interest is to understand how the presence of diffusion acts as a selection
principle, which singles out a particular self-similar solution of the linear LSW
model as determining the large time behavior of the diffusive model. A se-
lection principle is rigorously proven for a model which is a semi-classical
approximation to the diffusive model. Upper bounds on the rate of coarsening
are also obtained for the full diffusive model.

1. Introduction.

In [2] Carr and Penrose introduced a linear version of the Lifschitz-Slyozov-
Wagner (LSW) model [12, 22]. In this model the density function c0(x, t), x >
0, t > 0, evolves according to the system of equations,

∂c0(x, t)

∂t
=

∂

∂x

[

1− x

Λ0(t)

]

c0(x, t) , x > 0,(1.1)

∫ ∞

0

xc0(x, t)dx = 1.(1.2)

The parameter Λ0(t) > 0 in (1.1) is determined by the conservation law (1.2) and
is therefore given by the formula,

(1.3) Λ0(t) =

∫ ∞

0

xc0(x, t)dx
/

∫ ∞

0

c0(x, t)dx.

One can also see that the derivative of Λ0(t) is given by

(1.4)
dΛ0(t)

dt
= c0(0, t)

/

[
∫ ∞

0

c0(x, t)dx

]2

,

whence Λ0(·) is an increasing function.
The system (1.1), (1.2) can be interpreted as an evolution equation for the prob-

ability density function (pdf) of random variables. Thus let us assume that the
initial data c0(x) ≥ 0, x > 0, for (1.1), (1.2) satisfies

∫∞
0

c0(x) dx < ∞, and let

X0 be the non-negative random variable with pdf c0(·)/
∫∞
0

c0(x) dx. The conser-
vation law (1.2) implies that the mean 〈X0〉 of X0 is finite, and this is the only
absolute requirement on the variable X0. If for t > 0 the variable Xt has pdf
c0(·, t)/

∫∞
0 c(x, t) dx, then (1.1) with Λ0(t) = 〈Xt〉 is an evolution equation for the

pdf of Xt. Equation (1.4) now tells us that 〈Xt〉 is an increasing function of t.
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There is an infinite one-parameter family of self-similar solutions to (1.1), (1.2).
Using the normalization 〈X0〉 = 1, the initial data for these solutions are given by
(1.5)

P (X0 > x) =











[1− (1− β)x]β/(1−β) , 0 < x < 1/(1− β), if 0 < β < 1,

e−x if β = 1,

[1 + (β − 1)x]β/(1−β) , 0 < x < ∞, if β > 1.

The random variableXt corresponding to the evolution (1.1), (1.2) with initial data
(1.5) is then given by

(1.6) Xt = 〈Xt〉X0 ,
d

dt
〈Xt〉 = β .

The main result of [2] (see also [1]) is that a solution of (1.1), (1.2) converges at
large time to the self-similar solution with parameter β, provided the initial data
and the self similar solution of parameter β behave in the same way at the end
of their supports. In §2 we give a simple proof of the Carr-Penrose convergence
theorem using the beta function of a random variable introduced in [5].

The large time behavior of the Carr-Penrose (CP) model is qualitatively similar
to the conjectured large time behavior of the LSW model [14], provided the initial
data has compact support. In the LSW model there is a one-parameter family
of self-similar solutions with parameter β, 0 < β ≤ 1, all of which have compact
support. The self-similar solution with parameter β < 1 behaves in the same way
towards the end of its support as does the CP self-similar solution with parameter
β. It has been conjectured [14] that a solution of the LSW model converges at large
time to the LSW self-similar solution with parameter β, provided the initial data
and the self similar solution of parameter β behave in the same way at the end of
their supports. A weak version of this result has been proven in [7].

It was already claimed in [12, 22] that the only physically relevant self-similar
LSW solution is the one with parameter β = 1. This has been explained in a
heuristic way in several papers [13, 16, 20], by considering a model in which a
second order diffusion term is added to the first order LSW equation. It is then
argued that diffusion acts as a selection principle, which singles out the β = 1
self-similar solution as giving the large time behavior. In this paper we study a
diffusive version of the Carr-Penrose model, with the goal of understanding how a
selection principle for the β = 1 self-similar solution (1.5) operates.

In our diffusive CP model we simply add a second order diffusion term with coef-
ficient ε/2 > 0 to the CP equation (1.1). Then the density function cε(x, t) evolves
according to a linear diffusion equation, subject to the linear mass conservation
constraint as follows:

∂cε(x, t)

∂t
=

∂

∂x

[

1− x

Λε(t)

]

cε(x, t) +
ε

2

∂2cε(x, t)

∂x2
, x > 0,(1.7)

∫ ∞

0

xcε(x, t)dx = 1.(1.8)

We also need to impose a boundary condition at x = 0 to ensure that (1.7), (1.8)
with given initial data cε(x, 0) = c0(x) ≥ 0, x > 0, satisfying the constraint (1.8)
has a unique solution. We impose the Dirichlet boundary condition cε(0, t) = 0, t >
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0, because in this case the parameter Λε(t) > 0 in (1.7) is given by the formula

(1.9) Λε(t) =

∫ ∞

0

xcε(x, t)dx
/

∫ ∞

0

cε(x, t)dx.

Hence the diffusive CP model is an evolution equation for the pdf cε(·, t)/
∫∞
0

cε(x, t) dx
of a random variable Xε,t and Λε(t) = 〈Xε,t〉. Furthermore, it is easy to see from
(1.7), (1.8) that

(1.10)
dΛε(t)

dt
=

ε

2

∂cε(0, t)

∂x

/

[
∫ ∞

0

cε(x, t)dx

]2

.

It follows from (1.10) and the maximum principle [15] applied to (1.7) that the
function t → Λε(t) is increasing.

In [17] Smereka studied a discretized CP model and rigorously established a
selection principle for arbitrary initial data with finite support. He also proved
that the rate of convergence to the β = 1 self-similar solution (1.5) is logarithmic
in time. Since discretization of a first order PDE introduces an effective diffusion,
one can just as well apply the discretization algorithm of [17] to (1.7). In the
discretized model time t is left continuous and the x discretization ∆x is required
to satisfy the condition ε = 2∆x. In [17] the large time behavior of solutions to
this discretized model is studied by using a Fourier method. The Fourier method
cannot be implemented if the assumption ε = 2∆x is dropped. In §2 we show that
the discretized model is a 2 dimensional dynamical system if and only if ε = 2∆x,
and that this dynamics is associated with the unique 2 dimensional non-Abelian
Lie algebra. This places the Smereka discrete model in the same category as the
CP model (1.1), (1.2) and the quadratic model introduced in [7], which have also
been shown to be 2 dimensional with 2 dimensional non-Abelian Lie algebra.

In §2 we begin by studying the CP model. If the initial data for (1.1), (1.2)
is Gaussian, then it follows from [2] that the solution converges at large time to
the β = 1 self-similar solution (1.5). We prove that the rate of convergence is
logarithmic in time as in the Smereka model. Next we consider how to extend this
result to the diffusive CP model (1.7), (1.8). We introduce a family of models with
parameter ν, 0 ≤ ν ≤ 1, which interpolate between the diffusive CP model (1.7),
(1.8) and a simpler model for which we can prove a selection principle. Each of
these models is an evolution equation for the pdf of a non-negative random variable
Xt, t ≥ 0, in which the function t → 〈Xt〉 is increasing. The evolution PDE
is however now non-linear of viscous Burgers’ type [9] with viscosity coefficient
proportional to ν. The ν = 1 model is identical to the diffusive CP model (1.7),
(1.8), but the ν = 0 model is not the same as the CP model (1.1), (1.2). We shall
refer to it as the inviscid CP model since its evolution PDE is an inviscid Burgers’
equation [18]. Similarly we refer to the model with 0 < ν ≤ 1 as the viscous CP
model with viscosity ν.

In §3 we study the large time behavior of the inviscid CP model and obtain the
following theorem:

Theorem 1.1. Suppose the initial data for the inviscid CP model corresponds to
the non-negative random variable X0, and assume that X0 satisfies
(1.11)
ε < 〈X0〉, ‖X0‖∞ < ∞, x → E[X0−x | X0 > x] is decreasing for 0 ≤ x < ‖X0‖∞ .
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Then limt→∞〈Xt〉/t = 1. If in addition the function x → E[X0 − x | X0 > x] is
C1 and convex for x close to ‖X0‖∞ with

(1.12) lim inf
x→‖X0‖∞

∂

∂x

1

E[X0 − x | X0 > x]
> 0 ,

then there exists C, T > 0 such that

(1.13) 1− C

log t
≤ d

dt
〈Xt〉 ≤ 1 for t ≥ T .

Observe that a β < 1 self-similar solution (1.5) of the CP model has ‖X0‖∞ =
1/(1−β) and E[X0−x | X0 > x] = 1− (1−β)x, 0 ≤ x < ‖X0‖∞. Hence the β < 1
self-similar solution satisfies all the conditions of Theorem 1.1 provided ε < 1. The
condition ε < 1 is not crucial since for any ε > 0 one can rescale the initial data
so that ε < 〈X0〉. Therefore Theorem 1.1 proves a selection principle for the β = 1
self-similar solution (1.5) and establishes a rate of convergence which is logarithmic
in time.

The remainder of the present paper is devoted to the study of the diffusive CP
model (1.7), (1.8). Since existence and uniqueness has already been proven for a
diffusive version of the LSW model [4] we do not revisit this issue, but concentrate
on understanding large time behavior. In §7 we obtain the following:

Theorem 1.2. Suppose the initial data for the diffusive CP model (1.7), (1.8)
corresponds to the non-negative random variable X0 with integrable pdf. Then
limt→∞〈Xt〉 = ∞. If in addition the function x → E[X0 − x | X0 > x], 0 ≤
x < ‖X0‖∞, is decreasing, then there are constants C, T > 0 such that

(1.14) 0 ≤ d

dt
〈Xt〉 ≤ C for t ≥ T .

To establish the upper bound in (1.14) requires some delicate semi-classical anal-
ysis of the ratio of the Dirichlet Green’s function for (1.7) on the half line x > 0 to
the whole line Green’s function. We carry this out in §5 by observing that the ratio
of Green’s functions is a probability for a generalized Brownian-bridge process, and
obtaining a representation of the bridge process in terms of Brownian motion. In
PDE terms this amounts to a boundary layer analysis of the solution to (1.7). To
see why this is the case, observe that one can always rescale 〈X0〉 to be equal to 1
in both the CP and diffusive CP models. Since the CP model is dilation invariant,
the evolution PDE (1.1) remains the same. However for the diffusive CP model the
diffusion coefficient in (1.7) changes from ε to ε/〈X0〉. Since limt→∞〈Xt〉 = ∞ in
the diffusive CP model, an analysis of large time behavior must therefore involve
an analysis of solutions to (1.7), (1.8) as ε → 0.

The simplest problem to understand concerning ε → 0 behavior of the diffusive
CP model is the problem of proving convergence to the solution of the CP model
(1.1), (1.2) over some fixed time interval 0 ≤ t ≤ T . Thus we assume that the
CP and diffusive CP models have the same initial data corresponding to a random
variable X0. If Xt, t > 0, is the random variable corresponding to the solution
of (1.1), (1.2) and Xε,t, t > 0, the random variable corresponding to the solution
of (1.7), (1.8) then Xε,t converges in distribution as ε → 0 to Xt, uniformly in
the interval 0 ≤ t ≤ T . Boundary layer analysis becomes necessary in proving the
convergence of the diffusive coarsening rate (1.10) as ε → 0 to the CP coarsening
rate (1.4). In the diffusive model there exists a boundary layer with length of
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order ε so that cε(x, t) ≃ c0(x, t) for x/ε >> 1. Since cε(0, t) = 0 one has that
∂cε(0, t)/∂x ≃ 1/ε, whence the RHS of (1.10) remains bounded above 0 as ε → 0,
and in fact converges to the RHS of (1.4).

In §6 we prove using the estimates of §5 the convergence results over a finite time
interval described in the previous paragraph. Analogous results for the diffusive
LSW model have already been proven in [4]. However the semi-classical estimates
obtained in [4] to prove convergence are not strong enough to prove a uniform in
time upper bound on the rate of coarsening as given in (1.14). Although there is
a formal analogy between the problem of understanding large time behavior of the
diffusive CP model and the problem of ε → 0 convergence of the diffusive CP model
over a fixed time interval, the former problem is considerably more difficult than
the latter.

2. The Carr-Penrose Model and Extensions

The analysis of the CP model [2] is based on the fact that the characteristics for
the first order PDE (1.1) can be easily computed. Thus let b : R × R+ → R be
given by b(y, s) = A(s)y − 1, y ∈ R, s ≥ 0, where A : R+ → R+ is a continuous
non-negative function. We define the mapping FA : R×R+ → R by setting

(2.1) FA(x, t) = y(0), where
dy(s)

ds
= b(y(s), s), 0 ≤ s ≤ t, y(t) = x.

From (2.1) we see that the function FA is given by the formula

(2.2) FA(x, t) =
x+m2,A(t)

m1,A(t)
, where

m1,A(t) = exp

[
∫ t

0

A(s) ds

]

, m2,A(t) =

∫ t

0

exp

[
∫ t

s

A(s′) ds′
]

ds .

If we let w0 : R+ ×R+ → R+ be the function

(2.3) w0(x, t) =

∫ ∞

x

c0(x
′, t) dx′ , x, t ≥ 0,

where c0(·, ·) is the solution to (1.1), then from the method of characteristics we
have that

(2.4) w0(x, t) = w0(F1/Λ0
(x, t), 0) , x, t ≥ 0.

The conservation law (1.2) can also be expressed in terms of w0 as

(2.5)

∫ ∞

0

w0(x, t) dx =

∫ ∞

0

w0(F1/Λ0
(x, t), 0) dx = 1.

Observe now that the functions m1,A, m2,A of (2.2) are related by the differential
equation

(2.6)
d

dt

[

m2,A(t)

m1,A(t)

]

=
1

m1,A(t)
.

It follows from (2.5), (2.6) that if we define variables [u(t), v(t)], t ≥ 0, by

(2.7) u(t) =
1

m1,1/Λ0
(t)

, v(t) =
m2,1/Λ0

(t)

m1,1/Λ0
(t)

,
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then the CP model (1.1), (1.2) with given initial data c0(·, 0) is equivalent to the 2
dimensional dynamical system

(2.8)
dv(t)

dt
= u(t) ,

d

dt

∫ ∞

0

w0 (u(t)x+ v(t), 0) dx = 0.

Note however that the dynamical law for the 2 dimensional evolution depends on the
initial data for (1.1), (1.2), whereas the initial condition is always u(0) = 1, v(0) =
0.

We can understand the 2 dimensionality of the CP model and relate it to some
other models of coarsening by using some elementary Lie algebra theory. Thus
observe that for operators A0,B0 defined by

(2.9) A0 =
d

dx
, B0 =

d

dx
x , then A0B0 − B0A0 = A0 .

The initial value problem (1.1) can be written in operator notation as

(2.10)
∂c0(·, t)

dt
=

[

A0 −
B0

Λ0(t)

]

c0(·, t) for t > 0, c0(·, 0) = given.

It follows from (2.9) that the Lie Algebra generated by A0,B0 is the unique two
dimensional non-Abelian Lie algebra. The corresponding 2 dimensional Lie group
is the affine group of the line (see Chapter 4 of [19]). That is the Lie group consists
of all transformations z → az + b, z ∈ R, with a > 0, b ∈ R. The solutions of
equation (2.10) are a flow on this group. Hence solutions of (2.10) for all possible
functions Λ0(·) lie on a two dimensional manifold.

Next we consider the discretized version of the CP model studied by Smereka
[17]. Letting ∆x denote space discretization, then a standard discretization of (1.7)
with Dirichlet boundary condition is given by

(2.11)
∂cε(x, t)

∂t
+

Jε(x, t)− Jε(x−∆x, t)

∆x

=
ε

2

cε(x+∆x, t) + cε(x−∆x, t) − 2cε(x, t)

(∆x)2
, x = (n+ 1)∆x, n = 0, 1, 2, ..,

where

(2.12) Jε(x, t) =

[

x

Λε(t)
− 1

]

cε(x, t) , cε(0, t) = 0.

The backward difference approximation for the derivative of Jε(x, t) is chosen in
(2.11) to ensure stability of the numerical scheme for large x. Let D,D∗ be the
discrete derivative operators acting on functions u : (∆x)Z → R defined by

(2.13) Du(x) =
u(x+∆x)− u(x)

∆x
, D∗u(x) =

u(x−∆x)− u(x)

∆x
.

Then using the notation of (2.13) we can rewrite (2.11) as

(2.14)
∂cε(x, t)

∂t
−D∗Jε(x, t) =

ε

2∆x
[(D +D∗)cε(x, t)] .

Observe that for operators A∆x,B∆x defined by

(2.15) A∆x = D , B∆x = −D∗x , then A∆xB∆x − B∆xA∆x = A∆x .
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Choosing ε = 2∆x in (2.14), we see that the equation can be expressed in terms of
A∆x,B∆x as

(2.16)
∂cε(·, t)

∂t
=

[

A∆x − B∆x

Λε(t)

]

cε(·, t) .

Comparing (2.9), (2.10) to (2.15), (2.16), we see that we can obtain a represen-
tation for the solution to (2.15), (2.16) by using the fact that the solution to (2.9),
(2.10) is given by (2.4). To see this we use the fact that for A0,B0 as in (2.9) then

(2.17) eA0sf(x) = f(x+ s) , eB0sf(x) = esf(esx) , x, s ∈ R.

From (2.4), (2.7), (2.17) it follows that the solution to (2.9), (2.10) is given by

(2.18) c0(·, t) = u(t)B0eA0v(t)c0(·, 0) ,
where u(t), v(t) are given by (2.7). Hence the solution to (2.15), (2.16) is given by

(2.19) cε(·, t) = u(t)B∆xeA∆xv(t)cε(·, 0) ,
where A∆x,B∆x are given by (2.15), and u(t), v(t) are given by (2.7) with Λε in
place of Λ0.

The operator A∆x of (2.15) is the generator of a Poisson process. Thus

(2.20)

∫

(∆x)Z

dx g(x)eA∆xsf(x) =

∫

(∆x)Z

dx E[g(Xs) | X0 = x]f(x) ,

where Xs is the discrete random variable taking values in (∆x)Z with pdf
(2.21)

P
(

Xs = y
∣

∣ X0 = x
)

=
(s/∆x)n

n!
exp

[

− s

∆x

]

, n =
x− y

∆x
, n = 0, 1, 2, ...

If f, g : R → R are continuous functions of compact support then it is easy to see
from (2.21) that

(2.22) lim
∆x→0

∫

(∆x)Z

dx g(x)eA∆xsf(x) =

∫ ∞

−∞
dx g(x− s)f(x) ,

as we expect from (2.17). The operator B∆x of (2.15) is the generator of a Yule
process [11]. Thus

(2.23)

∫

(∆x)Z

dx g(x)e−B∆xsf(x) =

∫

(∆x)Z

dx E[g(Ys) | Y0 = x]f(x) ,

where Ys is a discrete random variable taking values in (∆x)Z. The pdf of Ys

conditioned on Y0 = ∆x is given by

(2.24) P
(

Ys = y
∣

∣ Y0 = ∆x
)

= e−s
{

1− e−s
}n−1

, n =
y

∆x
, n = 1, 2, ...

Hence Ys conditioned on Y0 = ∆x is a geometric variable. More generally, the
variable Ys conditioned on Y0 = m∆x with m ≥ 2 is a sum of m independent
geometric variables with distribution (2.24) and is hence negative binomial. It
follows that if f(·) is supported in the set {x ∈ (∆x)Z : x > 0} then
(2.25)
∫

(∆x)Z

dx g(x)e−B∆xsf(x) =

∫

(∆x)Z

dx E
[

g
(

Y 1
s + · · ·+ Y m

s

) ∣

∣ m = x/∆x
]

f(x) ,
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where the Y j
s , j = 1, 2, .., are independent and have the distribution (2.24). Since

the mean of Ys is es∆x, it follows from (2.25) that

(2.26) lim
∆x→0

∫

(∆x)Z

dx g(x)e−B∆xsf(x) =

∫ ∞

0

dx g(esx)f(x) ,

as we expect from (2.17).
The Smereka model consists of the evolution determined by (2.11) with ε = 2∆x

and the conservation law

(2.27)

∫

{(∆x)Z : x>0}
xcε(x, t) dx = 1.

We see from (2.19) that the model is equivalent to a two dimensional dynamical
system with dynamical law depending on the initial data. The first differential
equation in this system is given by the first equation in (2.8). The second differential
equation is determined by differentiating the expression on the LHS of (2.27) and
setting it equal to zero. Using (2.21), (2.24) we can write the LHS of (2.27) in terms
of u(t), v(t). In the case when the initial data is given by

(2.28) cε(x, 0) = 0 if x 6= ∆x , cε(∆x, 0) =
1

(∆x)2
,

it has a simple form. Thus from (2.19), (2.21), (2.24) we have that

(2.29) cε(·, t) = u(t)BeAv(t)cε(·, 0) = u(t)B exp

[

−v(t)

∆x

]

cε(·, 0) ,

so cε(x, t) = u(t) [1− u(t)]
n−1

exp

[

−v(t)

∆x

]

1

(∆x)2
, n =

x

∆x
.

From (2.29) we see that the conservation law (2.27) becomes in this case

(2.30)
1

u(t)
exp

[

−v(t)

∆x

]

= 1.

Hence from the first equation of (2.8) and (2.30) we conclude that v(·) is the solution
to the initial value problem

(2.31) exp

[

−v(t)

∆x

]

=
dv(t)

dt
, v(0) = 0.

The initial value problem (2.31) was derived in §3 of [17] by a different method. It
can be solved explicitly, and so we obtain the formulas

(2.32) u(t) =
1

1 + t/∆x
, v(t) = ∆x log

[

1 +
t

∆x

]

,

when the initial data is given by (2.28). Hence from (2.29), (2.32) we have an
explicit expression for cε(·, t), and it is easy to see that this converges as t → ∞
to the self-similar solution corresponding to the β = 1 random variable defined by
(1.5). It was also shown in [17] that if the initial data has finite support then cε(·, t)
converges as t → ∞ to the β = 1 self-similar solution.

The large time behavior of the CP model can be easily understood using the beta
function of a random variable introduced in [5]. If X is a random variable with pdf
cX(·), we define functions wX(·), hX(·) by

(2.33) wX(x) =

∫ ∞

x

cX(x′) dx′ , hX(x) =

∫ ∞

x

wX(x′) dx′ , x ∈ R .
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Evidently one has that

(2.34) wX(x) = P (X > x),
hX(x)

wX(x)
= E

[

X − x
∣

∣ X > x
]

x ∈ R .

The beta function βX(·) of X is then defined by

(2.35) βX(x) =
cX(x)hX(x)

wX(x)2
= 1 +

d

dx
E
[

X − x
∣

∣ X > x
]

x ∈ R .

An important property of the beta function is that it is invariant under affine
transformations. That is

(2.36) βX(λx+ µ) = β(X−µ)/λ(x) , λ > 0, µ, x ∈ R.

One can also see that the function hX(·) is log concave if and only if supβX(·) ≤ 1.
To understand the large time behavior of the CP model we first observe that the

rate of coarsening equation (1.4) can be rewritten as

(2.37)
d

dt
〈Xt〉 = βXt(0) , t > 0.

Furthermore, the beta function of the self-similar variable X0 with pdf defined by
(1.5) and parameter β > 0 is simply a constant βX0

(·) ≡ β. We have already shown
that the time evolution of the CP equation (1.1) is given by the affine transforma-
tion (2.4). It is also relatively simple to establish that for a random variable X0

corresponding to the initial data for (1.1), (1.2), then limt→∞ F1/Λ0
(0, t) = ‖X0‖∞.

Hence it follows from (2.35), (2.36) that if limx→‖X0‖∞
βX0

(x) = β for the initial
data random variable X0 of (1.1), (1.2), then the large time behavior of the CP
model is determined by the self-similar solution (1.5) with parameter β.

We have already observed from (1.4) that the function Λ0(·) in the CP model is
increasing. If we assume that inf βX0

(·) > 0, we can also see that limt→∞ Λ0(t) =
∞. Hence in this case there exists a doubling time Tdouble for which Λ0(t) = 2Λ0(0)
when t = Tdouble. Evidently inf βXt(·) ≥ inf βX0

(·) and supβXt(·) ≤ supβX0
(·).

The notion of doubling time can be a useful tool in obtaining an estimate on the
rate of convergence of the solution of the CP model to a self-similar solution at
large time.

We illustrate this by considering the CP model with Gaussian initial data. In
particular we assume the initial data c0(·) is given by the formula

(2.38) c0(x) = K(L) exp
[

−a(L)x− {a(L)x}2/2L
]

,

where L ≥ L0 > 0 and K(L), a(L) are uniquely determined by the requirement
that (1.2) holds and the function Λ0(·) in (1.3) satisfies Λ0(0) = 1. It is easy
to see that the beta function for the initial data (2.38) is bounded above and
below strictly larger than zero, uniformly in L ≥ L0. Hence from (2.37) there
are constants T1, T2 > 0 depending only on L0 such that T1 ≤ Tdouble ≤ T2 for
all L ≥ L0. It follows also from (2.2) that there are constants λ0, λ1, µ0, µ1 > 0
depending only on L0 such that F1/Λ0

(x, Tdouble) = λ(L)x + µ(L), x ∈ R, where
0 < λ0 ≤ λ(L) ≤ λ1 < 1 and 0 < µ0 ≤ µ(L) ≤ µ1 for L ≥ L0. Since F1/Λ0

is a
linear function, c(·, Tdouble) is also Gaussian. Rescaling so that the mean of Xt is
now 1 at time Tdouble, we see that c(x, Tdouble) is given by the formula (2.38) with
L replaced by A(L), where

(2.39) A(L) = L[1 + µ(L)a(L)/L]2 = L+ 2µ(L)a(L) + µ(L)2a(L)2/L .
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Since we are assuming that Λ0(0) = 1, there are constants a0, a1 > 0 depending
only on L0 such that a0 ≤ a(L) ≤ a1 for L ≥ L0. We conclude then from (2.39)
that

(2.40) L+ δ0 ≤ A(L) ≤ L+ δ1 , where δ0, δ1 > 0 depend only on L0 .

It is easy to estimate from (2.40) the rate of convergence to the β = 1 self
similar solution c(x, t) = (1 + t)−2 exp[−x/(1 + t)] for solutions to the CP model
with Gaussian initial data. First we estimate the beta function of a Gaussian
random variable.

Lemma 2.1. Let L > 0 and ZL be a positive random variable with pdf proportional

to e−z−z2/2L, z > 0. Then for any L0 > 0 there is a constant C depending only on
L0 such that if L ≥ L0 the beta function βL for ZL satisfies the inequality

(2.41)

∣

∣

∣

∣

βL(z)− 1 +
1

L(1 + z/L)2

∣

∣

∣

∣

≤ C

L2(1 + z/L)4
for z ≥ 0.

Proof. We use the formula for the beta function β(·) of the pdf c(·) given by (2.35).
Thus
(2.42)

β(z) =
c(z)h(z)

w(z)2
, w(z) =

∫ ∞

0

c(z + z′) dz′ , h(z) =

∫ ∞

0

z′c(z + z′) dz′ .

Letting c(z) = e−z−z2/2L, we have that
(2.43)

w(z) = c(z)

∫ ∞

0

e−z′[1+z/L]−z′2/2L dz′ , h(z) = c(z)

∫ ∞

0

z′e−z′[1+z/L]−z′2/2L dz′ .

It follows from (2.42), (2.43) on making a change of variable that

(2.44) βL(z) =

∫ ∞

0

xe−x−δx2/2 dx
/

[
∫ ∞

0

e−x−δx2/2 dx

]2

,

where δ = 1/L[1 + z/L]2. It is easy to see that there is a universal constant K
such that the RHS of (2.44) is bounded above by K for all δ > 0. We also have
by Taylor expansion in δ that βL(z) = 1 − δ + O(δ2) if δ is small. The inequality
(2.41) follows. �

Proposition 2.1. Let c0(·, ·) be the solution to the CP system (1.1), (1.2) with
Gaussian initial data and Λ0(·) be given by (1.3). Then there exists t0 > 2 and
constants C1, C2 > 0 such that

(2.45) 1− C1

log t
≤ dΛ0(t)

dt
≤ 1− C2

log t
for t ≥ t0.

Proof. The initial data can be written in the form c0(x, 0) = K0 exp[−A0(x+B0)
2]

where K0, A0, B0 are constants with K0, A0 > 0. It follows from (2.2), (2.4)
that for t > 0 one has c0(x, t) = Kt exp[−At(x + Bt)

2], where Bt = [B0 +
F1/Λ0

(0, t)](A0/At)
1/2. Since limt→∞ F1/Λ0

(0, t) = ∞, it follows that we may as-
sume wlog that the initial data is of the form (2.38) and Λ0(0) = 1. Evidently then
βX0

(x) = βL(a(L)x), x ≥ 0, where βL satisfies the inequality (2.41).
Assume now that the initial data for (1.1), (1.2) is given by (2.38) where L =

L0 > 0, and let Lt be the corresponding value of L determined by c0(·, t). We have
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then from (2.40) and the discussion preceding it that for N = 1, 2, .., there exist
times tN such that

(2.46) [2N − 1]T1 ≤ tN ≤ [2N − 1]T2, L0 +Nδ0 ≤ LtN ≤ L0 +Nδ1.

Since Lt is an increasing function of t, it follows from (2.41), (2.46) that βXt(0) is
bounded above and below as in (2.45). Now using the identity (2.37) we obtain the
inequality (2.45). �

We wish next to compare the foregoing to the situation of the diffusive CP model
with Gaussian initial data. From (4.15) the solution to (1.7) with initial data c0(·)
is given by

(2.47) cε(x, t) =

∫ ∞

0

Gε,D(x, y, 0, t)c0(y) dy, x > 0, t > 0,

where Gε,D is the Dirichlet Green’s function for the half space R+ defined by (4.14)
with A(s) = 1/Λε(s). If we replace the Dirichlet Green’s function Gε,D by the full
space Green’s function Gε of (4.11) then the solution cε(·, t) is Gaussian for t > 0
provided cε(·, 0) is Gaussian, just as in the CP model. We shall see in §5 that it
is legitimate to approximate Gε,D(x, y, 0, t) by Gε(x, y, 0, t) provided x, y ≥ Mε for
some large constant M . Making the approximation Gε,D ≃ Gε in (2.47), we obtain
a formula similar to (2.39) for the length scale Aε(L) of the Gaussian at doubling
time. It is given by

(2.48) Aε(L) = L[1 + µε(L)a(L)/L]
2[1 + εa(L)2σ2

ε (L)λε(L)
2/L]−1 .

As in (2.39) the functions λε(L), µε(L) are obtained from the coefficients of the
linear function F1/Λε

, when t = Tε,double, where Tε,double denotes the doubling time

for the diffusive model. The expression σ2
ε (L) is given by the formula for σ2

A(T )
in (4.10) with A(s) = 1/Λε(s), s ≤ T, and T = Tε,double. In §6 we shall study
the ε → 0 limit of the diffusive CP model. We prove that if the CP and diffusive
CP models have the same initial data, then limε→0 Λε(t) = Λ0(t) uniformly in any
finite interval 0 ≤ t ≤ T . It follows that limε→0 Aε(L) = A(L), where A(L) is
defined by (2.39).

We wish next to try to understand the evolution of the diffusive CP model when
initial data is non-Gaussian. Let wε(x, t), hε(x, t) be defined in terms of the solution
cε(·, ·) to (1.7) by

(2.49) wε(x, t) =

∫ ∞

x

cε(x
′, t) dx′, hε(x, t) =

∫ ∞

x

wε(x
′, t) dx′ .

Then wε(·, t), hε(·, t) are proportional to the functions (2.33) corresponding to the
random variable Xt with pdf cε(·, t)/

∫∞
0

cε(x, t) dx. Making the approximation
Gε,D ≃ Gε, we see from (2.47), (2.49), (4.11) that

wε(x, t) = exp

[
∫ t

0

ds

Λε(s)

]
∫ ∞

−∞
Gε(x, y, 0, t)wε(y, 0) dy ,(2.50)

hε(x, t) = exp

[

2

∫ t

0

ds

Λε(s)

]
∫ ∞

−∞
Gε(x, y, 0, t)hε(y, 0) dy .(2.51)
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Writing hε(x, t) = exp[−qε(x, t)], x, t > 0, in (2.51), we see from (4.11) that the
semi-classical approximation to qε(x, t) is given by the formula
(2.52)

qε(x, t) =
1

2
log 2πε+

1

2
log σ2

1/Λε
(t)−2

∫ t

0

ds

Λε(s)
+inf

y

[

{x+m2,1/Λε
(t)−m1,1/Λε

(t)y}2
2εσ2

1/Λε
(t)

+ qε(y, 0)

]

.

Let us assume that qε(·, 0) is given similarly to (2.38) by

(2.53) qε(y, 0) = constant + a(L)y + {a(L)y}2/2L , y > 0.

The minimizer in (2.52) is then ymin(x, t) where
(2.54)

ymin(x, t) =
1

1 + εa(L)2σ2
1/Λε

(t)/m1,1/Λε
(t)2L

[

x+m2,1/Λε
(t)

m1,1/Λε
(t)

−
εa(L)σ2

1/Λε
(t)

m1,1/Λε
(t)2

]

.

If we substitute y = ymin(x, t) into (2.52) we obtain a quadratic formula for qε(x, t)
similar to (2.53). If t = Tε,double then L in (2.53) is replaced by Aε(L) as in (2.48).

More generally we can consider the case when qε(·, 0) is convex so (2.52) is a
convex optimization problem with a unique minimizer y = ymin(x, t). In that case
it is easy to see that

(2.55)
∂qε(x, t)

∂x
=

1

m1,1/Λε
(t)

∂qε(ymin(x, t), 0)

∂y
,

∂2qε(x, t)

∂x2
=

1

m1,1/Λε
(t)2

∂2qε(ymin(x, t), 0)

∂y2

/ [

1 +
εσ2

1/Λε
(t)

m1,1/Λε
(t)2

∂2qε(ymin(x, t), 0)

∂y2

]

.

It follows from (2.55) that if the inequality

(2.56)
∂2qε(x, t)

∂x2
≤
[

∂qε(x, t)

∂x

]2

, x ≥ 0,

holds at t = 0 then it holds for all t > 0. We define now the function βε :
[0,∞)×R+ → R in terms of qε by the formula

(2.57) βε(x, t) = 1− ∂2qε(x, t)

∂x2

/

[

∂qε(x, t)

∂x

]2

.

We can see from (2.35) that the function hε(·, t) = exp[−qε(·, t)] is proportional to
hXt(·) for some random variable Xt if and only if βε(·, t) is non-negative. Hence
by the remark after (2.56), if qε(·, 0) corresponds to a random variable X0, then
qε(·, t) corresponds to a random variable Xt for all t > 0. From (2.55), (2.57) we
have that
(2.58)

1− βε(x, t) = [1− βε(ymin(x, t), 0)]
/

[

1 +
εσ2

1/Λε
(t)

m1,1/Λε
(t)2

∂2qε(ymin(x, t), 0)

∂y2

]

.

It follows from (2.58) that if supβε(·, 0) ≤ 1 then supβε(·, t) ≤ 1 for t > 0. Fur-
thermore, (2.58) also indicates that βε(·, t) should increase towards 1 as t → ∞.

It is well known [9] that the solution qε to the optimization problem (2.52)
satisfies a Hamilton-Jacobi PDE. We can easily see from (2.52), (2.55) that the
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PDE is given by

(2.59)
∂qε(x, t)

∂t
+

[

x

Λε(t)
− 1

]

∂qε(x, t)

∂x
+

ε

2

[

∂qε(x, t)

∂x

]2

+
1

Λε(t)
− 1

2σ2(t)
= 0 .

Differentiating (2.59) with respect to x and setting vε(x, t) = ∂qε(x, t)/∂x, we see
that vε(x, t) is the solution to the inviscid Burgers’ equation with linear drift,

(2.60)
∂vε(x, t)

∂t
+

[

x

Λε(t)
− 1 + εvε(x, t)

]

∂vε(x, t)

∂x
+

vε(x, t)

Λε(t)
= 0 .

If qε(·, t) corresponds to the random variable Xt, then vε(x, t) = E[Xt − x | Xt >
x]−1, x ≥ 0, and since Λε(t) = E[Xt] we have that

(2.61) vε(0, t) =
1

Λε(t)
.

The system (2.60), (2.61) is a model for the evolution of the pdf of a random
variable Xt which is intermediate between the CP and diffusive CP models. To
obtain the pdf of Xt from the function vε(·, t), we let cε(·, t) = cXt(·), wε(·, t) =
wXt(·), hε(·, t) = hXt(·) as in (2.33). Then vε(x, t) = wε(x, t)/hε(x, t) and

(2.62) Γε(x, t) = vε(x, t)
2 − ∂vε(x, t)

∂x
=

cε(x, t)

hε(x, t)
.

We also have that
(2.63)

vε(x, t) = − ∂

∂x
log hε(x, t) , whence hε(x, t) = Aε(t) exp

[

−
∫ x

0

vε(x
′, t) dx′

]

,

where Aε(·) can be an arbitrary positive function. Evidently (2.62), (2.63) uniquely
determine the pdf of Xt from the function vε(·, t).

We can do a more systematic derivation of the model (2.60), (2.61) by beginning
with the solution cε to the diffusive CP model (1.7), (1.8). Setting wε, hε to be
given by (2.49), then we see on integration of (1.7) that wε is a solution to the PDE

(2.64)
∂wε(x, t)

∂t
+

[

x

Λε(t)
− 1

]

∂wε(x, t)

∂x
=

ε

2

∂2wε(x, t)

∂x2
.

If we integrate (2.64) then we obtain a PDE for hε,

(2.65)
∂hε(x, t)

∂t
+

[

x

Λε(t)
− 1

]

∂hε(x, t)

∂x
− hε(x, t)

Λε(t)
=

ε

2

∂2hε(x, t)

∂x2
.

Setting hε(x, t) = exp[−qε(x, t)], it follows from (2.65) that qε(x, t) is a solution to
the PDE

(2.66)
∂qε(x, t)

∂t
+

[

x

Λε(t)
− 1

]

∂qε(x, t)

∂x
+

ε

2

[

∂qε(x, t)

∂x

]2

+
1

Λε(t)
=

ε

2

∂2qε(x, t)

∂x2
.

If we differentiate (2.66) with respect to x we obtain a PDE for the function
vε(x, t) = ∂qε(x, t)/∂x, whence we have

(2.67)
∂vε(x, t)

∂t
+

[

x

Λε(t)
− 1 + εvε(x, t)

]

∂vε(x, t)

∂x
+

vε(x, t)

Λε(t)
=

ε

2

∂2vε(x, t)

∂x2
.
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For 0 < ν ≤ 1, we define the viscous CP model with viscosity ν as the solution
to the PDE
(2.68)
∂vε,ν(x, t)

∂t
+

[

x

Λε,ν(t)
− 1 + εvε,ν(x, t)

]

∂vε,ν(x, t)

∂x
+
vε,ν(x, t)

Λε,ν(t)
=

εν

2

∂2vε,ν(x, t)

∂x2
, x, t > 0,

with boundary condition

(2.69)
∂vε,ν(0, t)

∂x
= vε,ν(0, t)

2 , t > 0,

and with the constraint

(2.70) vε,ν(0, t) =
1

Λε,ν(t)
, t ≥ 0.

Assuming that (2.68), (2.69) has a classical solution, we show that if the initial
data for (2.68) corresponds to a random variable X0, then vε,ν(·, t) corresponds
to a random variable Xt for t > 0 in the sense that vε,ν(x, t) = E[Xt − x | Xt >
x]−1, x ≥ 0. To see this we define Γε,ν similarly to Γε in (2.62) but with vε replaced
by vε,ν on the RHS. It follows from (2.68), (2.69) that Γε,ν satisfies the PDE

(2.71)
∂Γε,ν(x, t)

∂t
+

[

x

Λε,ν(t)
− 1 + εvε,ν(x, t)

]

∂Γε,ν(x, t)

∂x
+ 2

Γε,ν(x, t)

Λε(t)

=
εν

2

∂2Γε,ν(x, t)

∂x2
+ ε(1− ν)

(

∂vε,ν(x, t)

∂x

)2

,

with Dirichlet boundary condition Γε,ν(0, t) = 0, t > 0. Hence by the maximum
principle [15], if Γε,ν(·, 0) is non-negative then Γε,ν(·, t) is non-negative for t > 0.
We see from (2.62) that the non-negativity of Γε,ν(·, t) is equivalent to vε,ν(·, t)
corresponding to a random variable Xt. We have shown that for 0 < ν ≤ 1 the
viscous CP model corresponds to the evolution of a random variable Xt, t ≥ 0. If
ν = 1 the model is identical to the diffusive CP model (1.7), (1.8) with Dirichlet
condition cε(0, t) = 0, t > 0.

We can think of the inviscid CP model (2.60), (2.61) as the limit of the viscous
CP model (2.68), (2.69), (2.70) as the viscosity ν → 0. It is not clear however
what happens to the boundary condition (2.69) in this limit. Unless the initial
data vε(·, 0) for (2.60) is increasing, the solution vε(·, t) develops discontinuities at
some finite time [18]. For an entropy satisfying solution vε, discontinuities have the
property that the solution jumps down across the discontinuity. Hence if vε(·, t) is
discontinuous at the point z, then

(2.72) lim
x→z−

vε(x, t) > lim
x→z+

vε(x, t) .

Observe now that for a random variable X , the function x → E[X − x | X > x]
has discontinuities precisely at the atoms of X . In that case the function jumps up
across the discontinuity. Since vε(x, t) = E[Xt − x | Xt > x]−1 for some random
variable Xt, it follows that at discontinuities of vε(·, t) the function jumps down.
Thus discontinuities of vε(·, t) correspond to atoms of Xt, and the entropy condition
for (2.60) is automatically satisfied.

We have already observed that the function t → Λ0(t) in the CP model (1.1),
(1.2) is increasing, and that the function t → Λε(t) in the diffusive CP model (1.7),
(1.8) is also increasing. To determine whether the function t → Λε,ν(t) in the
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viscous CP model (2.68)- (2.70) is increasing, we observe on setting x = 0 in (2.68)
and using (2.70) that vε,ν(0, t) satisfies the equation
(2.73)
∂vε,ν(0, t)

∂t
+{1− ε(1− ν)vε,ν(0, t)}Γε,ν(0, t)+ε(1−ν)vε,ν(0, t)

3+
εν

2

∂Γε,ν(0, t)

∂x
= 0.

We have already seen that Γε,ν(·, t) is a non-negative function, and from (2.69)
it follows that Γε,ν(0, t) = 0 for t > 0. Hence ∂Γε,ν(0, t)/∂x ≥ 0 for t > 0. We
conclude then from (2.73) that the function t → vε,ν(0, t) is decreasing provided

(2.74) vε,ν(0, 0) ≤ 1

ε(1− ν)
.

Thus from (2.70) we see that if (2.74) holds, then the function t → Λε,ν(t) is
increasing. Note that in the case of the diffusive CP model when ν = 1 the condition
(2.74) is redundant.

3. The Inviscid CP Model-Proof of Theorem 1.1

We shall restrict ourselves here to considering the solutions of (2.60), (2.61) when
the initial data vε(·, 0) is non-negative, increasing and also the function Γε(·, 0) of
(2.62) is non-negative. The condition (2.74) becomes now vε(0, t) ≤ ε−1, and
assuming this holds also, we see that in this case (2.60) may be solved by the
method of characteristics. To carry this out we set ṽε(x, t) = m1,1/Λε

(t)vε(x, t),
where m1,A(·) is defined by (2.2). Then (2.60) is equivalent to

(3.1)
∂ṽε(x, t)

∂t
+

[

x

Λε(t)
− 1 + ε

ṽε(x, t)

m1,1/Λε
t)

]

∂ṽε(x, t)

∂x
= 0 .

From (3.1) it follows that if x(s), s ≥ 0, is a solution to the ODE

(3.2)
dx(s)

ds
=

x(s)

Λε(s)
− 1 + ε

ṽε(x(s), s)

m1,1/Λε
(s)

,

and characteristics do not intersect, then ṽε(x(t), t) = ṽε(x(0), 0) for t ≥ 0. We can
therefore calculate the characteristics of (3.1) by setting ṽε(x(s), s) = ṽε(x(0), 0) =
vε(x(0), 0). We define the function Fε,A(x, t, v0(·)) depending on x, t ≥ 0 and
increasing function v0 : [0,∞) → (0,∞) by

(3.3) z + ε
σ2
A(t)

m1,A(t)2
v0(z) =

x+m2,A(t)

m1,A(t)
= FA(x, t) , Fε,A(x, t, v0(·)) = z,

where FA is given by (2.2) and σ2
A(·) by (4.10). Since v0(·) is an increasing

function there is a unique solution z to (3.3) for all x ≥ 0 provided v0(0) ≤
ε−1m1,A(t)m2,A(t)/σ

2
A(t). If this condition holds then the method of character-

istics now yields the solution to (2.60) as

(3.4) vε(x, t) =
1

m1,A(t)
vε (Fε,A(x, t, vε(·, 0)), 0)

with A = 1/Λε. It follows from (3.3), (3.4) that vε(0, t) ≤ m2,A(t)/εσ
2
A(t) ≤ ε−1.

We wish to prove a global existence and uniqueness theorem for solutions of
(2.60), (2.61). To describe our assumptions on the initial data vε(·, 0) we shall
consider functions v0 : [0, x∞) → R+ with the properties:

(3.5) The function x → v0(x) is increasing on the interval [0, x∞)
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and v0(0) > 0. If x∞ < ∞ then lim
x→x∞

v0(x) = ∞ .

(3.6) v0(x2)− v0(x1) ≤
∫ x2

x1

v0(x)
2 dx for 0 ≤ x1 < x2 < x∞ .

Note that (3.6) implies that v0(·) is locally Lipschitz continuous in the interval
[0, x∞).

Lemma 3.1. Assume the function v0(·) = vε(·, 0) satisfies (3.5), (3.6) and in
addition that (1 + δ0)vε(0, 0) < ε−1 for some δ0 > 0. Then there exists δ1 > 0
depending only on δ0 such that there is a unique solution to (2.60), (2.61) for
0 ≤ t ≤ T = δ1/vε(0, 0).

Proof. Let T, δ2 > 0 and E be the space of continuous functions V : [0, T ] → R+

satisfying
(3.7)
V (0) = vε(0, 0), (1 + δ2)

−1vε(0, 0) ≤ V (t) ≤ (1 + δ2)vε(0, 0) for 0 ≤ t ≤ T.

For V ∈ E we define a function BV (t), 0 ≤ t ≤ T, by BV (t) = vε(0, t) where vε
is the function (3.4) with A(s) = V (s), 0 ≤ s ≤ T . We shall show that if T > 0
is sufficiently small then V ∈ E implies BV ∈ E . To see this we first observe from
(3.3) that BV (0) = vε(0, 0). Next we note that for a function v0(·) satisfying (3.5),
(3.6), then

(3.8) v0(0) ≤ v0(z) ≤
v0(0)

1− zv0(0)
, for 0 ≤ z < 1/v0(0) .

Since V ∈ E , it follows from (3.7) that with A(·) = V (·), then

(3.9) t exp [−(1 + δ2)vε(0, 0)t] ≤ m2,A(t)

m1,A(t)
≤ t , 0 ≤ t ≤ T.

Similarly we have that

(3.10) t exp [−2(1 + δ2)vε(0, 0)t] ≤ σ2
A(t)

m1,A(t)2
≤ t , 0 ≤ t ≤ T.

From (3.9), (3.10) we have that for δ1, δ2 > 0 sufficiently small, depending only on
δ0, that

(3.11) ε
σ2
A(t)

m1,A(t)2
vε(0, 0) ≤ m2,A(t)

m1,A(t)
for 0 ≤ t ≤ T.

Hence there is a unique solution z(t) ≤ m2,A(t)/m1,A(t) to (3.3) with x = 0 pro-
vided 0 ≤ t ≤ T . Since BV (t) = vε(z(t), 0)/m1,A(t), it follows from (3.8), (3.9)
that on choosing δ1 > 0 sufficiently small, depending only on δ2, that the function
BV (t), 0 ≤ t ≤ T , also satisfies (3.7).

Next we show that B is a contraction on the space E with metric d(V1, V2) =
sup0≤t≤T |V2(t) − V1(t)| for V1, V2 ∈ E . To see this let z1(t), z2(t), 0 ≤ t ≤ T, be
the solutions to (3.3) with x = 0 corresponding to V1, V1 ∈ E respectively. Then
from (3.4) we have
(3.12)

BV2(t)−BV1(t) =
vε(z2(t), 0)− vε(z1(t), 0)

m1,V2
(t)

+

[

1

m1,V2
(t)

− 1

m1,V1
(t)

]

vε(z1(t), 0) .

The second term on the RHS of (3.12) is bounded as
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(3.13)

∣

∣

∣

∣

[

1

m1,V2
(t)

− 1

m1,V1
(t)

]

vε(z1(t), 0)

∣

∣

∣

∣

≤

(1 + δ2)vε(0, 0)

∫ t

0

|V2(s)− V1(s)| ds , 0 ≤ t ≤ T.

We use (3.6) to bound the first term in (3.12). Thus we have that
(3.14)
∣

∣

∣

∣

vε(z2(t), 0)− vε(z1(t), 0)

m1,V2
(t)

∣

∣

∣

∣

≤ (1 + δ2)
2vε(0, 0)

2|z2(t)− z1(t)| , 0 ≤ t ≤ T.

From (3.3), (3.5) it follows that

(3.15) |z2(t)− z1(t)| ≤
∣

∣

∣

∣

m2,V2
(t)

m1,V2
(t)

− m2,V1
(t)

m1,V1
(t)

∣

∣

∣

∣

, 0 ≤ t ≤ T.

The RHS of (3.15) can be bounded similarly to (3.13), and so we obtain the in-
equality

(3.16) |z2(t)− z1(t)| ≤ t

∫ t

0

|V2(s)− V1(s)| ds , 0 ≤ t ≤ T.

It follows from (3.12)-(3.16) that

(3.17) |BV2(t)−BV1(t)| ≤ 10δ1 sup
0≤t≤T

|V2(t)− V1(t)| , 0 ≤ t ≤ T = δ1/vε(0, 0),

provided δ1 > 0 is chosen sufficiently small depending only on δ2. Evidently B is
a contraction mapping on E and therefore has a unique fixed point if one also has
10δ1 < 1. �

Lemma 3.2. Let vε(x, t), x ≥ 0, 0 ≤ t ≤ T be the solution to (2.60), (2.61)
constructed in Lemma 3.1. Then for any t satisfying 0 < t ≤ T the function
v0(·) = vε(·, t) satisfies (3.5), (3.6) with x∞ = ∞. In addition the function t →
vε(0, t), 0 ≤ t ≤ T, is continuous and decreasing.

Proof. Since ε > 0 it follows from the fact that (3.5) holds for v0(·) = vε(·, 0) that
(3.3) has a unique solution z < x∞ for any x > 0. Hence x∞ = ∞ if t > 0, and it
is also clear that the function x → vε(x, t), x ≥ 0, is increasing. We have therefore
shown that (3.5) holds for v0(·) = vε(·, t) and x∞ = ∞ if 0 < t ≤ T .

Next we wish to show that (3.6) holds for v0(·) = vε(·, t) with 0 < t ≤ T . To see
this we observe from (3.4), (3.6) that for 0 ≤ x1 ≤ x2 < ∞,
(3.18)

vε(x2, t)−vε(x1, t) =
vε(z(x2, t), 0)− vε(z(x1, t), 0)

m1,1/Λε
(t)

≤ 1

m1,1/Λε
(t)

∫ z(x2,t)

z(x1,t)

vε(z, 0)
2 dz ,

where z(x, t) = Fε,1/Λε
(x, t, vε(·, 0)). We see from (3.3) that 0 ≤ ∂z(x, t)/∂x ≤

1/m1,1/Λε
(t), whence

(3.19)

1

m1,1/Λε
(t)

∫ z(x2,t)

z(x1,t)

vε(z, 0)
2 dz = m1,1/Λε

(t)

∫ x2

x1

vε(x, t)
2 ∂z(x, t)

∂x
dx ≤

∫ x2

x1

vε(x, t)
2 dx .

To show that the function t → vε(0, t) is continuous and decreasing we write
vε(0, t) = v0(z(t))/m1,1/Λε

(t) where v0(·) = vε(·, 0) and z(t) is the solution z to (3.3)
with x = 0. We see from (3.3) that the function t → z(t) is Lipschitz continuous,
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whence the function t → vε(0, t) is continuous. If z → v0(z) is differentiable at
z = z(t) then it follows from (2.2) that

(3.20)
∂vε(0, t)

∂t
=

1

m1,1/Λε
(t)

[

v′0(z(t))
dz(t)

dt
− v0(z(t))

Λε(t)

]

.

Differentiating (3.3) with respect to t at x = 0 we obtain the equation

(3.21)

[

1 + ε
σ2
1/Λε

(t)

m1,1/Λε
(t)2

v′0(z(t))

]

dz(t)

dt
=

1

m1,1/Λε
(t)

[

1− εv0(z(t))

m1,1/Λε
(t)

]

.

Hence (3.20), (3.21) imply that

(3.22)

[

1 + ε
σ2
1/Λε

(t)

m1,1/Λε
(t)2

v′0(z(t))

]

m1,1/Λε
(t)

∂vε(0, t)

∂t
=

v′0(z(t))

m1,1/Λε
(t)

− v0(z(t))

Λε(t)
− εv′0(z(t))v0(z(t))

m1,1/Λε
(t)2

[

1 +
σ2
1/Λε

(t)

Λε(t)

]

.

From (2.61), (3.4), (3.6) we have that

(3.23)
v′0(z(t))

m1,1/Λε
(t)

≤ v0(z(t))
2

m1,1/Λε
(t)

= v0(z(t))vε(0, t) =
v0(z(t))

Λε(t)
.

We conclude from (3.22), (3.23) that ∂vε(0, t)/∂t ≤ 0. In the case when the function
z → v0(z) is not differentiable at z = z(t), we can do an approximation argument
to see that the function s → vε(0, s) is decreasing close to s = t. We have therefore
shown that the function t → vε(0, t) is decreasing, whence vε(0, t) ≤ vε(0, 0) < ε−1

for 0 ≤ t ≤ T . Since the RHS of (3.21) is the same as [1− εvε(0, t)]/m1,1/Λε
(t) this

implies that the function t → z(t) is increasing. �

Proposition 3.1. Assume the initial data for (2.60), (2.61) satisfies the conditions
of Lemma 3.1. Then there exists a unique continuous solution vε(x, t), x, t ≥ 0,
globally in time to (2.60), (2.61). The solution vε(·, t) satisfies (3.5), (3.6) for t > 0
with x∞ = ∞, and the function t → vε(0, t) is decreasing. Furthermore there is a
constant C(δ0) depending only on δ0 such that Λε(t) ≤ Λε(0)+C(δ0)[Λε(0)+t], t ≥
0.

Proof. The global existence and uniqueness follows immediately from Lemma 3.1,
3.2 upon using the fact that the function t → vε(0, t) is decreasing. To get the
upper bound on the function Λε(·) we observe that Lemma 3.1 implies that with
T0 = 0,
(3.24)
Λε(t) ≤ (1+δ2)Λε(Tk−1) for Tk−1 ≤ t ≤ Tk, Tk = Tk−1+δ1Λε(Tk−1), k = 1, 2, ...

It follows from (3.24) that

(3.25) Λε(t) ≤ (1 + δ2)(Tk − Tk−1)/δ1 for Tk−1 ≤ t ≤ Tk , k = 1, 2, ...

We also have that

(3.26) Tk − Tk−1 ≤ δ1(1 + δ2)Λε(Tk−2) ≤ (1 + δ2)Tk−1 , k = 2, 3, ..

From (3.25), (3.26) we conclude that Λε(t) ≤ (1+δ2)
2t/δ1 provided t ≥ T1, whence

the result follows. �
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The upper bound on the coarsening rate implied by Proposition 3.1 is indepen-
dent of ε > 0 as ε → 0. We can see from (3.22) that a lower bound on the rate of
coarsening depends on ε. In fact if we choose v0(z) = 1/[Λε(0)− z], 0 < z < Λε(0),
then v′0(z) = v0(z)

2, and so at t = 0 the RHS of (3.22) is zero if ε = 0. The random
variable X0 corresponding to this initial data is simply X0 ≡ constant, and it is
easy to see that if ε = 0 then Xt ≡ X0 for all t > 0. For ε > 0 however, we have
the following:

Lemma 3.3. Assume the initial data for (2.60), (2.61) satisfies the conditions of
Lemma 3.1 and let z(t) be as in Lemma 3.2. Then limt→∞ z(t) = x∞ and if ε > 0
one has limt→∞ Λε(t) = ∞.

Proof. Let limt→∞ Λε(t) = Λε,∞ and assume first that Λε,∞ < ∞. In that case
limt→∞ m1,Λε(t) = ∞, and hence (2.61), (3.4) imply that limt→∞ v0(z(t)) = ∞.
We conclude from (3.5), (3.6) that if Λε,∞ < ∞ then limt→∞ z(t) = x∞ . We also
have from (2.2) that

(3.27) lim sup
t→∞

m2,1/Λε
(t)

m1,1/Λε
(t)

≤ Λε,∞ , lim inf
t→∞

σ2
1/Λε

(t)

m1,1/Λε
(t)2

≥ Λε(0)

2
.

It follows now from (3.3), (3.27) that if ε > 0 then lim supt→∞ v0(z(t)) ≤ 2Λε,∞/εΛε(0) <
∞, which yields a contradiction.

Next we assume that Λε,∞ = ∞, which we have just shown always holds if ε > 0.
The function t → z(t) is increasing, and let us suppose that limt→∞ z(t) = z∞ <
x∞. Then from (2.61), (3.4) we have that limt→∞ m1,1/Λε

(t) = ∞. We use the fact
that for any T ≥ 0, there exists a constant KT such that

(3.28)
σ2
1/Λε

(t)

m1,1/Λε
(t)2

≤ m2,1/Λε
(t)

m1,1/Λε
(T )m1,1/Λε

(t)
+KT , for t ≥ T.

From (3.3), (3.28) we obtain the inequality

(3.29)
m2,1/Λε

(t)

m1,1/Λε
(t)

≤ z∞ + ε

[

m2,1/Λε
(t)

m1,1/Λε
(T )m1,1/Λε

(t)
+KT

]

v0(z∞) if t ≥ T.

Choosing T sufficiently large so that m1,1/Λε
(T ) ≥ 2ε, we conclude from (3.28),

(3.29) that there is a constant C1 such that σ2
1/Λε

(t)/m1,1/Λε
(t)2 ≤ C1 for t ≥ T . If

we also choose T such that m1,1/Λε
(t) ≥ εv0(z(t))/2 for t ≥ T we have from (3.6),

(3.21) that

(3.30)
[

1 + C1εv0(z∞)2
] dz(t)

dt
≥ 1

2m1,1/Λε
(t)

for t ≥ T.

Since the function t → z(t) is increasing and limt→∞ z(t) = z∞ < ∞, it follows
from (2.61), (3.4), (3.30) that there is a constant C2 such that

(3.31)

∫ t

0

ds

Λε(s)
≤ v0(z∞)

∫ t

0

ds

m1,1/Λε
(s)

≤ C2 for t ≥ 0.

However (3.31) implies that limt→∞ m1,1/Λε
(t) ≤ exp[C2] and so we have again a

contradiction. We conclude that limt→∞ z(t) = x∞. �
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Lemma 3.4. Assume the initial data for (2.60), (2.61) satisfies the conditions of
Lemma 3.1 with x∞ = ∞, and that for 0 < δ ≤ 1, one has

(3.32) lim sup
x→∞

vε (x+ δ/vε(x, 0), 0)

vε(x, 0)
≤ 1 + γ(δ), where lim

δ→0

γ(δ)

δ
= 0.

Then limt→∞ Λε(t)/t = 1 for any ε ≥ 0.

Proof. The main point about the condition (3.32) is that it is invariant under the
dynamics determined by (2.60), (2.61). It is easy to see this in the case ε = 0 since
we have, on using the notation of (3.3), that

(3.33)
v0 (x+ δ/v0(x, t), t)

v0(x, t)
=

v0
(

F1/Λ0
(x, t) + δ/v0(F1/Λ0

(x, t), 0), 0
)

v0(F1/Λ0
(x, t), 0)

.

For ε > 0 we have

(3.34)
vε (x+ δ/vε(x, t), t)

vε(x, t)
=

vε (z(x+ δ/vε(x, t), t), 0)

vε(z(x, t), 0)
.

Since the function x → vε(x, 0) is increasing it follows from (3.3) that

(3.35) z(x+ δ/vε(x, t), t) ≤ z(x, t) +
δ

m1,1/Λε
(t)vε(x, t)

.

We conclude now from (3.4), (3.34), (3.35) that

(3.36)
vε (x+ δ/vε(x, t), t)

vε(x, t)
≤ vε (z(x, t) + δ/vε(z(x, t), 0), 0)

vε(z(x, t), 0)
.

From Lemma 3.3 and (3.36) there exists T0 ≥ 0 such that

(3.37)
vε (x+ δ/vε(x, t), t)

vε(x, t)
≤ 1 + 2γ(δ) for x ≥ 0, t ≥ T0 .

We use (3.37) to estimate Λε(T0 + t)/Λε(T0) in the interval 0 ≤ t ≤ δ/vε(0, T0).
Thus we have

(3.38)
Λε(T0)

Λε(T0 + t)
=

vε(z(t), T0)m1,1/Λε
(T0)

vε(0, T0)m1,1/Λε
(T0 + t)

, where 0 ≤ z(t) ≤ t.

We conclude from (3.37), (3.38) that
(3.39)
m1,1/Λε

(T0)

Λε(T0)
≤ dm1,1/Λε

(T0 + t)

dt
≤ [1+2γ(δ)]

m1,1/Λε
(T0)

Λε(T0)
for 0 ≤ t ≤ δΛε(T0).

On integrating (3.39) we have

(3.40) 1 +
t

Λε(T0)
≤ m1,1/Λε

(T0 + t)

m1,1/Λε
(T0)

≤ 1 +
[1 + 2γ(δ)]t

Λε(T0)
for 0 ≤ t ≤ δΛε(T0).

Hence (3.38), (3.40) imply that
(3.41)

1

1 + 2γ(δ)

[

1 +
t

Λε(T0)

]

≤ Λε(T0 + t)

Λε(T0)
≤ 1 +

[1 + 2γ(δ)]t

Λε(T0)
for 0 ≤ t ≤ δΛε(T0).

We define now T1 > T0 as the minimum time T1 = T0+ t such that Λε(T0+ t) ≥
(1 + δ/2)Λε(T0). The inequality (3.41) now yields bounds on T1 − T0 as

(3.42)
δ/2

1 + 2γ(δ)
≤ T1 − T0

Λε(T0)
≤ [1 + 2γ(δ)][1 + δ/2]− 1 ,
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provided the RHS of (3.42) is less than δ. In view of (3.32) this will be the case
if δ > 0 is sufficiently small. We can iterate the inequality (3.42) by defining
Tk, k = 1, 2, ..,, as the minimum time such that Λε(Tk) ≥ (1+ δ/2)Λε(Tk−1). Thus
we have that

(3.43)
δ/2

1 + 2γ(δ)
≤ Tk − Tk−1

(1 + δ/2)k−1Λε(T0)
≤ [1+2γ(δ)][1+δ/2]−1 , k = 1, 2, ...

On summing (3.43) over k = 1, ..., N we conclude that
(3.44)
[

1− 1

(1 + δ/2)N

]

1

1 + 2γ(δ)
≤ TN − T0

Λε(TN)
≤
[

1− 1

(1 + δ/2)N

]

[1 + 2γ(δ)][1 + δ/2]− 1

δ/2
.

It follows from (3.44) that
(3.45)

1

(1 + δ/2)[1 + 2γ(δ)]
≤ lim inf

t→∞
t

Λε(t)
≤ lim sup

t→∞

t

Λε(t)
≤ (1+δ/2)

[1 + 2γ(δ)][1 + δ/2]− 1

δ/2
.

Now using the fact that limδ→0 γ(δ)/δ = 0, we conclude from (3.45) that limt→∞ Λε(t)/t =
1. �

Remark 1. Theorem 5.4 of [2] implies in the case ε = 0 convergence to the expo-
nential self similar solution for initial data vε(x, 0), x ≥ 0, which has the property
limx→∞ vε(x, 0)/x

α = vε,∞ with 0 < vε,∞ < ∞ provided α > −1. It is easy to see
that if α ≥ 0 then such initial data satisfies the condition (3.32) of Lemma 3.4.

In [1] necessary and sufficient conditions -(5.18) and (5.19) of [1]- for conver-
gence to the exponential self-similar solution are obtained in the case ε = 0. Note
that (5.19) of [1] implies the condition (3.32) of Lemma 3.4.

Next we obtain a rate of convergence theorem for limt→∞ Λε(t)/t which gen-
eralizes Proposition 2.1 to the system (2.60), (2.61). We assume that the func-
tion x → vε(x, 0) is C1 for large x, in which case the condition (3.32) becomes
limx→∞ vε(x, 0)

−2∂vε(x, 0)/∂x = 0, or equivalently limx→∞ βX0
(x) = 1 for the ini-

tial condition random variableX0. More precisely, we have that if vε(x, 0)
−2∂vε(x, 0)/∂x ≤

η for x ≥ xη then

(3.46)
1

vε(x, 0)
− 1

vε(x + δ/vε(x, 0), 0)
≤ ηδ

vε(x, 0)
for x ≥ xη .

The inequality (3.46) implies (3.32) holds with γ(δ) ≤ ηδ/(1 − ηδ). We conclude
that (3.32) holds if limx→∞ vε(x, 0)

−2∂vε(x, 0)/∂x = 0.
The condition on the initial data to guarantee a logarithmic rate of convergence

for Λε(t)/t is similar to (3.32). We require that there exists δ, γ(δ), xδ > 0 such
that

(3.47)
vε (y, 0)

2

∂vε(y, 0)/∂y
≥ vε (x, 0)

2

∂vε(x, 0)/∂x
+ δγ(δ) for y = x+ δ/vε(x, 0), x ≥ xδ .

Observe that if (3.47) holds for arbitrarily small δ > 0 and lim infδ→0 xδ = x0 then
the function x → 1/vε(x, 0) is convex for x ≥ x0. Furthermore if the function
x → vε(x, 0) is C2, then on taking δ → 0 in (3.47) we obtain the second order
differential inequality

(3.48)
vε(x, 0)∂

2vε(x, 0)/∂x
2

[∂vε(x, 0)/∂x]2
≤ 2− γ(0) .
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Suppose now that (3.48) holds with γ(0) = η > 0 for x ≥ x0. Then we have that

(3.49)
∂

∂x

vε(x, 0)
2

∂vε(x, 0)/∂x
≥ ηvε(x, 0) for x ≥ x0 .

On integrating (3.49) and using the fact that the function x → vε(x, 0) is increasing,
we conclude that (3.47) holds for all δ > 0 with γ(δ) = η and xδ = x0.

It is easy to see that (3.48) is invariant under affine transformations. That is if
the function x → vε(x, 0) satisfies (3.48) for all x > 0, then given any λ, k > 0 so
also does the function x → λvε(λx + k, 0). We can solve the differential equation
determined by equality in (3.48). The solution is given by the formula

(3.50) vε(x, 0) = a[1 + λx]α , where α = 1/[γ(0)− 1] .

Since we require γ(0) > 0 it follows from (3.48) that α must satisfy either α > 0
or α < −1. Note that the function x → 1/vε(x, 0) of (3.50) is convex precisely for
this range of α values.

Lemma 3.5. Assume the initial data x → vε(x, 0) for (2.60), (2.61) is C
1 increas-

ing and that the function x → 1/vε(x, 0) is convex for sufficiently large x. Assume
further that there exists δ, γ(δ), xδ > 0 such that (3.47) holds. Then there exists
constants C0, t0 > 0 such that

(3.51) 1− C0

log t
≤ dΛε(t)

dt
≤ 1 for t ≥ t0 .

Proof. Since the inequality (3.47) is invariant under affine transformations we see
as in Lemma 3.4 that in the case ε = 0 there exists T0 > 0 such that if t ≥ T0 the
function x → 1/vε(x, t) is convex for x ≥ 0, and
(3.52)

vε (y, t)
2

∂vε(y, t)/∂y
≥ vε (x, t)

2

∂vε(x, t)/∂x
+ δγ(δ) for y = x+ δ/vε(x, t), x ≥ 0, t ≥ T0 .

Next observe that since limx→∞ vε(x, 0)
−2∂vε(x, 0)/∂x = 0, we may for any

ν > 0 choose T0 such that vε(x, T0)
−2∂vε(x, T0)/∂x ≤ ν for x ≥ 0. It follows then

from (3.46) that

(3.53)
vε(y, T0)

vε(0, T0)
≤ 1

1− νvε(0, T0)y
for 0 ≤ y <

1

νvε(0, T0)
=

Λε(T0)

ν
.

Hence as in (3.39) we see from (3.38), (3.53) that

(3.54)
dm1,1/Λε

(T0 + t)

dt
≤ m1,1/Λε

(T0)

[1− νvε(0, T0)t]Λε(T0)
for 0 ≤ t <

Λε(T0)

ν
.

Integrating (3.54) we conclude that for 0 ≤ t < Λε(T0)/ν,

(3.55)
m1,1/Λε

(T0)

m1,1/Λε
(T0 + t)

≥
[

1− 1

ν
log

{

1− νt

Λε(T0)

}]−1

.

Using the inequality − log(1 − z) ≤ 3z/2 when 0 ≤ z ≤ 1/3, we conclude from
(3.55) that

(3.56)
m1,1/Λε

(T0)

m1,1/Λε
(T0 + t)

≥
[

1 +
3t

2Λε(T0)

]−1

for 0 ≤ t ≤ Λε(T0)

3ν
.
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Similarly to (3.41) we have from (3.56) that

(3.57)
Λε(T0 + t)

Λε(T0)
≤ 1 +

3t

2Λε(T0)
for 0 ≤ t ≤ Λε(T0)

3ν
.

In the case ε = 0 the LHS of (3.56) is dz(t)/dt, so on integration we have that

(3.58) z(t) ≥ 2Λε(T0)

3
log

[

1 +
3t

2Λε(T0)

]

for 0 ≤ t ≤ Λε(T0)

3ν
.

We choose now ν sufficiently small so that 2 log[1 + 1/2ν]/3 > δ and let T1 be the
minimum T0 + t such that z(t) ≥ δ/vε(0, T0). Then we have that

(3.59) T1 − T0 ≤ Λε(T0)

3ν
,

vε (0, T1)
2

∂vε(0, T1)/∂x
≥ vε (0, T0)

2

∂vε(0, T0)/∂x
+ δγ(δ) .

Furthermore (3.57) implies that Λε(T1)/Λε(T0) ≤ 1 + 1/2ν. We now iterate the
foregoing to yield a sequence of times Tk, k = 1, 2, .., with the properties that

(3.60) Tk−Tk−1 ≤ Λε(Tk−1)

3ν
,

Λε(Tk)

Λε(Tk−1)
≤ 1+

1

2ν
,

vε (0, Tk)
2

∂vε(0, Tk)/∂x
≥ kδγ(δ).

It follows from (3.60) that

(3.61) TN−T0 ≤ 2

3

(

1 +
1

2ν

)N

Λε(T0),
dΛε(TN )

dt
≥ 1− 1

Nδγ(δ)
, N = 1, 2, ...

The inequality (3.61) implies the lower bound in (3.51) since the function t →
dΛε(t)/dt is increasing for t ≥ T0.

To deal with ε > 0 we first assume that the function x → vε(x, 0) is C
2 for x > 0.

Letting z(x, t) be the solution to (3.3) we have that

(3.62)
∂z(x, t)

∂x
=

1

m1,1/Λε
(t)

[

1 + ε
σ2
1/Λε

(t)

m1,1/Λε
(t)2

∂vε(z(x, t), 0)

∂z

]−1

,

(3.63)

∂2z(x, t)

∂x2
= −ε

σ2
1/Λε

(t)

m1,1/Λε
(t)2

∂2vε(z(x, t), 0)

∂z2

[

1 + ε
σ2
1/Λε

(t)

m1,1/Λε
(t)2

∂vε(z(x, t), 0)

∂z

]−1
(

∂z(x, t)

∂x

)2

.

We also have that

(3.64)
∂vε(x, t)

∂x
=

1

m1,1/Λε
(t)

∂vε(z(x, t), 0)

∂z

∂z(x, t)

∂x
,

(3.65)

∂2vε(x, t)

∂x2
=

1

m1,1/Λε
(t)

[

∂2vε(z(x, t), 0)

∂z2

(

∂z(x, t)

∂x

)2

+
∂vε(z(x, t), 0)

∂z

∂2z(x, t)

∂x2

]

.

It follows from (3.62)-(3.65) that the ratio (3.48) for the function x → vε(x, t) is
given by
(3.66)

vε(x, t)∂
2vε(x, t)/∂x

2

[∂vε(x, t)/∂x]2
=

vε(z(x, t), 0)∂
2vε(z(x, t), 0)/∂z

2

[∂vε(z(x, t), 0)/∂z]2

[

1 + ε
σ2
1/Λε

(t)

m1,1/Λε
(t)2

∂vε(z(x, t), 0)

∂z

]−1

.

Hence if (3.48) holds for all sufficiently large x, then Lemma 3.3 implies that there
exists T0 > 0 such that the RHS of (3.66) is bounded above by 2 for x ≥ 0, t ≥ T0.
It follows that the function x → 1/vε(x, t) is convex for x ≥ 0 provided t ≥ T0.
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Observe that if 0 < γ(0) ≤ 2 in (3.48) then the RHS of (3.66) is bounded above
by 2− γ(0). However if γ(0) > 2 then we can only bound the RHS above by 0. It
is easy to see from the example (3.50) that this is the best bound we can obtain.
In fact if α > 1 in (3.50) then limz→∞ ∂vε(z, 0)/∂z = ∞, in which case the RHS
of (3.66) converges to 0 as x → ∞. We have shown that if (3.48) holds for all
sufficiently large x then there exists T0 > 0 such that

(3.67)
vε(x, t)∂

2vε(x, t)/∂x
2

[∂vε(x, t)/∂x]2
≤ max[2− γ(0), 0] for x ≥ 0, t ≥ T0 .

In the case when we only assume that the function x → vε(x, 0) is C
1 for x > 0

we can make a more careful version of the argument of the previous paragraph. We
have now from (3.62), (3.64) that

(3.68)
vε (x, t)

2

∂vε(x, t)/∂x
=

vε (z(x, t), 0)
2

∂vε(z(x, t), 0)/∂z
+ ε

σ2
1/Λε

(t)

m1,1/Λε
(t)2

vε(z(x, t), 0)
2 .

Since the function x → z(x, t) is increasing for x ≥ 0, it follows that the second
function on the RHS of (3.68) is increasing for x ≥ 0. Since we are assuming
that the function z → 1/vε(z, 0) is convex for all large z, it follows that the first
function on the RHS of (3.68) is also increasing for x ≥ 0 provided t ≥ T0 and T0 is
sufficiently large. We conclude that the function x → 1/vε(x, t) is convex for x ≥ 0
provided t ≥ T0.

We can also obtain an inequality (3.52) for a δ which is twice the δ which occurs
in (3.47). To show this we consider two possibilities. In the first of these (3.52)
follows from the monotonicity of the second function on the RHS of (3.68). We use
the inequality

(3.69) ε
σ2
1/Λε

(t)

m1,1/Λε
(t)2

vε

(

z

(

x+
η

vε(x, t)
, t

)

, 0

)2

≥ ε
σ2
1/Λε

(t)

m1,1/Λε
(t)2

vε(z(x, t), 0)
2+

2εη
σ2
1/Λε

(t)

m1,1/Λε
(t)2

∫ 1

0

dρ
∂vε
∂z

(

z

(

x+
ρη

vε(x, t)
, t

)

, 0

)

[

1 + ε
σ2
1/Λε

(t)

m1,1/Λε
(t)2

∂vε
∂z

(

z

(

x+
ρη

vε(x, t)
, t

)

, 0

)

]−1

,

which follows from (3.4), (3.62), the monotonicity of the function z → vε(z, 0), and
Taylor’s formula. Observe next from the convexity of the function z → 1/vε(z, 0)
that for 0 < ρ′ < ρ,
(3.70)

∂vε

(

z

(

x+
ρη

vε(x, t)
, t

)

, 0

)

/

∂z ≤
[

vε(x+ ρη/vε(x, t), t)

vε(x + ρ′η/vε(x, t), t)

]2
∂vε
∂z

(

z

(

x+
ρ′η

vε(x, t)
, t

)

, 0

)

.

Furthermore we have similarly to (3.53) that for ν > 0 there exists T0 > 0 such
that for 0 < ρ′ < ρ and t ≥ T0,

(3.71) 1 ≤ vε(x + ρη/vε(x, t), t)

vε(x+ ρ′η/vε(x, t), t)
≤ 1− νρ′η

1− νρη
provided ρ <

1

νη
.

Now let us assume that t ≥ T0 and

(3.72) ε
σ2
1/Λε

(t)

m1,1/Λε
(t)2

∂vε
∂z

(

z

(

x+
δ

2vε(x, t)
, t

)

, 0

)

≥ 1

4
.
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Then (3.70), (3.71) imply upon setting η = δ/2 in (3.69) and choosing ν less than
some constant depending only on δ, that the second term on the RHS is bounded
below by δ/6 for t ≥ T0. This implies that (3.52) holds with γ(δ) = 1/6.

Alternatively we assume that (3.72) does not hold. Then on choosing ν suffi-
ciently small, depending only on δ, we see that (3.62), (3.70), (3.71) implies

(3.73) z

(

x+
2δ

vε(x, t)
, t

)

≥ z

(

x+
δ

2vε(x, t)
, t

)

+
11δ

10vε(z(x, t), 0)
.

Then we use the first term on the RHS of (3.68) and (3.47), (3.73) to establish
(3.52) with 2δ in place of δ. We have proved then that there exists T0 > 0 such
that (3.52) holds (with δ replaced by 2δ).

We wish next to establish an inequality like (3.59) in the case ε > 0, in which
case we need to examine the terms of (3.21) that depend on ε. Using the notation
of (4.27), (4.28) the ε dependent coefficient on the LHS of (3.21) is given by
(3.74)

ε
σ2
1/Λε

(T0, T0 + t)

m1,1/Λε
(T0, T0 + t)2

∂vε(z(t), T0)

∂z
= ε

σ2
1/Λε

(T0, T0 + t)

Λε(T0 + t)2

[

vε(z(t), T0)
−2 ∂vε(z(t), T0)

∂z

]

.

The ε dependent coefficient on the RHS of (3.21) is given by

(3.75) ε
vε(z(t), T0)

m1,1/Λε
(T0, T0 + t)

=
ε

Λε(T0 + t)
.

We choose now T0 large enough so that ε/Λε(T0) < 1/2, whence (3.75) implies that
the term in brackets on the RHS of (3.21) is at least 1/2. We also have from (3.74)
that

(3.76) ε
σ2
1/Λε

(T0, T0 + t)

m1,1/Λε
(T0, T0 + t)2

∂vε(z(t), T0)

∂z
≤ ν

2

σ2
1/Λε

(T0, T0 + t)

Λε(T0 + t)
.

Now using (4.27), we conclude from (3.76) that for any K > 0,
(3.77)

ε
σ2
1/Λε

(T0, T0 + t)

m1,1/Λε
(T0, T0 + t)2

∂vε(z(t), T0)

∂z
≤ νK exp(2K)

2
for 0 ≤ t ≤ KΛε(T0) .

It follows from (3.52), (3.62), (3.77) that there exists T1 > T0 such that (3.59) holds.
Therefore we can define a sequence Tk, k = 1, 2, .., of times having the properties
(3.60).

In order to estimate dΛε(Tk−1+ t)/dt for 0 ≤ t ≤ Tk−Tk−1, we need to examine
the terms of (3.22) that depend on ε. Similarly to (3.77) we have from (2.61), (3.22)
and the convexity of the function x → 1/vε(x, Tk−1) that
(3.78)
[

1 +
ενK exp(2K)

Λε(Tk−1)

]

dΛε(Tk−1 + t)

dt
≥ 1−∂vε(0, Tk−1)/∂x

vε(0, Tk−1)2
for 0 ≤ t ≤ Tk−Tk−1 .

Noting from (3.41) that Λε(Tk) grows exponentially in k, we conclude from (3.60),
(3.61) and (3.78) that the lower bound in (3.51) holds. To obtain the upper bound
in (3.51) we use the identity

(3.79)
dΛε(t)

dt
= 1− [1− εvε(0, t)]

1

vε(0, t)2
∂vε(0, t)

∂x
,

obtained from (2.60), (2.61). Evidently the RHS of (3.79) does not exceed 1. �
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Lemma 3.6. Assume ε > 0 and the initial data for (2.60), (2.61) satisfies the
conditions of Lemma 3.1 with x∞ < ∞. Then for any t > 0 the function x →
vε(x, t) satisfies limx→∞ vε(x, t)/x = v∞(t) for some v∞(t) > 0.

Assume in addition that the initial data is C1, the function x → 1/vε(x, 0) is
convex for x sufficiently close to x∞, and lim infx→x∞

∂vε(x, 0)/∂x > 0. Then for
any t > 0 the function x → 1/vε(x, t) is convex for x sufficiently large, and the
inequality (3.47) holds for all δ > 0.

Proof. From (3.3), (3.4) we have that

(3.80)
x+m2,1/Λε

(t)−m1,1/Λε
(t)x∞

εσ2
1/Λε

(t)
≤ vε(x, t) ≤ x+m2,1/Λε

(t)

εσ2
1/Λε

(t)
for x ≥ 0.

Hence limx→∞ vε(x, t)/x = 1/εσ2
1/Λε

(t).

It is easy to see from our assumptions that (3.47) is satisfied if vε(x, 0) is C
2 for

x sufficiently close to x∞. In that case it follows from the convexity of the function
x → 1/vε(x, 0) close to x∞ and (3.66) that there exists η(t) > 0 and xη(t) with

(3.81)
vε(x, t)∂

2vε(x, t)/∂x
2

[∂vε(x, t)/∂x]2
≤ 2

[

1 + ε
σ2
1/Λε

(t)

m1,1/Λε
(t)2

∂vε(z(x, t), 0)

∂z

]−1

≤ 2−η(t)

for x > xη(t). If we only assume the function x → vε(x, t) is C
1, then we use (3.68),

whence (3.47) follows from (3.69). �

Proof of Theorem 1.1: Note the assumption that the function x → E[X0−x | X0 >
x] is decreasing implies that the initial data vε(·, 0) for (2.60), (2.61) is continuous
and increasing. Now limt→∞〈Xt〉/t = 1 follows from Lemma 3.4, the remark follow-
ing it and Lemma 3.6. The inequality (1.13) follows from Lemma 3.5 and Lemma
3.6. �

4. Representations of Green’s functions

Let b : R×R → R be a continuous function which satisfies the uniform Lipschitz
condition

(4.1) sup {|∂b(y, t)/∂y| : y, t ∈ R} ≤ A∞

for some constant A∞. Then the terminal value problem

(4.2)
∂uε(y, t)

∂t
+ b(y, t)

∂uε(y, t)

∂y
+

ε

2

∂2uε(y, t)

∂y2
= 0, y ∈ R, t < T,

(4.3) uε(y, T ) = uT (y), y ∈ R,

has a unique solution uε which has the representation

(4.4) uε(y, t) =

∫ ∞

−∞
Gε(x, y, t, T )uT (x) dx, y ∈ R, t < T,

where Gε is the Green’s function for the problem. The adjoint problem to (4.2),
(4.3) is the initial value problem

(4.5)
∂vε(x, t)

∂t
+

∂

∂x
[b(x, t)vε(x, t)] =

ε

2

∂2vε(x, t)

∂x2
, x ∈ R, t > 0,

(4.6) vε(x, 0) = v0(x), y ∈ R.
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The solution to (4.5), (4.6) is given by the formula

(4.7) vε(x, T ) =

∫ ∞

−∞
Gε(x, y, 0, T )v0(y) dy, x ∈ R, T > 0.

For any t < T let Yε(s), s > t, be the solution to the initial value problem for
the SDE

(4.8) dYε(s) = b(Yε(s), s)ds+
√
ε dB(s), Yε(t) = y,

where B(·) is Brownian motion. Then Gε(·, y, t, T ) is the probability density for
the random variable Yε(T ). In the case when the function b(y, t) is linear in y it is
easy to see that (4.8) can be explicitly solved. Thus let A : R → R be a continuous
function and b : R×R → R the function b(y, t) = A(t)y− 1. The solution to (4.8)
is then given by
(4.9)

Yε(s) = exp

[
∫ s

t

A(s′)ds′
]

y−
∫ s

t

exp

[
∫ s

s′
A(s′′)ds′′

]

ds′+
√
ε

∫ s

t

exp

[
∫ s

s′
A(s′′)ds′′

]

dB(s′) .

Hence the random variable Yε(T ) conditioned on Yε(0) = y is Gaussian with mean
m1,A(T )y−m2,A(T ) and variance εσ2

A(T ), where m1,A,m2,A are given by (2.2) and
σ2
A by

(4.10) σ2
A(T ) =

∫ T

0

exp

[

2

∫ T

s

A(s′)ds′
]

ds .

The Green’s function Gε(x, y, 0, T ) is therefore explicitly given by the formula

(4.11) Gε(x, y, 0, T ) =
1

√

2πεσ2
A(T )

exp

[

−{x+m2,A(T )−m1,A(T )y}2
2εσ2

A(T )

]

.

To obtain the formula (4.11) we have used the fact that the solution to the
terminal value problem (4.2), (4.3) has a representation as an expectation value
uε(y, t) = E[u0(Yε(T )) | Y (t) = y ], where Yε(·) is the solution to the SDE (4.8).
The initial value problem (4.5), (4.6) also has a representation as an expectation
value in terms of the solution to the SDE

(4.12) dXε(s) = b(Xε(s), s)ds +
√
ε dB(s), Xε(T ) = x, s < T.

run backwards in time. Thus in (4.12) B(s), s < T, is Brownian motion run
backwards in time. The solution vε of (4.5), (4.6) has the representation

(4.13) vε(x, T ) = E

[

exp

{

−
∫ T

0

∂b(Xε(s), s)

∂x
ds

}

v0(Xε(0))

∣

∣

∣

∣

∣

Xε(T ) = x

]

.

Next we consider the terminal value problem (4.2), (4.3) in the half space y > 0
with Dirichlet boundary condition uε(0, t) = 0, t < T . In that case the solution
uε(y, t) has the representation

(4.14) uε(y, t) =

∫ ∞

0

Gε,D(x, y, t, T )uT (x) dx, y > 0, t < T,

in terms of the Dirichlet Green’s function Gε,D for the half space. Similarly the
solution to (4.5), (4.6) in the half space x > 0 with Dirichlet condition vε(0, t) =
0, t > 0, has the representation

(4.15) vε(x, T ) =

∫ ∞

0

Gε,D(x, y, 0, T )v0(y) dy, x > 0, T > 0.
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The function Gε,D(·, y, t, T ) is the probability density of the random variable Yε(T )
for solutions Yε(s), s > t, to (4.8) which have the property that inft≤s≤T Yε(s) > 0.
No explicit formula for Gε,D(x, y, 0, T ) in the case of linear b(y, t) = A(t)y − 1 is
known except when A(·) ≡ 0. In that case the method of images yields the formula
(4.16)

Gε,D(x, y, 0, T ) =
1√
2πεT

{

exp

[

− (x− y + T )2

2εT

]

− exp

[

−2x

ε
− (x+ y − T )2

2εT

]}

.

It follows from (4.11), (4.16) that

(4.17) Gε,D(x, y, 0, T )/Gε(x, y, 0, T ) = 1− exp[−2xy/εT ] .

We may interpret the formula (4.17) in terms of conditional probability for solutions
Yε(s), s ≥ 0, of (4.8) with b(·, ·) ≡ −1. Thus we have that

(4.18) P ( inf
0≤s≤T

Yε(s) > 0 | Yε(0) = y, Yε(T ) = x) = 1− exp[−2xy/εT ] .

We wish to generalize (4.18) to the case of linear b(y, t) = A(t)y − 1 in a way
that is uniform as ε → 0. To see what conditions on the function A(·) are needed
we consider for x, y ∈ R, t < T, the function q(x, y, t) defined by the variational
formula

(4.19) q(x, y, t, T ) = min
y(·)

{

1

2

∫ T

t

[

dy(s)

ds
− b(y(s), s)

]2

ds
∣

∣

∣
y(t) = y, y(T ) = x

}

.

The Euler-Lagrange equation for the minimizing trajectory y(·) of (4.19) is

(4.20)
d

ds

[

dy(s)

ds
− b(y(s), s)

]

+
∂b

∂y
(y(s), s)

[

dy(s)

ds
− b(y(s), s)

]

= 0, t ≤ s ≤ T,

and we need to solve (4.20) for the function y(·) satisfying the boundary conditions
y(t) = y, y(T ) = x. In the case b(y, t) = A(t)y − 1 equation (4.20) becomes

(4.21)

[

− d2

ds2
+A′(s) +A(s)2

]

y(s) = A(s), t ≤ s ≤ T.

It is easy to solve (4.21) with the given boundary conditions explicitly. In fact
taking t = 0 we see from (4.20) that

(4.22)
dy(s)

ds
− b(y(s), s) = C(x, y, T ) exp

[

∫ T

s

A(s′)ds′
]

, 0 ≤ s ≤ T,

where the constant C(x, y, T ) is given by the formula

(4.23) C(x, y, T ) = [x+m2,A(T )−m1,A(T )y]/σ
2
A(T ) ,

with m1,A(T ),m2,A(T ) as in (2.2) and σ2
A(T ) as in (4.10). It follows from (4.11),

(4.19), (4.22), (4.23) that the Green’s function Gε(x, y, 0, T ) is given by the formula

(4.24) Gε(x, y, 0, T ) =
1

√

2πεσ2
A(T )

exp [−q(x, y, 0, T )/ε] .

The minimizing trajectory y(·) for (4.19) has probabilistic significance as well as
the function q(x, y, t, T ). One can easily see that for solutions Yε(s), 0 ≤ s ≤ T, of
(4.8) the random variable Yε(s) conditioned on Yε(0) = y, Yε(T ) = x, is Gaussian
with mean and variance given by

(4.25) E[Yε(s) | Yε(0) = y, Yε(T ) = x] = y(s), 0 ≤ s ≤ T,
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(4.26) Var[Yε(s) | Yε(0) = y, Yε(T ) = x] = εσ2
A(0, s)σ

2
A(s, T )/σ

2
A(T ) ,

where the function σ2
A(s, t) is defined by

(4.27) σ2
A(s, t) =

∫ t

s

exp

[

2

∫ t

s′
A(s′′)ds′′

]

ds′ for s ≤ t.

Let m1,A(s, t), m2,A(s, t) be defined by
(4.28)

m1,A(s, t) = exp

[
∫ t

s

A(s′)ds′
]

, m2,A(s, t) =

∫ t

s

exp

[
∫ t

s′
A(s′′)ds′′

]

ds′ for s ≤ t.

The minimizing trajectory y(·) for the variational problem (4.19) is explicitly given
by the formula

(4.29) σ2
A(T )y(s) = xm1,A(s, T )σ

2
A(0, s) + ym1,A(0, s)σ

2
A(s, T )

+ m1,A(s, T )m2,A(s, T )σ
2
A(0, s)−m2,A(0, s)σ

2
A(s, T ) .

Now the process Yε(s), 0 ≤ s ≤ T, conditioned on Yε(0) = y, Yε(T ) = x, is in
fact a Gaussian process with covariance independent of x, y,
(4.30)
Covar[Yε(s1), Yε(s2) | Yε(0) = y, Yε(T ) = x] = εΓA(s1, s2) , 0 ≤ s1, s2 ≤ T,

where the symmetric function Γ : [0, T ]× [0, T ] → R is given by the formula

(4.31) ΓA(s1, s2) =
m1,A(s1, s2)σ

2
A(0, s1)σ

2
A(s2, T )

σ2
A(T )

, 0 ≤ s1 ≤ s2 ≤ T.

The function ΓA is the Dirichlet Green’s function for the operator on the LHS of
(4.21). Thus one has that

(4.32)

[

− d2

ds21
+A′(s1) +A(s1)

2

]

ΓA(s1, s2) = δ(s1 − s2), 0 < s1, s2 < T,

and ΓA(0, s2) = ΓA(T, s2) = 0 for all 0 < s2 < T .
We can obtain a representation of the conditioned process Yε(·) in terms of the

white noise process, which is the derivative dB(·) of Brownian motion, by obtaining
a factorization of Γ corresponding to the factorization

(4.33) − d2

ds2
+A′(s) +A(s)2 =

[

− d

ds
−A(s)

] [

d

ds
−A(s)

]

.

To do this we note that the boundary value problem

(4.34)

[

d

ds
−A(s)

]

u(s) = v(s), 0 < s < T, u(0) = u(T ) = 0,

has a solution if and only if the function v : [0, T ] → R satisfies the orthogonality
condition

(4.35)

∫ T

0

v(s)

m1,A(s)
ds = 0.

Hence it follows from (4.33) that we can solve the boundary value problem

(4.36)

[

− d2

ds2
+A′(s) +A(s)2

]

u(s) = f(s), 0 < s < T, u(0) = u(T ) = 0,
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by first finding the solution v : [0, T ] → R to

(4.37)

[

− d

ds
−A(s)

]

v(s) = f(s), 0 < s < T,

which satisfies the orthogonality condition (4.35). Then we solve the differential
equation in (4.34) subject to the condition u(0) = 0.

The solution to (4.35), (4.37) is given by an expression

(4.38) v(s) = K∗f(s) =

∫ T

0

k(s′, s)f(s′) ds′ , 0 ≤ s ≤ T,

where the kernel k : [0, T ]× [0, T ] → R is defined by

(4.39) k(s′, s) =
m1,A(s, s

′)σ2(s′, T )

σ2
A(T )

if s′ > s,

k(s′, s) =
σ2
A(s

′, T )

m1(s′, s)σ2
A(T )

− 1

m1,A(s′, s)
if s′ < s.

If v : [0, T ] → R satisfies the condition (4.35) then

(4.40) u(s) = Kv(s) =

∫ T

0

k(s, s′)v(s′) ds′ , 0 ≤ s ≤ T,

is the solution to (4.34). It follows that the kernel ΓA of (4.31) has the factorization
ΓA = KK∗, and so the conditioned process Yε(·) has the representation

(4.41) Yε(s) = y(s) +
√
ε

∫ T

0

k(s, s′) dB(s′) , 0 ≤ s ≤ T,

where y(·) is the function (4.29). In the case A(·) ≡ 0 equation (4.41) yields the
familiar representation

(4.42) Yε(s) =
s

T
x+

(

1− s

T

)

y +
√
ε
[

B(s)− s

T
B(T )

]

, 0 ≤ s ≤ T,

for the Brownian bridge process.
We can obtain an alternative representation of the conditioned process Yε(·) in

terms of Brownian motion by considering a stochastic control problem. Let Yε(·)
be the solution to the stochastic differential equation

(4.43) dYε(s) = λε(·, s)ds+
√
ε dB(s),

where λε(·, s) is a non-anticipating function. We consider the problem of minimizing
the cost function given by the formula
(4.44)

qε(x, y, t, T ) = min
λε

E

[

1

2

∫ T

t

[λε(·, s)− b(Yε(s), s)]
2 ds

∣

∣

∣
Yε(t) = y, Yε(T ) = x

]

.

The minimum in (4.44) is to be taken over all non-anticipating λε(·, s), t ≤ s < T ,
which have the property that the solutions of (4.43) with initial condition Yε(t) = y
satisfy the terminal condition Yε(T ) = x with probability 1. Formally the optimal
controller λ∗ for the problem is given by the expression

(4.45) λε(·, s) = λ∗
ε(x, Yε(s), s) = b(Yε(s), s)−

∂qε
∂y

(x, Yε(s), s).

Evidently in the classical control case ε = 0 the solution to (4.43), (4.44) is the
solution to the variational problem (4.19). If b(y, t) = A(t)y− 1 is a linear function
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of y then one expects as in the case of LQ problems that the difference between the
cost functions for the classical and stochastic control problems is independent of y.
Therefore from (4.11), (4.24) we expect that
(4.46)

λ∗
ε(x, y, t) = b(y, t)−∂q(x, y, t, T )

∂y
= A(t)y−1− ∂

∂y

{x+m2,A(t, T )−m1,A(t, T )y}2
2σ2

A(t, T )
.

It is easy to see that if we solve the SDE (4.43) with controller given by (4.46) and
conditioned on Yε(t) = y then Yε(T ) = x with probability 1 and in fact the process
Yε(s), t ≤ s ≤ T, has the same distribution as the process Yε(s), t ≤ s ≤ T,
satisfying the SDE (4.8) conditioned on Yε(t) = y, Yε(T ) = x. Thus we have
obtained the Markovian representation for the conditioned process of (4.8). Note
however that the stochastic control problem with cost function (4.44) does not have
a solution since the integral in (4.44) is logarithmically divergent at s = T for the
process (4.43) with optimal controller (4.46).

Solving (4.43) with drift (4.46) and Yε(0) = y, we see on taking t = 0 that (4.41)
holds with kernel k : [0, T ]× [0, T ] → R given by

(4.47) k(s, s′) =
m1,A(s

′, s)σ2
A(s, T )

σ2
A(s

′, T )
if s′ < s, k(s, s′) = 0 if s′ > s.

Observe that the kernel (4.47) corresponds to the Cholesky factorization ΓA = KK∗

of the kernel ΓA [3]. In the case A(·) ≡ 0 equation (4.47) yields the Markovian
representation

(4.48) Yε(s) =
s

T
x+

(

1− s

T

)

y +
√
ε(T − s)

∫ s

0

dB(s′)

T − s′
, 0 ≤ s ≤ T,

for the Brownian bridge process.
We can also express the ratio (4.17) of Green’s functions for the linear case

b(y, t) = A(t)y − 1 in terms of the solution to a PDE. Thus we assume x > 0 and
define

(4.49) u(y, t) = P ( inf
t≤s≤T

Yε(s) > 0 | Yε(t) = y) , y > 0, t < T,

where Yε(·) is the solution to the SDE (4.43) with drift (4.46). Then u(y, t) is the
solution to the PDE

(4.50)
∂u(y, t)

∂t
+ λ∗

ε(x, y, t)
∂u(y, t)

∂y
+

ε

2

∂2u(y, t)

∂y2
= 0, y > 0, t < T,

with boundary and terminal conditions given by

(4.51) u(0, t) = 0 for t < T, lim
t→T

u(y, t) = 1 for y > 0.

In the case A(·) ≡ 0 the PDE (4.50) becomes

(4.52)
∂u(y, t)

∂t
+

(

x− y

T − t

)

∂u(y, t)

∂y
+

ε

2

∂2u(y, t)

∂y2
= 0, y > 0, t < T.

Evidently the function u defined by

(4.53) u(y, t) = 1− exp

[

− 2xy

ε(T − t)

]

, t < T, y > 0,

is the solution to (4.51), (4.53). Observe that the RHS of (4.53) at t = 0 is the
same as the RHS of (4.17).
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5. Estimates on the Dirichlet Green’s function

In this section we shall obtain estimates on the ratio of the Dirichlet to the full
space Green’s function in the case of linear drift b(y, t) = A(t)y − 1. In particular
we shall prove a limit theorem which generalizes the formula (4.17):

Proposition 5.1. Assume b(y, t) = A(t)y − 1 where (4.1) holds and the function
A(·) is non-negative. Then for λ, y, T > 0 the ratio of the Dirichlet to full space
Green’s function satisfies the limit

(5.1) lim
ε→0

Gε,D(λε, y, 0, T )

Gε(λε, y, 0, T )
= 1− exp

[

−2λ

{

1− m2,A(T )

σ2
A(T )

+
m1,A(T )y

σ2
A(T )

} ]

,

where m1,A(T ),m2,A(T ) are given by (2.2) and σ2
A(T ) by (4.10).

Note that since we are assuming A(·) is non-negative in the statement of the
proposition, it follows from (4.10) thatm2,A(T )/σ

2
A(T ) ≤ 1. Hence the RHS of (5.1)

always lies between 0 and 1. We can see why (5.1) holds from the representation
(4.39), (4.41) for the conditioned process Yε(s), 0 ≤ s ≤ T . Thus we have that
(5.2)

Yε(s) = y(s) +
√
ε

[

m1,A(s)σ
2
A(s, T )

σ2
A(T )

∫ T

0

dB(s′)

m1,A(s′)
−m1,A(s)

∫ T

s

dB(s′)

m1,A(s′)

]

.

Since σ2
A(s, T ) = O(T − s) the conditioned process Yε(s) close to s = T is approxi-

mately the same as

(5.3) Yε(s) = λε− y′(T )(T − s)−
√
ε

∫ T

s

dB(s′) .

Observe now from (4.29) that

(5.4) − y′(T ) = O(ε) + 1− m2,A(T )

σ2
A(T )

+
m1,A(T )y

σ2
A(T )

.

Hence for s close to T the process Yε(s), s < T, is approximately Brownian motion
with a constant drift. Thus let Zε(t), t > 0, be the solution to the initial value
problem for the SDE

(5.5) dZε(t) = µdt+
√
ε dB(t), Zε(0) = λε ,

where we assume the drift µ is positive. Then from (5.3), (5.4) we see that Yε(T −
t) ≃ Zε(t) if µ is given by the formula

(5.6) µ = 1− m2,A(T )

σ2
A(T )

+
m1,A(T )y

σ2
A(T )

.

Observe now that P (inft>0 Zε(t) < 0) = e−2λµ, whence the RHS of (5.1) is simply
P (inft>0 Zε(t) > 0) when µ is given by (5.6). Since the time for which Zε(t) is
likely to become negative is t ≃ O(ε) the approximations above are justified and so
we obtain (5.1).

Proof of Proposition 5.1. Let Yε(s), 0 ≤ s ≤ T, be given by (5.2) where y(T ) = λε.
Then we have that for 0 < aε ≤ T ,
(5.7)

P

(

inf
0≤s≤T

Yε(s) > 0

)

≤ P

(

inf
0≤t≤aε

Yε(T − t) > 0

)

= P

(

inf
0<t<aε

[Zε(t) + Z̃ε(t)] > 0

)

,
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where Zε(·) is the solution to (5.5) with µ given by (5.6) and Z̃ε(·) is given by the
formula

(5.8) Z̃ε(t) = y(T − t)− y(T ) + y′(T )t+

√
ε

[

m1,A(T − t)σ2
A(T − t, T )

σ2
A(T )

∫ T

0

dB(s′)

m1,A(s′)
+

∫ T

T−t

[

1− m1,A(T − t)

m1,A(s′)

]

dB(s′)

]

.

We use the inequality
(5.9)

P

(

inf
0<t<aε

[Zε(t) + Z̃ε(t)] > 0

)

≤ P

(

inf
0<t<aε

Zε(t) > −bλε

)

+P

(

sup
0<t<aε

Z̃ε(t) > bλε

)

,

which holds for any a, b > 0 satisfying aε ≤ T .
To estimate the first term on the RHS of (5.9) we observe by the method of

images that

(5.10) P

(

inf
0<t<aε

Zε(t) < −bλε

)

=

e−2µ(1+b)λ 1√
2π

∫ ∞

[(1+b)λ−µa]/
√
a

e−z2/2 dz +
1√
2π

∫ −[(1+b)λ+µa]/
√
a

−∞
e−z2/2 dz .

To estimate the second term we write Z̃ε(t) in (5.8) as a sum of three quantities.
The first of these is bounded as

(5.11) sup
0≤t≤aε

|y(T − t)− y(T ) + y′(T )t| ≤ C[λε+ y + 1]a2ε2, 0 < aε ≤ T,

for a constant C depending only on A∞, T . The second is bounded as
(5.12)

sup
0≤t≤aε

∣

∣

∣

∣

∣

√
ε
m1,A(T − t)σ2

A(T − t, T )

σ2
A(T )

∫ T

0

dB(s′)

m1,A(s′)

∣

∣

∣

∣

∣

≤ Caε3/2

∣

∣

∣

∣

∣

∫ T

0

dB(s′)

m1,A(s′)

∣

∣

∣

∣

∣

,

where C depends only on A∞, T . Finally the third quantity is bounded as

(5.13)

sup
0≤t≤aε

∣

∣

∣

∣

∣

∫ T

T−t

[

1− m1,A(T − t)

m1,A(s′)

]

dB(s′)

∣

∣

∣

∣

∣

≤ sup
0≤t≤aε

∣

∣

∣

∣

∣

∫ T

T−t

[

1− m1,A(T )

m1,A(s′)

]

dB(s′)

∣

∣

∣

∣

∣

+ Caε sup
0≤t≤aε

∣

∣

∣

∣

∣

∫ T

T−t

dB(s′)

m1,A(s′)

∣

∣

∣

∣

∣

, where C depends only on A∞, T.

We can estimate probabilities for the terms on the RHS of (5.12), (5.13) by using
Martingale properties. Thus if g : (−∞, T ) → R is a continuous function we define
X(t), t ≥ 0, by

(5.14) X(t) =

∫ T

T−t

g(s) dB(s) .

Then for θ ∈ R

(5.15)

Xθ(t) = exp

[

θX(t)− θ2

2

∫ T

T−t

ds g(s)2

]

is a Martingale and E[Xθ(t)] = 1.
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Using the inequality

(5.16) P ( |X(0)| > M ) ≤ 2 exp

[

−θM +
θ2

2

∫ T

0

ds g(s)2

]

for M, θ > 0,

and optimizing the RHS of (5.16) with respect to θ > 0 we conclude that

(5.17) P

(

aε3/2

∣

∣

∣

∣

∣

∫ T

0

dB(s′)

m1,A(s′)

∣

∣

∣

∣

∣

> bλε/4

)

≤ 2 exp
[

−Cb2λ2/a2ε
]

,

where the constant C > 0 depends only on A∞, T . We use Doob’s inequality to
estimate probabilities for the terms on the RHS of (5.13). Thus we have for θ > 0
that

(5.18)

P

(

sup
0≤t≤t0

X(t) > M

)

≤ P

(

sup
0≤t≤t0

Xθ(t) > exp

[

θM − θ2

2

∫ T

T−t0

ds g(s)2

] )

≤ exp

[

−θM +
θ2

2

∫ T

T−t0

ds g(s)2

]

.

Optimizing the term on the RHS of (5.18) with respect to θ > 0 we conclude that

(5.19) P

(

sup
0≤t≤t0

|X(t)| > M

)

≤ 2 exp

[

−M2

/

2

∫ T

T−t0

ds g(s)2

]

.

Hence we have from (5.19) for the first term on the RHS of (5.13) that
(5.20)

P

(

sup
0≤t≤aε

∣

∣

∣

∣

∣

∫ T

T−t

[

1− m1,A(T )

m1,A(s′)

]

dB(s′)

∣

∣

∣

∣

∣

> bλε/4

)

≤ 2 exp
[

−Cb2λ2/a3ε
]

,

where the constant C > 0 depends only on A∞, T . Similarly we have that if C1

depends only on A∞, T then

(5.21) P

(

C1aε sup
0≤t≤aε

∣

∣

∣

∣

∣

∫ T

T−t

dB(s′)

m1,A(s′)

∣

∣

∣

∣

∣

> bλε/4

)

≤ 2 exp
[

−C2b
2λ2/a3ε

]

,

where the constant C2 > 0 also depends only on A∞, T .
We choose now a = ε−α, b = εβ for some α, β > 0. Since µ > 0 it follows from

(5.10) that the first term on the RHS of (5.9) converges to 1 − e−2λµ as ε → 0.
We also see from the estimates of the previous paragraph that the second term
on the RHS of (5.9) converges to 0 as ε → 0 provided 3α + 2β < 1. We have
therefore shown that lim supε→0 P (inf0≤s≤T Yε(s) > 0) is bounded above by the
RHS of (5.1).

To obtain the corresponding lower bound we use the inequality
(5.22)

P

(

inf
0≤s≤T

Yε(s) > 0

)

≥ P

(

inf
T−aε≤s≤T

Yε(s) > 0

)

− P

(

inf
0≤s≤T−aε

Yε(s) < 0

)

.

Next we use the inequality similar to (5.9) that
(5.23)

P

(

inf
T−aε≤s≤T

Yε(s) > 0

)

≥ P

(

inf
0<t<aε

Zε(t) > bλε

)

−P

(

inf
0<t<aε

Z̃ε(t) < −bλε

)

.
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Arguing as previously we see from (5.23) on choosing a = ε−α, b = εβ with 3α+2β <
1 that lim infε→0 P

(

infT−ε1−α≤s≤T Yε(s) > 0
)

is bounded below by the RHS of
(5.1). Next we need to obtain a bound on the second term on the RHS of (5.22)
when a = ε−α which vanishes as ε → 0. Since A(·) is non-negative there is a
positive constant C depending only on A∞, T such that the function y(·) of (4.29)
satisfies an inequality y(s) ≥ C(T − s)y for 0 ≤ s ≤ T . Hence there is a positive
constant c depending only on A∞, T such that

(5.24) P

(

inf
0≤s≤T−ε1−α

Yε(s) < 0

)

≤ P

( ∣

∣

∣

∣

∣

∫ T

0

dB(s′)

m1,A(s′)

∣

∣

∣

∣

∣

>
cy√
ε

)

+ P

(

sup
ε1−α≤t≤T

∣

∣

∣

∣

∣

1

t

∫ T

T−t

dB(s′)

m1,A(s′)

∣

∣

∣

∣

∣

>
cy√
ε

)

.

We can bound the first term on the RHS of (5.24) similarly to (5.17). We bound
the second term by using the inequality
(5.25)

P

(

sup
ε1−α≤t≤T

|X(t)| > cy/
√
ε

)

≤
∑

k≥1

P

(

sup
kε1−α≤t≤(k+1)ε1−α

|X(t)| > cy/
√
ε

)

.

From (5.19) we see that for k ≥ 1,

(5.26) P

(

sup
kε1−α≤t≤(k+1)ε1−α

∣

∣

∣

∣

∣

1

t

∫ T

T−t

dB(s′)

m1,A(s′)

∣

∣

∣

∣

∣

> cy/
√
ε

)

≤ exp

[

−c1ky
2

εα

]

,

where c1 > 0 depends only on A∞, T . We conclude that the second term on the
RHS of (5.22) converges when a = ε−α with α > 0 to zero as ε → 0. Hence
lim infε→0 P (inf0≤s≤T Yε(s) > 0) is bounded below by the RHS of (5.1). �

Next we wish to obtain estimates on the LHS of (5.1) which are uniform as
λ → 0.

Lemma 5.1. Assume the function A(·) is non-negative and that 0 < λ ≤ 1, 0 <
ε ≤ T, y > 0. Let Γ : R+ ×R+ → R+ be the function Γ(a, b) = 1 if b > a−1/4 and
otherwise Γ(a, b) = a1/8. Then there is a constant C depending only on A∞T such
that

(5.27)
Gε,D(λε, y, 0, T )

Gε(λε, y, 0, T )
≤

1− exp

[

−2λ

{

1− m2,A(T )

σ2
A(T )

+
m1,A(T )y

σ2
A(T )

} ]

+ CλΓ
( ε

T
,
y

T

) [

1 +
y

T

]

.

Proof. We make the change of variable s ↔ t in which

(5.28)
ds

dt
= −

[

m1,A(s)

m1,A(T )

]2

, s(0) = T.

Hence s ≃ T − t if t is small and

(5.29) m1,A(T )

∫ T

s

dB(s′)

m1,A(s′)
=

∫ t

0

dB̃(t′) where B̃(·) is a Brownian motion.
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Letting s(T̃ ) = 0, we see from (5.2), (5.29) that Yε(s) = Ỹε(t) where

(5.30) Ỹε(t) = ỹ(t) +
√
ε

[

m1,A(s)σ
2(s, T )

m1,A(T )σ2(T )

∫ T̃

0

dB̃(t′)− m1,A(s)

m1,A(T )

∫ t

0

dB̃(t′)

]

,

and ỹ(t) = y(s), where y(·) is the function (4.29). We consider any a for which

0 < aε ≤ T̃ and observe as in (5.7) that if M > 0 then

(5.31) P

(

inf
0≤s≤T

Yε(s) > 0

)

≤ P

(

inf
0≤t≤aε

Ỹε(t) > 0

)

≤ P

(

inf
0≤t≤aε

Ỹε(t) > 0; sup
0≤t≤aε

∣

∣

∣

∣

∫ t

0

dB̃(t′)

∣

∣

∣

∣

≤ M

)

+ P

(

inf
0≤t≤aε

Ỹε(t) > 0; sup
0≤t≤aε

∣

∣

∣

∣

∫ t

0

dB̃(t′)

∣

∣

∣

∣

> M

)

.

The first term on the RHS of (5.31) is bounded above by P
(

inf0≤t≤aε Ỹ0,ε(t) > 0
)

where Ỹ0,ε(t) is given from (5.30) by the formula
(5.32)

Ỹ0,ε(t) = ỹ(t)+
C
√
εMt

T
+
√
ε
m1,A(s)σ

2
A(s, T )

m1,A(T )σ2
A(T )

∫ T̃

aε

dB̃(t′)−
√
ε
m1,A(s)

m1,A(T )

∫ t

0

dB̃(t′) ,

with C in (5.32) depending only on AT . To estimate the second term on the RHS
of (5.31) we introduce the stopping time τ defined by

(5.33) τ = inf

{

t < T̃ :

∣

∣

∣

∣

∫ t

0

dB̃(t′)

∣

∣

∣

∣

> M

}

.

Hence the second term is bounded above by P
(

inf0≤t≤τ Ỹε(t) > 0; τ < aε
)

. Ob-

serve now that for any M1 > 0,

(5.34) P

(

inf
0≤t≤τ

Ỹε(t) > 0; τ < aε

)

=

∞
∑

n=1

P

(

inf
0≤t≤τ

Ỹε(t) > 0; τ < aε, (n− 1)M1 ≤ sup
τ≤t≤τ+T̃

∣

∣

∣

∣

∫ t

τ

dB̃(t′)

∣

∣

∣

∣

< nM1

)

≤

∞
∑

n=1

P

(

inf
0≤t≤τ

Ỹn,ε(t) > 0; τ < aε

)

P

(

(n− 1)M1 ≤
∣

∣

∣

∣

∣

sup
τ≤t≤τ+T̃

∫ t

τ

dB̃(t′)

∣

∣

∣

∣

∣

< nM1

)

=

∞
∑

n=1

P

(

inf
0≤t≤τ

Ỹn,ε(t) > 0; τ < aε

)

P

(

(n− 1)M1 ≤
∣

∣

∣

∣

∣

sup
0≤t≤T̃

∫ t

0

dB̃(t′)

∣

∣

∣

∣

∣

< nM1

)

,

where Ỹn,ε is given by the formula

(5.35) Ỹn,ε(t) = ỹ(t) +
C
√
ε(M + nM1)t

T
−
√
ε
m1,A(s)

m1,A(T )

∫ t

0

dB̃(t′) ,

and the constant C depends only on A∞T . Note that in (5.34) we are using the
fact that the variables
(5.36)

τ and {B̃(t) : 0 < t ≤ τ} are independent of the variable

∣

∣

∣

∣

∣

sup
τ≤t≤τ+T̃

∫ t

τ

dB̃(t′)

∣

∣

∣

∣

∣

.
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To estimate P
(

inf0≤t≤aε Ỹ0,ε(t) > 0
)

we compare Ỹ0,ε(·) to Brownian motion

with constant drift as in (5.5). It follows from (5.32) that
(5.37)

P

(

inf
0≤t≤aε

Ỹ0,ε(t) > 0

)

≤ E

[

P

(

inf
0≤t≤aε

Zε(t) > 0
∣

∣

∣
µ = µrand, Zε(0) = λε[1 + Caε/T ]

) ]

,

where µrand is the random variable
(5.38)

µrand = 1−m2,A(T )

σ2
A(T )

+
m1,A(T )y

σ2
A(T )

+
Caε

T

[

1 +
y

T

]

+
Cλε

T
+
C
√
ε

T

[

M +

∣

∣

∣

∣

∣

∫ T̃

aε

dB̃(t′)

∣

∣

∣

∣

∣

]

,

and C > 0 is a constant depending only on A∞T . To bound the RHS of (5.37) we
use an identity similar to (5.10),

(5.39) P

(

inf
0<t<a′ε

Zε(t) > 0
∣

∣ Zε(0) = λ′ε

)

=

{

1− e−2µλ′

} 1√
2π

∫ ∞

[λ′−µa′]/
√
a′

e−z2/2 dz +
1√
2π

∫ [λ′−µa′]/
√
a′

[−λ′−µa′]/
√
a′

e−z2/2 dz .

From (5.39) we obtain the upper bound

(5.40) P

(

inf
0<t<a′ε

Zε(t) > 0
∣

∣ Zε(0) = λ′ε

)

≤ 1− e−2µλ′

+
2λ′

√
2πa′

.

Using (5.40) we estimate the RHS of (5.37) when a = min
[

(T/ε)α, T̃ /ε
]

for some

α satisfying 0 < α < 1. In that case λ′ = λ[1+Caε/T ] ≤ λ[1+C] for some constant

C depending only on A∞T . Taking M = C1

√
T in (5.38) where C1 depends only

on A∞T we conclude from (5.37), (5.40) that for 0 < λ ≤ 1, 0 < ε ≤ T,

(5.41) P

(

inf
0≤t≤aε

Ỹ0,ε(t) > 0

)

≤

1−exp

[

−2λ

{

1− m2,A(T )

σ2
A(T )

+
m1,A(T )y

σ2
A(T )

} ]

+C2λ

[

( ε

T

)1−α {

1 +
y

T

}

+
( ε

T

)α/2
]

,

where C2 in (5.41) depends only on A∞T .
Next we estimate the probabilities on the RHS of (5.34). Evidently we have from

(5.35) that

(5.42) Ỹn,ε(τ) = ỹ(τ) +
C
√
ε(M + nM1)τ

T
±M

√
ε
m1,A(s(τ))

m1,A(T )
.

We choose M1 =
√
T in (5.42) and M = C1

√
T for a constant C1 depending only

on A∞T so that M
√
ε/m1(T ) > 2ε. Since Yn,ε(τ) > 0, it follows that if (5.42)

holds with the − sign then there is a constant c > 0 depending only on A∞T such
that

(5.43) τ > τn = cT

√

ε

T

[

1 +
y

T
+ n

√

ε

T

]−1

.

Observe now from (5.43) that if α < 1/2 then τn > aε provided

(5.44) 1 +
y

T
+ n

√

ε

T
≤ 2c1

(

T

ε

)1/2−α

for c1 > 0 depending only on A∞T.
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Since τ < aε it follows that (5.42) can hold with the minus sign only if

(5.45) 1 +
y

T
≥ c1

(

T

ε

)1/2−α

or n ≥ c1

(

T

ε

)1−α

.

In the case when τn < aε we see from (5.35) that there is a constant C depending
only on A∞T and
(5.46)

P

(

inf
0≤t≤τn

Ỹn,ε(t) > 0

)

≤ P

(

inf
0≤t≤τn

Zε(t) > 0
∣

∣

∣
µ = µn, Zε(0) = λε[1 + Caε/T ]

)

,

where Zε(·) is the solution to the SDE (5.5). The drift µn is given by the formula

(5.47) µn = C

[

1 +
y

T
+ n

√

ε

T

]

where C depends only on A∞T.

It follows then from (5.40), (5.46), (5.47) that
(5.48)

P

(

inf
0≤t≤τn

Ỹn,ε(t) > 0

)

≤ C1λ

[

1 +
y

T
+ n

√

ε

T
+

(

ε

τn

)1/2
]

≤ C2λ

[

1 +
y

T
+ n

√

ε

T

]

for some constants C1, C2 depending only on A∞T . We conclude from (5.48) that

(5.49)

∑

n≥c(T/ε)1−α

P

(

inf
0≤t≤τn

Ỹn,ε(t) > 0

)

P

(

(n− 1)M1 ≤
∣

∣

∣

∣

∣

sup
0≤t≤T̃

∫ t

0

dB̃(t′)

∣

∣

∣

∣

∣

< nM1

)

≤ Cλ
∑

n≥c(T/ε)1−α

[

1 +
y

T
+ n

√

ε

T

]

e−n2/2 ≤ C1λ
(

1 +
y

T

)

exp

[

−c1

(

T

ε

)2(1−α)
]

,

where the constants C1, c1 depend only on A∞T .
We consider next the situation where (5.42) holds with the plus sign. One sees

that

(5.50) P

(

inf
0≤t≤τ

Ỹn,ε(t) > 0; τ < aε,

∫ τ

0

dB̃(t′) dt′ = −M

)

≤ P

(

inf
0≤t≤τ

Zε(t) > 0, τ < aε, Zε(τ) ≥ M
√
ε
∣

∣

∣
µ = µn, Zε(0) = λε[1 + Caε/T ]

)

,

where µn is given by (5.47). Observe that the RHS of (5.50) is bounded by the
probability that the diffusion Zε(·) started at λε[1 + O(ε1−α)] exits the interval
[0, C1T (ε/T )

1/2] through the rightmost boundary in time less than T (ε/T )1−α.
This probability is bounded by K(ε/T, n, y/T )λ for some function K which has the
property that limε→0 K(ε/T, n, y/T ) = 0 provided α < 1/2. To find an expression
for K we first choose C1 depending only on A∞T large enough so that Zε(0) <
C1T (ε/T )

1/2/2 for any ε satisfying 0 < ε ≤ T . It is easy to see that for 0 < λ′ < Λ′,

(5.51) P
(

0 < Zε(t) < Λ′ε, t < τ, Zε(τ) = Λ′ε
∣

∣ Zε(0) = λ′ε
)

=
1− e−2µλ′

1− e−2µΛ′
.

We apply (5.51) with Λ′ = C1(T/ε)
1/2, µ = µn and λ′ = λ[1 + Caε/T ], whence

µΛ′ ≥ c for some positive constant c depending only on A∞T . We conclude from
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(5.51) that the function K satisfies the inequality

(5.52) K(ε/T, n, y/T ) ≤ C

[

1 +
y

T
+ n

√

ε

T

]

for some constant C depending only on A∞T .
To show that limε→0 K(ε/T, n, y/T ) = 0 we assume λ′ < Λ′/2 and use the

inequality

(5.53) P

(

inf
0<t<aε

Zε(t) > 0, sup
0<t<aε

Zε(t) ≥ Λ′ε
∣

∣ Zε(0) = λ′ε

)

≤

P
(

0 < Zε(t) < Λ′ε/2, t < τ, Zε(τ) = Λ′ε/2
∣

∣ Zε(0) = λ′ε
)

P

(

sup
0<t<aε

Zε(t) ≥ Λ′ε
∣

∣ Zε(0) = Λ′ε/2

)

.

The second probability on the RHS of (5.53) can be bounded as

(5.54) P

(

sup
0<t<aε

Zε(t) ≥ Λ′ε
∣

∣ Zε(0) = Λ′ε/2

)

≤ C exp

[

−Λ′2

32a

]

for some universal constant C provided µa < Λ′/4. Observe now from (5.47) that
the condition µna < Λ′/4 is implied by (5.44). We conclude from (5.52), (5.54)
that if (5.44) holds then

(5.55) K(ε/T, n, y/T ) ≤ C2

[

1 +
y

T
+ n

√

ε

T

]

exp

[

−c2

(

T

ε

)1−α
]

for some positive constants C2, c2 depending only on A∞T . If (5.44) does not
hold we can argue as before using (5.45), (5.52) to obtain an inequality similar to
(5.49). The inequality (5.27) follows now from (5.41), (5.49), (5.52) on choosing
α = 1/4. �

Lemma 5.2. Assume the function A(·) is non-negative and that 0 < λ ≤ 1, 0 <
ε ≤ T, y > 0. Then there are positive constants C, c depending only on A∞T such
that if γ = c(T/ε)1/8(y/T ) ≥ 5 then
(5.56)
Gε,D(λε, y, 0, T )

Gε(λε, y, 0, T )
≥ [1+e−γ2/4]−2

(

1− exp

[

− 2λ

1 + C(ε/T )1/8

{

1− m2,A(T )

σ2
A(T )

+
m1,A(T )y

σ2
A(T )

} ] )

.

Proof. We choose a = min
[

(T/ε)α, T̃ /ε
]

with 0 < α < 1 as in Lemma 5.1 and

observe from (4.29), (5.28) that there is a constant c > 0 depending only on A∞T

such that ỹ(t) ≥ cty/T for 0 ≤ t ≤ T̃ . Hence there exists a constant c1 > 0

depending only on A∞T such that the process Ỹε(·) of (5.30) satisfies:

(5.57) Ỹε(t) > 0 for aε ≤ t ≤ T̃ if for k = 1, 2, ..,
∣

∣

∣

∣

∫ aε

0

dB̃(t′)

∣

∣

∣

∣

< c1
√
T
( ε

T

)1/2−α y

T
and sup

aε≤t≤(k+1)aε

∣

∣

∣

∣

∫ t

aε

dB̃(t′)

∣

∣

∣

∣

≤ c1k
√
T
( ε

T

)1/2−α y

T
.

It follows from (5.57) that
(5.58)

P

(

inf
0≤s≤T

Yε(s) > 0

)

= P

(

inf
0≤t≤T̃

Ỹε(t) > 0

)

≥ P

(

inf
0≤t≤aε

Ỹε(t) > 0 ; E
)

,
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where E is the event defined by the second line of (5.57). It is easy to see from
(5.30) that for 0 < t ≤ aε on the event E there is a constant C > 0 depending only
on A∞T such that

(5.59) Ỹε(t) > 0 if Z̃ε(t) =
ỹ(t)

1 + Caε/T
− Cc1t

y

T
−
√
ε

∫ t

0

dB̃(t′) > 0,

where c1 is the constant of (5.57). We conclude from (5.57), (5.59) that

(5.60) P

(

inf
0≤s≤T

Yε(s) > 0

)

≥

P

(

Z̃ε(t) > 0, 0 < t ≤ aε;

∣

∣

∣

∣

∫ aε

0

dB̃(t′)

∣

∣

∣

∣

< c1
√
T
( ε

T

)1/2−α y

T

)

P (E) .

In order to bound P (E) from below we consider for γ > 0 the event Eγ defined
by

(5.61)

∣

∣

∣

∣

∫ 1

0

dB̃(t′)

∣

∣

∣

∣

< γ and sup
1≤t≤(k+1)

∣

∣

∣

∣

∫ t

1

dB̃(t′)

∣

∣

∣

∣

< kγ for k = 1, 2, ...

Then we have that

(5.62) P (E) = P (Eγ) where γ = c1

(

T

ε

)α/2
( y

T

)

.

Using the fact that

(5.63) P

(

sup
1≤t≤(k+1)

∣

∣

∣

∣

∫ t

1

dB̃(t′)

∣

∣

∣

∣

> kγ

)

≤ 4e−kγ2/2 ,

we conclude that

(5.64) P (Eγ) ≥ [1 + e−γ2/4 ]−1 if γ ≥ 5.

We bound from below the first probability on the RHS of (5.60) by comparing
it to the constant drift Brownian motion (5.5). To do this we use the inequality
(5.65)
σ2
A(T )y(s) ≥ xm1,A(s, T )σ

2
A(0, s)+ym1,A(0, s)σ

2
A(s, T )+[σ2

A(0, s)−m2,A(0, s)]σ
2
A(s, T ) ,

which follows from (4.29) and the assumption that A(s) ≥ 0, 0 ≤ s ≤ T . Since
the function s → σ2

A(0, s)−m2,A(0, s) is increasing we conclude from (5.28), (5.65)
that there is a constant C1 > 0 depending only on A∞T such that for 0 ≤ t ≤ aε,
(5.66)

ỹ(t) ≥ λε+ µεt

1 + C1aε/T
where µε =

m1,A(T )y

σ2
A(T )

+
σ2
A(0, s(aε))−m2,A(0, s(aε))

σ2
A(T )

.

It follows from (5.59), (5.66) that for 0 ≤ t ≤ aε there is a constant C2 > 0
depending only on A∞T such that

(5.67) Z̃ε(t) ≥ Zε(t) with Zε(0) =
λε

1 + C2aε/T
, µ =

µε

1 + C2aε/T
−C2c1

y

T
.

Hence the first probability on the RHS of (5.60) is bounded below by
(5.68)

P

(

Zε(t) > 0, 0 < t ≤ aε; |Zε(aε)− Zε(0)− aεµ| < γε
√
a
∣

∣

∣
Zε(0) =

λε

1 + C2aε/T

)

,

where γ is as in (5.62).
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To bound the probability in (5.68) we assume that the constant c1 in (5.62) is
small enough so that µ > 0 and γ < µ

√
a. Then similarly to (5.10), (5.39) we have

that

(5.69) P

(

inf
0<t<aε

Zε(t) > 0; |Zε(aε)− λ′ε− aεµ| < γε
√
a
∣

∣ Zε(0) = λ′ε

)

=

{

1− e−2µλ′

} 1√
2π

∫ γ

2λ′/
√
a−γ

e−z2/2 dz +
1√
2π

∫ 2λ′/
√
a−γ

−γ

e−z2/2 dz

− e−2µλ′ 1√
2π

∫ 2λ′/
√
a+γ

γ

e−z2/2 dz ≥
{

1− e−2µλ′

} 1√
2π

∫ γ

−γ

e−z2/2 dz .

We take λ′ = λ/[1 + C2aε/T ] in (5.69) and choose α = 1/2. Hence the drift µ of
(5.67) satisfies the inequality

(5.70) µ ≥ 1

1 + C3

√

ε/T

{

1− m2,A(T )

σ2
A(T )

+
m1,A(T )y

σ2
A(T )

}

− C3c1
y

T
− C3

( ε

T

)1/2

,

for some constant C3 > 0 depending only on A∞T . We choose now c1 = c(ε/T )1/8

where c > 0 depends only on A∞T . It is clear that if γ ≥ 5 then the RHS of (5.70)
is bounded below by
(5.71)

1

1 + C4(ε/T )1/8

{

1− m2,A(T )

σ2
A(T )

+
m1,A(T )y

σ2
A(T )

}

where C4 depends only on A∞T.

The inequality (5.56) follows now from (5.64), (5.69), (5.71). �

6. Convergence as ε → 0 of solutions to the diffusive CP Model

Lemma 6.1. Let cε(x, t),Λε(t), 0 < x, t < ∞, be the solution to the diffusive CP
system (1.7), (1.8) with non-negative initial data c0(x), 0 < x < ∞, which is a
locally integrable function satisfying

(6.1)

∫ ∞

0

(1 + x)c0(x) dx < ∞,

∫ ∞

0

xc0(x) dx = 1.

Then for any T > 0 there are positive constants C1, C2 depending only on T and
c0(·) such that

(6.2) C1 ≤ Λε(t) ≤ C2 for 0 < ε ≤ 1, 0 ≤ t ≤ T.

In addition the set of functions {Λε : [0, T ] → R : 0 < ε ≤ 1} form an equicontin-
uous family. Denote by c0(x, t),Λ0(t), 0 < x, t < ∞, the solution to the CP system
(1.1), (1.2) with ε = 0 and initial data c0(x), 0 < x < ∞. Then for all x, t ≥ 0

lim
ε→0

wε(x, t) = w0(x, t) ,(6.3)

lim
ε→0

Λε(t) = Λ0(t) ,(6.4)

where wε is given in terms of cε by (2.49). The limit in (6.3), (6.4) is uniform for
(x, t) in any finite rectangle 0 < x ≤ x0, 0 < t ≤ T .
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Proof. It follows from (1.10) that Λε(t) is an increasing function of t, whence the
lower bound in (6.2) follows. We first prove the upper bound for the CP model
(1.1), (1.2) corresponding to ε = 0. We see from (1.2), (1.3) that

(6.5)

∫ ∞

Λ0(0)/2

xc0(x) dx ≥ 1

2

∫ ∞

0

xc0(x) dx =
1

2
.

Hence from (2.3) there is a positive constant 1/C2 depending only on c0(·) such that
w0(Λ0(0)/2, 0) ≥ 1/C2. It follows then from (2.2), (2.4) that w0(0, t) ≥ 1/C2 for
0 ≤ t ≤ Λ0(0)/2, whence (1.2), (1.3) implies that Λ0(t) ≤ C2 for 0 ≤ t ≤ Λ0(0)/2.
Furthermore we see from (2.3) that Λ0(t) is continuous in the interval 0 ≤ t ≤
Λ0(0)/2. Since Λ0(t) is an increasing function of t we can extend this argument in
a finite number of steps to any interval 0 ≤ t ≤ T . We have proven (6.2) in the
case ε = 0.

To prove the upper bound in (6.2) for 0 < ε ≤ 1 we use the representation

(6.6) wε(x, t) =

∫ ∞

0

P

(

Yε(t) > x; inf
0≤s≤t

Yε(s) > 0
∣

∣ Yε(0) = y

)

c0(y)dy ,

where Yε(s) is the solution to the SDE (4.8) with b(y, s) = y/Λε(s) − 1. Since
Λε(s) ≥ Λε(0) = Λ0(0) it follows from (4.9) that for any δ > 0, t > 0 there is a
positive constant p1 depending only on δ, t,Λ0(0) such that

(6.7) P

(

inf
0≤s≤t

{ Yε(s)− E[Yε(s)] } ≥ −δ

)

≥ p1 for 0 < ε ≤ 1.

We conclude from (6.7) by choosing δ appropriately that there is a positive constant
p2 depending only on Λ0(0) such that if 0 < ε ≤ 1 then
(6.8)

P

(

Yε(t) > 0; inf
0≤s≤t

Yε(s) > 0

∣

∣

∣

∣

Yε(0) = y

)

≥ p2 for t = Λ0(0)/2, y ≥ Λ0(0)/2 .

It follows now from (6.5), (6.6), (6.8) that there is a positive constant C2 depending
only on the initial data c0(·) such that wε(0, t) ≥ 1/C2 for 0 < ε ≤ 1 if t = Λ0(0)/2.
The upper bound in (6.2) for all T then follows as in the previous paragraph.

To prove that Λε(·) is continuous we first note that for any fixed t > 0 the
function wε(x, t), x ≥ 0, is continuous by virtue of the representation (6.6), the
fact that Λε(s) ≥ Λ0(0) for 0 ≤ s ≤ t and (4.11). The continuity is uniform for ε in
the interval 0 < ε ≤ 1 since c0(·) is a locally integrable function. Next we observe
from (4.9) that for ∆t > 0 there exists x(∆t) independent of ε in the interval
0 < ε ≤ 1 such that lim∆t→0 x(∆t) = 0 and

(6.9) P

(

Yε(t+∆t) > 0; inf
0≤s≤t+∆t

Yε(s) > 0

∣

∣

∣

∣

Yε(0) = y

)

≥

[1−∆t]P

(

Yε(t) > x(∆t); inf
0≤s≤t

Yε(s) > 0

∣

∣

∣

∣

Yε(0) = y

)

for y ≥ 0, 0 < ε ≤ 1.

It follows from (6.6), (6.9) that wε(0, t + ∆t) ≥ [1 − ∆t]wε(x(∆t), t) for 0 <
ε ≤ 1. Using the continuity of the function wε(x, t), x ≥ 0, we conclude that
lim∆t→0 wε(0, t+∆t) = wε(0, t) and the limit is uniform for 0 < ε ≤ 1. Hence the
function Λε(·) is continuous, and in fact the family of functions Λε(·), 0 < ε ≤ 1,
is equicontinuous.

To prove (6.3), (6.4) we first observe from the Ascoli-Arzela theorem that since
the family of functions Λε(·), 0 < ε ≤ 1, is equicontinuous, the limit (6.4) holds
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uniformly on the interval 0 ≤ t ≤ T for a subsequence of ε → 0. For such a sequence
it follows from (2.2), (4.9), (6.6) that (6.3) holds with w0(x, t) = w0(F1/Λ0

(x, t), 0)
and the conservation law (1.2) continues to hold for ε = 0. Hence the limits on the
RHS of (6.3), (6.4) are the solution to the CP model (1.1), (1.2) and are therefore
unique. Consequently (6.3), (6.4) hold for all ε → 0. The uniformity of the limits
follows by similar argument. �

To show that the coarsening rate (1.10) for the diffusive model (1.7), (1.8) con-
verges as ε → 0 to the coarsening rate (1.4) for the CP model (1.1), (1.2), it will
be sufficient to prove the following:

Lemma 6.2. Let cε(x, t),Λε(t), 0 < x, t < ∞, and c0(x), 0 < x < ∞, be as in
Lemma 6.1 and satisfy (6.1). If c0(·) is a continuous function then

(6.10) lim
ε→0

ε

2

∂cε(0, T )

∂x
= c0(0, T ) for any T > 0.

Proof. We use the identity

(6.11)
ε

2

∂cε(0, T )

∂x
= lim

λ→0

cε(λε, T )

2λ

and the representation for cε(λε, T ) from (4.15),

(6.12) cε(λε, T ) =

∫ ∞

0

Gε,D(λε, y, 0, T )c0(y) dy,

where Gε,D is the Dirichlet Green’s function corresponding to the drift b(y, t) =
y/Λε(t)− 1. From (6.11), (6.12) and Lemma 5.1 we have that

(6.13)
ε

2

∂cε(0, T )

∂x
≤

∫ ∞

0

{

1− m2,1/Λε
(T )

σ2
1/Λε

(T )
+

m1,1/Λε
(T )y

σ2
1/Λε

(T )
+ CΓ

( ε

T
,
y

T

) [

1 +
y

T

]

}

Gε(0, y, 0, T )c0(y) dy,

where the constant C depends only on T/Λ0(0). We conclude from Lemma 6.1,
(4.11) and (6.13) that

(6.14) lim sup
ε→0

ε

2

∂cε(0, T )

∂x
≤ 1

m1,1/Λ0
(T )

c0

(

m2,1/Λ0
(T )

m1,1/Λ0
(T )

)

,

provided the function c0(y), y > 0, is continuous at y = m2,1/Λ0
(T )/m1,1/Λ0

(T ).
We can obtain a lower bound on the LHS of (6.10) by using Lemma 5.2. Thus

we have that

(6.15)
[

1 + C(ε/T )1/8
] ε

2

∂cε(0, T )

∂x
≥

∫ ∞

5(ε/T )1/8T/c

[

1 + exp
(

−c2(T/ε)1/4(y2/4T 2
) ]−2

×
{

1− m2,1/Λε
(T )

σ2
1/Λε

(T )
+

m1,1/Λε
(T )y

σ2
1/Λε

(T )

}

Gε(0, y, 0, T )c0(y) dy,
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where the constants C, c > 0 depend only on T/Λ0(0). We conclude from Lemma
6.1, (4.11) and (6.15) that

(6.16) lim inf
ε→0

ε

2

∂cε(0, T )

∂x
≥ 1

m1,1/Λ0
(T )

c0

(

m2,1/Λ0
(T )

m1,1/Λ0
(T )

)

,

provided the function c0(y), y > 0, is continuous at y = m2,1/Λ0
(T )/m1,1/Λ0

(T ).
Finally we observe that the RHS of (6.14), (6.16) is the same as c0(0, T ). This
follows by differentiating the function w(x, t) = w0(F1/Λ0

(x, t), 0) with respect to x
at x = 0, and using the formula (2.2) for the function F1/Λ0

. �

7. Upper Bound on the Coarsening Rate of diffusive CP Model

In this section we prove Theorem 1.2. First we show that limt→∞〈Xt〉 = ∞.

Lemma 7.1. Let cε(x, t),Λε(t), 0 < x, t < ∞, be the solution to (1.7), (1.8) with
ε > 0 and non-negative initial data c0(x), 0 < x < ∞, which is a locally integrable
function satisfying (6.1). Then limt→∞ Λε(t) = ∞.

Proof. We have already noted that Λε(t) is an increasing function of t. It will
therefore be sufficient to show that if for some finite Λ∞ we have Λε(t) ≤ Λ∞ for
all t ≥ 0 then there is a contradiction. To see this we use the identity

(7.1)
d

dt

∫ ∞

0

xcε(x, t) dx =
1

Λε(t)

∫ ∞

0

xcε(x, t) dx−
∫ ∞

0

cε(x, t) dx ,

which follows from (1.7). Using the conservation law (1.8) and (7.1) we see that

(7.2)
d

dt

∫ ∞

0

xcε(x, t) dx ≥ 1

2Λ∞

∫ ∞

0

xcε(x, t) dx−
∫ 2Λ∞

0

cε(x, t) dx

=
1

2Λ∞
−
∫ 2Λ∞

0

cε(x, t) dx ≥ 1

2Λ∞
−
∫ 2Λ∞

0

dx

∫ ∞

0

dy Gε(x, y, 0, t)c0(y) ,

where Gε is the function (4.11) with A(s) = 1/Λε(s), s ≥ 0. Hence we conclude
that

(7.3)
d

dt

∫ ∞

0

xcε(x, t) dx ≥ 1

2Λ∞
− 2Λ∞

Λε(0)
√

2πεσ2
1/Λε

(t)
.

From (4.10) we see that σ2
1/Λε

(t) ≥ t and hence (7.3) implies that

(7.4) lim
t→∞

∫ ∞

0

xcε(x, t) dx = ∞ ,

but this is a contradiction to the conservation law (1.8). �

We begin the proof of the inequality (1.14):

Lemma 7.2. Suppose c0 : [0,∞) → R+ satisfies (6.1) and cε(x, t), x ≥ 0, t > 0 is
the solution to (1.7), (1.8) with initial data c0(·) and Dirichlet boundary condition
cε(0, t) = 0, t > 0. Assume that Λε(0) = 1 and that the function hε(x, t) defined
by (2.49) is log-concave in x at t = 0. Then there exist positive universal constants
C, ε0 with 0 < ε0 ≤ 1 such that

(7.5) cε(λε, 1) ≤ Cλcε(ε, 1) for 0 < ε ≤ ε0, 0 < λ ≤ 1.
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Proof. LetX0 be the positive random variable with pdf c0(x)/
∫∞
0

c0(x
′) dx′, x > 0.

Then from (1.9) and the assumption Λε(0) = 1 we see that 〈X0〉 = 1. Since the beta
function (2.35) for X0 is also bounded by 1 it follows from the Chebshev inequality
and the identity (29) of [5] that for δ with 0 < δ < 1, there exists a constant
ν(δ) > 0 depending only on δ such that

(7.6) P (X0 < ν(δ)) + P (X0 > 1/[1− δ]) ≤ 1− δ/2.

Now recall that the Green’s function (4.11) has the form (4.24) where the function
y → q(x, y, 0, t) takes its minimum at y = FA(x, t) where FA is defined by (2.2).
In the case of A(·) = 1/Λε(·), x = λε and t = 1, we see that 1 − (1 − λε)/e ≤
F1/Λε

(λε, 1) ≤ 1+λε. This follows from the fact that the function Λε(·) is increasing
and Λε(0) = 1. We choose now δ, ε0 > 0 sufficiently small so that F1/Λε

(λε, 1) −
ν(δ) > 1/(1 − δ) − F1/Λε

(λε, 1) > 0 for 0 < λ ≤ 1, ε ≤ ε0. It follows then from
Lemma 5.1 that
(7.7)

cε(λε, 1) ≤ C1λ

∫ 1/[1−δ]

ν(δ)

Gε(ε, y, 0, 1)c0(y) dy for 0 < ε ≤ ε0, 0 < λ ≤ 1,

where C1 > 0 depends only on δ, ε0. Next we apply Lemma 5.2 to conclude that
(7.8)
∫ 1/[1−δ]

ν(δ)

Gε(ε, y, 0, 1)c0(y) dy ≤ C2

∫ 1/[1−δ]

ν(δ)

Gε,D(ε, y, 0, 1)c0(y) dy ≤ C2cε(ε, 1) ,

for some constant C2 > 0 depending only on δ, ε0. Actually a strict application of
Lemma 5.2 requires us to impose an additional restriction on ε0 > 0 so that the
condition γ ≥ 5 of Lemma 5.2 holds. Now (7.5) follows from (7.7), (7.8). �

Lemma 7.3. Suppose the initial data c0(·) for (1.7), (1.8) satisfies the conditions
of Lemma 7.2, the function hε(x, t) is log-concave in x for all t ≥ 0, and 0 < ε ≤ ε0.
Then there is a universal constant C such that dΛε(t)/dt ≤ C for t ≥ 1.

Proof. From (1.8), (1.10), (2.35), (2.49) and Lemma 7.2 we see there is a universal
constant C1 such that

(7.9)
dΛε(1)

dt
≤ C1cε(ε, 1)hε(0, 1)

wε(0, 1)2
≤ C1βX1

(ε)hε(0, 1)

hε(ε, 1)
,

where Xt is the random variable with pdf proportional to cε(·, t). We can bound
hε(ε, 1) below by a constant times hε(0, 1). To see this consider a positive random
variable X and observe that

(7.10) E[ X − 〈X〉/2; X > 〈X〉/2 ] ≥ E[ X − 〈X〉/2; X > 3〈X〉/4 ] ≥
1

3
E[ X ; X > 3〈X〉/4 ] ≥ 1

12
〈X〉 .

Since the function Λε(·) is increasing, it follows that 〈X1〉 ≥ 1. We conclude then
from (7.10) that

(7.11) hε(ε, 1) =

∫ ∞

ε

(x − ε)cε(x, 1) dx ≥ 1

12

∫ ∞

0

xcε(x, 1) dx =
1

12
hε(0, 1) ,

provided ε < 1/2. Since the log-concavity of hε(·, 1) implies that βX1
(ε) ≤ 1, we

obtain from (7.9), (7.11) an upper bound on dΛε(t)/dt when t = 1.
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The upper bound for t > 1 now follows from the scaling property of (1.7), (1.8)
mentioned in the discussion following the statement of Theorem 1.2. To see this
we define a function τ(λ), λ ≥ 1, as the solution to the equation Λε(λτ(λ)) = λ.
Observe from (1.10) and the Hopf maximum principle [15] that the function Λε(·)
is strictly increasing. Hence τ(λ) is uniquely determined. Furthermore the function
τ(·) is continuous. Rescaling (1.7), (1.8) by λ, we conclude from the result of the
previous paragraph that

(7.12)
d

dt
Λε(λ[τ(λ) + t]) ≤ Cλ at t = 1.

We have shown then that dΛε(t)/dt ≤ C at t = λ[τ(λ) + 1]. Since the function
λ → λτ(λ) is monotonically increasing with range [0,∞) the result follows. �

To complete the proof of the inequality (1.14) we first observe that by Lemma
7.1 there exists Tε ≥ 0 such that ε/Λε(Tε) ≤ ε0, where ε0 is the universal constant
of Lemma 7.2. We now rescale (1.7), (1.8) with λ = Λε(Tε), which puts us into the
situation of Lemma 7.3. The result follows on taking T = Tε+Λε(Tε), provided we
have the log-concavity property of the function hε in the statement of Lemma 7.3.
The assumption of Theorem 1.2, that the function x → E[X0 − x | X0 > x], 0 ≤
x < ‖X0‖∞, decreases, is equivalent to the assumption that the function hε(·, 0)
is log-concave. Hence it remains to be shown that if hε(·, 0) is log-concave, then
hε(·, t) is also log-concave for all t > 0.

If we make the approximation (2.51) for hε, the log-concavity of hε(·, t) follows
from the Prékopa-Leindler theorem (Theorem 6.4 of [21]). In our situation we
follow the approach of Korevaar [10] and differentiate the PDE (2.65) which hε

satisfies. Thus vε(x, t) = − ∂
∂x log hε(x, t) is a solution of the PDE (2.67), whence

uε(x, t) = ∂vε(x, t)/∂x is a solution to the PDE
(7.13)
∂uε(x, t)

∂t
+

[

x

Λε(t)
− 1 + εvε(x, t)

]

∂uε(x, t)

∂x
+
2uε(x, t)

Λε(t)
+εuε(x, t)

2 =
ε

2

∂2uε(x, t)

∂x2
.

Observe now that

(7.14) uε(x, t) = vε(x, t)
2[1− cε(x, t)hε(x, t)/wε(x, t)

2] .

Since limx→0 cε(x, t) = 0 for t > 0 it follows from (7.14) that lim infx→0 uε(x, t) ≥ 0
for t > 0. If hε(·, 0) is log concave then the initial data uε(x, 0), x > 0, for (7.13)
is also non-negative. We expect then from the maximum principle that uε(x, t)
is non-negative for all x, t > 0, and hence hε(·, t) is a log concave function for all
t > 0.

Although Korevaar’s argument is simple in concept, the rigorous implementation
requires that certain technical difficulties be overcome. Our first step towards rig-
orous implementation is to approximate an arbitrary non-negative random variable
X satisfying 〈X〉 < ∞, and having log-concave function hX(·) as defined by (2.33),
by random variables with some regularity. The approximating random variables Y
have the properties:

(7.15) Y is nonnegative with continuous pdf cY (y), y ≥ 0, and cY (0) = 0.

There exists K, a, L, y0 > 0 and cY (y) = K exp
[

−a(y − y0)− {a(y − y0)}2/2L
]

for y ≥ y0.

The beta function (2.35) of Y satisfies βY (y) < 1 for all y ≥ 0.
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We assume that the function Λε : [0,∞) → R+ of (1.7) is positive and continuous,
and consider solutions cε to (1.7) with Dirichlet boundary condition cε(0, t) = 0, t >
0, and initial condition given by the integrable pdf cX0

(·) of a non-negative random
variable X0 satisfying 〈X0〉 < ∞. We denote by Xt the random variable with pdf
cε(·, t), t > 0.

Lemma 7.4. Assume that the function hX0
(·) for the initial data random variable

X0 of (1.7) is log-concave. Then there is a sequence of random variables Y k
0 , k =

1, 2, .., satisfying (7.15) such that the functions (x, t) → hY k
t
(x), k = 1, 2, .., con-

verge as k → ∞, uniformly in any rectangle {(x, t) : 0 ≤ x ≤ x0, 0 ≤ t ≤ T }, to
the function (x, t) → hXt(x).

Proof. We first assume that ‖X0‖∞ < ∞, and define the beta function for Y k
0 in

the interval 0 ≤ x ≤ (1−2/k)‖X0‖∞ in terms of the beta function for X0 as follows:

(7.16) βY k
0
(x) =

(

1− 1

k

)

k

‖X0‖∞

∫ x

0

βX0
(z) dz for 0 ≤ x ≤ ‖X0‖∞

k
,

βY k
0
(x) =

(

1− 1

k

)

k

‖X0‖∞

∫ x

x−‖X0‖∞/k

βX0
(z) dz for

‖X0‖∞
k

≤ x ≤
(

1− 2

k

)

‖X0‖∞ .

It follows from (2.35), (7.16) that cY k
0
(x) is continuous in the interval 0 ≤ x ≤ (1−

2/k)‖X0‖∞ and cY k
0
(0) = 0. To continue the definition of βY k

0
(·), we choose Lk > 0

sufficiently large so that the function βLk
of Lemma 2.1 satisfies βL(0) ≥ 1 − 1/k

and βL(z) ≤ 1 − 1/2L(1 + z/L)2 for z ≥ 0, L ≥ Lk. We then define βY k
0
(x) for

(1 − 2/k)‖X0‖∞ ≤ x ≤ (1 − 1/k)‖X0‖∞ by linear interpolation, taking the value
βY k

0
((1 − 2/k)‖X0‖∞) at the left end of the interval and the value βLk

(0) at the

right end. Finally we extend cY k
0
(x) to x ≥ (1 − 1/k)‖X0‖∞ by setting it equal

to the Gaussian in (7.15) with y0 = (1 − 1/k)‖X0‖∞, choosing K so that cY k
0
(·)

is continuous and a so that E[Y k
0 − x | Y k

0 > x] = E[X0 − x | X0 > x] when
x = (1− 1/k)‖X0‖∞. The random variable Y k

0 satisfies (7.15). In particular, since
hX0

(·) is log-concave it follows that βY k
0
(x) ≤ 1− 1/k for x ≤ (1 − 2/k)‖X0‖∞.

To construct the pdf cY k
0
(·) from the function βY k

0
(·) defined in the previous

paragraph we first observe from (2.35) that
(7.17)
d

dy
E[Y k

0 −y | Y k
0 > y] = βY k

0
(y)−1 , E[Y k

0 −yk | Y k
0 > yk] = E[X0−yk |X0 > yk] ,

where yk = (1− 1/k)‖X0‖∞. The function vk(y) = E[Y k
0 − y | Y k

0 > y]−1, y ≥ 0,
is uniquely determined by (7.17). From (2.33), (2.34) we see that

(7.18) hY k
0
(x) = Ak exp

[

−
∫ x

0

vk(y) dy

]

, x ≥ 0,

for some constant Ak. If we define the function fk(·) by

(7.19) fk(x) = βY k
0
(x)vk(x)2 exp

[

−
∫ x

0

vk(y) dy

]

, x ≥ 0,

then (2.35) implies that cY k
0
(x) = Akfk(x), x ≥ 0. Using the normalization condi-

tion for the probability measure cY k
0
(·), we conclude that the constant K in (7.15)
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is given by the formula

(7.20) K = fk(y
k)
/

∫ ∞

0

fk(x) dx .

We show that the functions wY k
0
(·) converge as k → ∞ to wX0

(·), uniformly in

[0,∞). To do this we use the identity

(7.21)

∫ ∞

x

fk(y) dy = vk(x) exp

[

−
∫ x

0

vk(y) dy

]

, x ≥ 0,

obtained from (7.17), (7.19). From (7.17) we have that
(7.22)

E[Y k
0 −y | Y k

0 > y] = E[X0−yk |X0 > yk]+

∫ yk

y

[

1− βY k
0
(y′)
]

dy′ , 0 ≤ y ≤ yk .

It follows from (7.16), (7.22) that

(7.23) lim
k→∞

E[Y k
0 −y | Y k

0 > y] =

∫ ‖X0‖∞

y

[1− βX0
(y′)] dy′ , 0 ≤ y < ‖X0‖∞ ,

and the convergence is uniform in any interval {y : 0 ≤ y < ‖X0‖∞(1 − δ)} for
which δ > 0. We conclude from (7.21), (7.23) upon setting v∞(x) = E[X0−x | X >
x]−1 that

(7.24) lim
k→∞

∫ ∞

x

fk(y) dy = v∞(x) exp

[

−
∫ x

0

v∞(y) dy

]

, 0 ≤ x < ‖X0‖∞ ,

and the convergence is uniform in any interval {x : 0 ≤ x < ‖X0‖∞(1 − δ)} for
which δ > 0. Taking x = 0 in (7.24) we have that limk→∞ Ak = E[X0]. Hence
(7.24) implies that

(7.25) lim
k→∞

∫ ∞

x

cY k
0
(y) dy =

∫ ∞

x

cX0
(y) dy , 0 ≤ x < ‖X0‖∞ ,

and the convergence is uniform in any interval {x : 0 ≤ x < ‖X0‖∞(1 − δ)} for
which δ > 0. In view of the integrability of cX0

(·), we conclude that the convergence
(7.25) is uniform for 0 ≤ x < ∞.

We can easily estimate wY k
0
(x) for x ≥ ‖X0‖∞ since the pdf of Y k

0 is Gaussian

when x ≥ ‖X0‖∞. To do this we define a function g : [0,∞) → R by

(7.26) g(z) = E[Z | Z > z]−1 = ez
2/2

∫ ∞

z

e−z′2/2 dz′ =

∫ ∞

0

e−z′z−z′2/2 dz′ ,

where Z is the standard normal variable. Evidently we have from (7.26) that

(7.27) g′(z) = −1 + z

∫ ∞

0

e−z′z−z′2/2 dz′ , g(0) =
√

π/2 .

We conclude from (7.26), (7.27) that g(·) is a decreasing function and limz→∞ g(z) =
0. We can estimate g(z) for large z from the final integral on the RHS of (7.26) to
obtain the inequality

(7.28) 0 < g(z) <
1

z

[

1− 1

z2
+

3

z4

]

,

whence it follows that

(7.29) E[Z | Z > z] > z

[

1 +
1

2z2

]

for z >
√
6.
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Since the final integral on the RHS of (7.26) is strictly less than 1/z for all z > 0,
we conclude from (7.29) that there exists γ0 > 0 and

(7.30) E[Z | Z > z]− z ≥ min{γ0, 1/2z} , z ≥ 0.

The random variable Y of (7.15) has for y ≥ y0 the pdf of a normal variable with
mean y0 − L/a and variance L/a2. We can estimate the value of a when Y = Y k

0

by using the equality E[Y k
0 − yk | Y k

0 > yk] = E[X0 − yk | X0 > yk] ≤ ‖X0‖∞/k.
Observe now that

(7.31) E[Y k
0 − yk | Y k

0 > yk] =

√
Lk

a

(

E[Z | Z >
√

Lk]−
√

Lk

)

.

Hence using the upper bound on the LHS of (7.31), we obtain from (7.30), (7.31)
a lower bound

(7.32) a ≥ k
√
Lk

‖X0‖∞
min{γ0, 1/2

√

Lk}

for a. Since limk→∞ Lk = ∞, it follows from (7.32) that limk→∞ ak = ∞, where
ak is the value of a in (7.15) when Y = Y k

0 .
We have from (7.15) that

(7.33) wY k
0
(x) =

∫ ∞

x−yk

Kk exp[−aky − (aky)
2/2Lk] dy for x ≥ yk .

Furthermore, from (7.25) it follows that for any η > 0 there exists an integer kη
such that wY k

0
(yk) < η for k ≥ kη. This implies a bound on Kk in (7.33) of the

form Kk ≤ ηak, k ≥ kη. Hence from (7.33) it follows that hY k
0
(yk) ≤ η/ak and

hence limk→∞ hY k
0
(yk) = 0. We conclude from this and (7.25) that the functions

x → hY k
0
(x), k = 1, 2, .., converge as k → ∞, uniformly in any interval {x : 0 ≤

x ≤ x0}, to the function x → hX0
(x).

To prove that hY k
t
(·), k = 1, 2, .., converges to hXt(·) for t > 0 we use the fact that

the function wε defined by (2.49) is a solution to the PDE (2.64). Furthermore, the
Dirichlet boundary condition cε(0, t) = 0 for (1.7) becomes a Neumann boundary
condition ∂wε(0, t)/∂x = 0 for (2.64). By the Hopf maximum principle [15] we then
have that

(7.34) sup
∣

∣

∣
wY k

t
(·)− wXt(·)

∣

∣

∣
≤ sup

∣

∣

∣
wY k

0
(·)− wX0

(·)
∣

∣

∣
, t ≥ 0.

From (7.25), (7.34) we see that wY k
t
(·), k = 1, 2, .., converges to wXt(·) for any

t ≥ 0. This implies convergence of hY k
t
(·), k = 1, 2, .., to hXt(·) provided we can

obtain a suitable uniform bound on wY k
t
(x), k = 1, 2, .., for large x. To carry this

out we use the representation (6.6) for wε. Thus we have that

(7.35) wY k
t
(x) ≤

∫ ∞

x

dx′
∫ ∞

0

Gε(x
′, y, 0, t) cY k

0
(y) dy =

∫ ∞

x

dx′ Gε(x
′, 0, 0, t)wY k

0
(0) +m1,1/Λε

(t)

∫ ∞

0

Gε(x, y, 0, t) wY k
0
(y) dy ,

where Gε is given by (4.11) with A(·) = 1/Λε(·). Evidently (7.25) and (7.35) yield
a uniform upper bound on wY k

t
(x), k = 1, 2, .., for large x, which decays rapidly as

x → ∞ to 0.
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We have therefore proven the result for random variables X0 which satisfy
‖X0‖∞ < ∞. In the case when ‖X0‖∞ = ∞ we proceed similarly, approximat-
ing X0 with variables Y k

0 satisfying (7.15) by averaging the beta function of X0

over intervals of length 1/k as in (7.16) for 0 ≤ x ≤ k, k = 1, 2, ... �

Lemma 7.5. Assume that the function hX0
(·) for the initial data random variable

X0 of (1.7) satisfies (7.15) and T > 0. Then there exists xT > 0 such that βXt(x) <
1 for all x ≥ xT , 0 ≤ t ≤ T .

Proof. We first obtain a lower bound on the ratio of the half line Dirichlet Green’s
function defined by (4.14) to the full line Green’s function (4.11). Letting A∞ be
given by (4.1), we show that for any γ > 0, there are positive constants C1, C2

depending only on γ, A∞T such that

(7.36)
Gε,D(x, y, 0, T )

Gε(x, y, 0, T )
≥ 1− exp

[

− x2

C1εT

]

for y ≥ γx, x ≥ C2[T +
√
εT ].

We see from (4.29), (4.41) that in order to establish (7.36) it is sufficient to show
that there are constants C1, C2 depending only on A∞T such that

(7.37) P

(

sup
0≤s≤T

∣

∣

∣

∣

∣

∫ T

0

k(s, s′) dB(s′)

∣

∣

∣

∣

∣

> z

)

≤ exp

[

− z2

C1T

]

for z ≥ C2

√
T .

The inequality (7.37) follows from Doob’s Martingale inequality as in the proof of
Proposition 5.1.

We have now that

(7.38) cXt(x) =

∫ ∞

0

Gε,D(x, y, 0, t)cX0
(y) dy ≤

∫ y0

0

Gε(x, y, 0, t)cX0
(y) dy +

∫ ∞

y0

Gε(x, y, 0, t)cX0
(y) dy ,

where A(·) = 1/Λε(·) in (4.11) and y0 is given in (7.15). We can bound the first
integral on the RHS of (7.38) using integration by parts to obtain the inequality
(7.39)
∫ y0

0

Gε(x, y, 0, t)cX0
(y) dy ≤ Gε(x, 0, 0, t)wX0

(0)−m1,1/Λε
(t)

∂

∂x

∫ y0

0

Gε(x, y, 0, t)wX0
(y) dy .

Since cX0
(y) is Gaussian for y ≥ y0 as given in (7.15), the second integral on the

RHS of (7.38) is bounded by a Gaussian,

(7.40)
∫ ∞

y0

Gε(x, y, 0, t)cX0
(y) dy ≤ K

∫ ∞

−∞
Gε(x, y, 0, t) exp[−a(y−y0)−{a(y−y0)}2/2L] dy

= K exp[L/2]

(

L

a2εσ2
1/Λε

(t) + Lm1,1/Λε
(t)2

)1/2

×

exp



−
(

x+m2,1/Λε
(t)−m1,1/Λε

(t)y0 +m1,1/Λε
(t)L/a

)2

2
{

εσ2
1/Λε

(t) + Lm1,1/Λε
(t)2/a2

}



 .
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We conclude from (4.11), (7.38)-(7.40) that there exist positive constants xT ,MT

such that for 0 < t ≤ T, x ≥ xT ,
(7.41)

cXt(x) ≤
[

1 + exp[−x2/MT

]

Kt exp



− (x+ x̄t)
2

2
{

εσ2
1/Λε

(t) + Lm1,1/Λε
(t)2/a2

}



 ,

where Kt, x̄t are given by the formulas

Kt = K exp[L/2]

(

L

a2εσ2
1/Λε

(t) + Lm1,1/Λε
(t)2

)1/2

,(7.42)

x̄t = m2,1/Λε
(t)−m1,1/Λε

(t)y0 +m1,1/Λε
(t)L/a .

We can use (7.36) to obtain a lower bound on cXt(·). Thus we have that

(7.43) cXt(x) ≥
{

1− exp

[

− x2

C1εT

]}
∫ ∞

γx

Gε(x, y, 0, t)cX0
(y) dy .

Assuming x sufficiently large so that γx ≥ y0 then from (7.40) we see that

(7.44)
∫ ∞

γx

Gε(x, y, 0, t)cX0
(y) dy = Kt exp



− (x+ x̄t)
2

2
{

εσ2
1/Λε

(t) + Lm1,1/Λε
(t)2/a2

}





− K

∫ γx

−∞
Gε(x, y, 0, t) exp[−a(y − y0)− {a(y − y0)}2/2L] dy .

If γ > 0 is sufficiently small then the the second term on the RHS of (7.44) is much
smaller than the first term. Hence we conclude that there exist positive constants
xT ,MT such that for 0 < t ≤ T, x ≥ xT ,
(7.45)

cXt(x) ≥
[

1− exp[−x2/MT

]

Kt exp



− (x+ x̄t)
2

2
{

εσ2
1/Λε

(t) + Lm1,1/Λε
(t)2/a2

}



 .

We can use (7.41), (7.45) to obtain an upper bound for βXt(x) when 0 < t ≤
T, x ≥ xT . In fact from the formula (2.35) we immediately conclude that

(7.46) βXt(x) ≤
[

1 + exp[−x2/MT

]2 [
1− exp[−x2/MT

]−2
βY (x) , for x ≥ xT ,

where βY (·) is the beta function for a Gaussian variable Y with mean m and
variance σ2 given by

(7.47) m = −x̄t , σ2 = εσ2
1/Λε

(t) + Lm1,1/Λε
(t)2/a2 .

Now from Lemma 2.1 we see that if Y is Gaussian with mean m and variance σ2,
then there exists a universal constant C such that

(7.48) βY (x) ≤ 1− σ2

2(x−m)2
for x ≥ Cσ +m .

The result follows from (7.46), (7.48) upon choosing xT sufficiently large. �
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Remark 2. The inequality (7.36) was easy to obtain from the explicit repre-
sentation for the stochastic process Yε(s), 0 ≤ s ≤ T, of (4.8) conditioned on
Yε(0) = y, Yε(T ) = x, when the drift b(·, ·) is linear. It is much more difficult to
obtain estimates on probabilities for the conditioned process in the case of non-linear
b(·, ·). Theorem 1.2 of [6] proves a result for the cdf of Yε(t), 0 < t < T, in the
case of b(·, ·) satisfying the uniform Lipschitz condition (4.1), which is analagous
to (7.36).

Proof of log-concavity of the function hε. We first assume that the initial condition
random variable X0 for (1.7) satisfies (7.15). Then by standard regularity theorems
[8] for solutions to (1.7), the function uε of (7.13) is continuous on the closed set
{(x, t) : x ≥ 0, t ≥ 0}. Furthermore Lemma 7.5 implies that for any T > 0 there
exists xT > 0 such that uε(x, t) > 0 for 0 ≤ t ≤ T, x ≥ xT . In addition, (7.14)
implies that uε(0, t) > 0, 0 ≤ t ≤ T, and (7.15) that uε(x, 0) > 0, x ≥ 0. Since uε

is a classical solution to (7.13), the maximum principle [15] implies that uε(x, t) > 0
for 0 ≤ t ≤ T, 0 ≤ x ≤ xT . We have therefore proven that the function hε(·, t) is
log-concave for 0 ≤ t ≤ T when the initial data random variable X0 satisfies (7.15).
The log-concavity of hε(·, t), t > 0, for general log-concave initial data random
variable X0 now follows from Lemma 7.4. �

Remark 3. The main difficulty in implementing Korevaar’s argument is to show
that the solution of the PDE is log-concave on the boundary of the region. We
accomplished this here by taking advantage of the fact that the full line Green’s
function is Gaussian when the drift b(·, ·) for (4.2) is linear. In the case of non-
linear b(·, ·) it is not possible to argue in this way. An alternative approach is to
use Korevaar’s observation [10] that a Dirichlet boundary condition implies log-
concavity close to the boundary on account of the Hopf maximum principle [15].
Some log-concavity theorems for non-linear b(·, ·) are proved in the appendix of [6]
using this method.
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[20] Veláquez, J.J.L. The Becker-Döring equations and the Lifshitz-Slyozov theory of coarsening.

J. Statist. Phys. 92 (1998), 195-236.
[21] Villani, C. Topics in Optimal Transportation. Graduate Studies in Mathematics 58, Amer.

Math. Soc., Providence R.I., 2003.
[22] Wagner, C. Theorie der alterung von niederschlägen durch umlösen. Z. Elektrochem. 65
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