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Abstract

A novel iterative algorithm for the efficient computation thie intersection areas of an arbitrary number
of circles is presented. The algorithm, based on a treitissture, hinges on two geometric results which
allow the existence-check and the computation of the aréheointersection regions generated by more than
three circles by simple algebraic manipulations of thersdgetion areas of a smaller number of circles. The
presented algorithm is a powerful tool for the performanoalysis of wireless networks, and finds many
applications, ranging from sensor to cellular networks.aksexample of practical application, an insightful
study of the uplink outage probability of in a wireless netkvavith cooperative access points as a function of
the transmission power and access point density is prakente

[. INTRODUCTION AND PROBLEM STATEMENT

The computation of the intersection area of many circles ishallenging problem. While the
intersection of two circles is straightforward, even theeeles admit several configurations, each
resulting in a different expression for the intersectioraarGiven the centers and the radii of the
circles, the automatic discrimination among the variowsesaequires involved condition testing. If we
consider cases with several circles the problem may appesaivable, as the close-form expressions

for the intersection areas become more and more involveddapednd on the specific configuration
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among a huge number of possibilities.

Despite the wide range of applications of this geometricbjgm, a systematic approach is
still lacking. It has been addressed in the literature faeehcircles, but only for some specific
configurations, in[[1]. The intersections amadglimensional balls are used to find their unionlin [2],
in a way analogous to the last step of our proposed algorithinereas|([3] analyzes the special case

of equal circular disks, showing that their intersection && derived from intersection areas among
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fewer circles. However, no algorithmic solution is propse exploit the result in an organized and
exhaustive way.

In this paper, an algorithm that efficiently computes thensgctions of an arbitrary number of circles
is presented. The algorithm works in an iterative fashiod snbased on a trellis structure. At each
iteration, the existence of any intersection is checkeédas the areas computed in the previous steps,
thus highly reducing the computational load. Moreoveryadhle first three steps involve geometric
considerations, whereas, when the number of circles isehifan three, all the areas can be found
via simple algebraic calculations. The presented algoriillows to efficiently solve configurations
with many tens of circles, without any assumption on the @esnand radii of the considered circles.

The technical contributions of this paper are as follows:

« we derive two theorems, that provide an easy way to checkxisteace and calculate the area
of the intersection region of more than three circles, oree éxistence and the area of the
intersections involving a smaller number of circles arevinp

« Wwe present a trellis-based iterative algorithm that allewseasy computation of the wanted areas

even for configurations with a large number of circles.

In the following, the applications of the presented tool imeless networks’ performance analysis

are discussed, and then the geometric problem is formafipete

A. Applications to Wireless Networks

Many frameworks for the evaluation, analysis and simufatal wireless communications are
based on a signal propagation model in which the attenuatiomrred by a transmitted signal is
a monotonically decreasing function of the distance frosmsburce. Thus, the performance of a
receiver is a function of its distance from the source, ansl lgads to a characterization of wireless
networks based on the conceptaoiverage range.

The coverage range of a transmission can be defined by asgigrthreshold bit error rate (BER),
packet error rate (PER) or signal-to-noise-ratio (SNR) cwhdetermines an admissible region of
received power. The coverage range then is the maximumdistaetween two nodes which guarantees
the received power to lie within the admissible region. Tasuiting coverage area of a transmitter
(receiver), is a circle centered on the receiver (trangmithnd with radius equal to the coverage
range. Note that different transmission power levels, paekcoding rate and, in general, transmission

parameters can be represented as multiple circles certardte same node.



A node placed in a point of the plane covered by multiple cagerareas can communicate with all
the nodes associated with those coverage areas. The cdiopwuhthe area of those regions enables
a wide range of considerations in many scenarios of interest

In cellular networks, circular coverage areas may be usel@sggn base station positioning in order
to guarantee connectivity![4]. Recently, considerableraitbn has been devoted to the study of relaying
strategies in multihop cellular networks to improve capaaoverage range and Quality-of-Service
fairness €.g., see([5]-]7]). Circular coverage areas of base stationg@agisi can be used to build a
simple connectivity model aimed at the calculation of therall capacity of the cell]8]. The ability to
calculate the area of the various intersections of the emesareas granted by the proposed algorithm
may be used to compute the probability that a mobile fallswitoverage of a certain set of base
stations/relays.

The computation of the intersection areas may also be useabttel connectivity in many other
infrastructured network scenarios. For instance, in logemeous networks, the areas covered by
different network infrastructures (GSM, UMTS, local aregtwiorks, and so on) may intersect. Thus,
the areas covered by multiple technologies may be used ier dodallocate users and compute the
average performance. This problem has been recently igaést in [9] for downlinkK—tier cellular
networks.

In non-infrastructured ad hoc networks, circles have beadittonally used to characterize channel
sensing and data packet decoding. Again, given a topolbgyatea of the regions in which a new
transmitter detects/decodes signals from the variouscesucan be computed using the proposed
algorithm

In sensor networks, localization relies on the receptiomedcons sent by nodes whose positions
are known. The accuracy achieved by the localization algoridepends on the number of beacon
sources that the node can hear. This requires the computdtibe probability that a node falls within
an area covered by a certain number of circles. Furthernmersections of multiple circles are also
found when addressing the problem of preserving completsirsg coverage of a certain area and
connectivity [10], [11].

Another important example in which intersection areas dtendamental aspect of the performance

IMultiple circles associated with each base station/relay lse used to account for coverage shrinking as the numberbfien
increases.

2For instance, the algorithm can be directly applied to cainguthe probability that a node with uniform spatial distriion falls
within a region connecting other nodes, or becomes a hiddexxmosed terminal.



analysis is routing/[12]. The intersection of the circlesymmapresent the area in which a user can
provide connectivity to some nodes of the network (correspay to the centers of the various circles).
When considering geographic packet forwarding [13]] [1dersection areas may be helpful to derive
the distribution of the advancement and the success pidpatdi the communication.

In this paper, as an example of application of the presented tve study the uplink outage
probability in a wireless network with cooperative accesings as a function of the transmission
power and access point density. An analogous scenario cdouoe in cellular networks, where
recent work showed that cooperation among Base Stationsoffetyconsiderable performance gain.
Multi-cell processing (MCP) has been proven to grant highesughput and achievable data rate [15],
[16], depending on the topology as well as on the robustnésbeobackhaul links. Capacity may
be also increased, as was shownlinl [17], when cooperatioimisdaat cancelling interference. The
use of relays, together with cooperating Base Stations,bkas also considered in [18]. It is clear
that the performance of MCP depends on how many access @ostble to receive and decode the
transmission from a given source, which can be statisyicidtermined by finding the intersections
of the coverage areas of Base Stations and relays.

In the following section, we state in detail the addresseshgadric problem and the contribution of

the paper.

B. Problem Satement and Contribution

Consider a sef = {v,72,...,7~,} Of V. circles, whose centers and radii are known. The circles

in C may partially overlap. We denote with

.....

the set of the points that belong to all circles{in,, v, . . .,7, }CC. The setZ”) contains the circles

in C. We also define the notaticf™ (i1, . . ., iy._,) to denote the intersection efcircles out of theV,

----------

..... NeP\{i1,omriNg—n}"
However, these intersections are not disjoint regions efglane. See for instance Fid. 1, where a

configuration with three circles is depicted. In the figljfg’,?z,?)}:Al, Iﬁ?2}:A1UA4, Iﬁ??)}:AluAg
and Ig?:s}:AlUAg.



We call the regionsA; in the figure exclusive intersection regions, as they correspond to the
intersection of a certain subset of circles, excluding tbgians covered by the other circles @h
We denote these regions &8V (iy, ..., in,_,), Where

EM (i, yine—n) =T (v | e 2)

e€{i1,iNg—n}

For instance£(V)(2, 3) is the region of the plane covered by and that does not overlap with any
other circle ofC (As in Fig.[), and£® (3)=A, is the intersection of;, and~,, excluding the area
covered byy;. We define the sef™ as the set of all the exclusive intersection regions geeeray
n circles. Let us define the s€&=J,_, . £M. Then, the elements & are disjoint regions that
tessellate the overall region covered ®yWe also define the measute where¢(.4) corresponds to
the area of the regionl.

In this paper, we address the problem of computing the measiuthe regions£™, n=1,..., N,,
given the centers and the radii of the circle€inThis appears to be an extremely complex geometrical
problem. In fact, while the area covered by the interseabibtwo circles has a simple measure, even
the intersection area of three circles has a rather invdlead, that depends on the mutual positions
of the circles [[1]. When more than three circles are considlethe number of configurations grows
larger, and the complexity of the geometric conditions dredassociated expression of the intersection
area become difficult to handle.

The rest of the paper is organized as follows. Sedfibn Illeesthe geometric results that are the
foundation of the iterative algorithm. In Sectibnl Ill we dabe in detail the structure of the proposed
algorithm. In Section II-C we show how the wanted areas caidmputed. Finally, in Sectidn V we

present and discuss the aforementioned network desigriepnob

II. GEOMETRIC RESULTS

In this section, we present the geometric results that sepitethe core of the proposed algorithm. A
key observation is the following: a necessary (but in gdnavasufficient) condition for the existence
of the intersection of: circles is the existence of the intersection of all subséts-el circlesH This
consideration may be very useful, since the calculatioreeérsal areas among circles which are not all
intersecting can be avoided. Nonetheless, a strongert remulbe stated if the number of considered

circles is greater thas.

3We say that an intersecticexists if it is non-empty.



Theorem 1

Consider a subset @K N, circlesS={;,, . ..,v:, }CC and the associated intersection regliéﬁ _____ iy
With a slight abuse of notation, we refer to the considergdstiof circles when denoting the intersection
regions, and we Writé{(;‘l_@ =L e, ).

ThenN{iy, ..., i,}, 151, for j#u, if n>4 the following holds: if
H(Z™ (k) >0 Vk € {ir,...,in}, (3)
then alsqb(Ig?

In other words, the existence of theintersections among all the subsetswef 1 circles inS, besides
being an obvious necessary condition for the intersectioora then circles to exist, is also sufficient
whenn > 4.
Proof: Consider a set of circles{~,,, ..., }. By hypothesis)(Z™"1 (k))>0, Vkc{i1, ..., i,}.

Fix the indexk=k and define the sef;={i1, ..., i, }\{k}. As ¢(Z""V(k)) > 0, thenZ("= (k).
Call A the polygoH delimitingZ~Y (k) and whose sides are arcs of circumference;, j=1,...,m,
with 1<m<2(n—2). Note that more than one arc, may belong to the same circtel We denote
with a(i) the set of arcs belonging to the circle

We have to consider three cases:

1) 3€Sr: ali)=0;

2) VyieSg |ali)|=1;

3) VieS; a(i)#0 and3j : |a(j)|>1

In the first casey; fully contains the whole intersection but its circumfererdoes not hit it. Thus
T0=D(k) =22 (k,i)Ny,;=Z"2(k,4). Since by assumption™ Y (k)#£0, Vke{iy, ..., i,}, then also

In the second case, the polyganis delimited by exactly:—1 arcs of circumference, each belonging
to one of then—1 circles inSz. This situation is depicted in Figuré 2. Consider two nonsezutive
arcs of A, namelyq,, a;, and assume, without any loss of generality, that they lgetorthe circles
7:, andn,,, with ki, i,. By assumption, as the intersection of any combination-ef circles exists,
then~, must contain at least one poicZ(™~2?(i;, k) and one point)eZ™~? (i, k). Since a circle

is a convex figure, then the whole segment joinfAgand () must be contained in;. Moreover, P

4A is a particular polygon whose sides are arcs of circumferenc

SWe say that an arc belongs to a circle when it corresponds tartéop of its circumference



andQ both belong taZ" =) (i, iy, k), which is also a convex set (since it is the intersection olex
sets), and therefore the segmént PQCZ™ %) (i1, iy, k), and alsoV cZ""2)(iy, ;). SincePey;, and
Q¢i,, thenV Ny, #0, and analogously'Ny;, #0. It follows, from the fact thal’ cZ 2 (i, i,), that

V' cannot hit any circumference other than thoseypfand~;,. In addition, the point of intersection
betweenl” and the circumference of;, must belong to the arc of this circumference contained in
Z(=Y(iy). This arc isa,., sincea, anda, are two non consecutive arcs Af Hence, there is one point
of a,, which belongs td/. As a side ofA, o, cZ Y (k), wheread/ C~;: this point of intersection then
belongs toI{(Z)W_vin}, which therefore is a non-empty set. The same holds for tie pb intersection
betweenV and the circumference of;, and, consequently, for the fraction &f between the two
intersection points.

Finally, we observe that the found set has non-zero measyreohstruction, and therefore
¢(IEZ)7._.7in})>O. Note that this proof does not hold far=4, where all the arcs ofA are consecutive.
However, in this case the thesis can be proved in an analogaus

In the third case, there is a circle whose associated set of ate$;) contains at least two arcs of
A. It can be shown that two consecutive arcs cannot belongesdme circle. Once observed this,
the proof is analogous to that of the previous case by chgasinand «, as non-consecutive arcs
belonging toa(7). [ |

The previous theorem represents a powerful tool for testiegexistence of the intersection regions
generated by: circles, once those generated by 1 are known. In fact, the intersection of a sgt
of n>4 circles is non-empty if and only if all the intersections bétsubsets of—1 circles ofS are
non-empty. This simple principle substitutes involved dinte-demanding geometric considerations.

The following theorem states an important property which lba used to derive an effective way to
compute the area of any intersectiono€ircles as a function of some specific intersections geedrat
by n—1 andn—2 circles.

Theorem 2

Consider a subset afcirclesS={~;,, . . ., v, } CC, with4<n<N,, and the associated intersection region
Iﬁ?z} with ¢(IEZ),...¢”})>O' Denote withm the number of arcs of circumference that delitit .
Then, ifm > 4, there exist two circles,, v.€S such that:

7% Crumn 4)
£t

Proof: See AppendiXxA. [



Theorenf? requiresA to have a number of arcs greater tiarf this does not holdZ™ collapses
into the intersection of two or three circles, which can beaoted geometrically. If four or more
circles are involved, Theoref ensures that the area ®f*) can be found by algebraic manipulation
of the intersections among—1 andn—2 circles.

In fact, if Theoreng holds, the intersection arga"2 (¢,) among all circles but, and~, is fully
included in the union betweep and~,. The area of this intersection can be calculated by corisigler
the partition of,Uy, into three regions, one belonging only 4g, one to bothy, and~,, and the
third only to v,. All these three regions exist, the second one by hypoth#sesfirst and the third
one because otherwise the required interseci®h would be fully included in one circle, and the
problem could be reduced to an analogous one with a lower auwibcircles. Call these areds,
B, and Bs. T2 (¢, r) intersectsB, by hypothesis, and it may also interse®t, Bs, or even both.
Assume that it intersects all three areas, and call thesetdions respectivelymathcal A;, A; and
As. It is clear thatd, = Z(. These three areas are all unknown. However, it follows ftoeir
definition thatA, U A, = ZV(t), Ay, U A3 = Z-D(r), and A; U Ay U As = 202 (r, t). Then

P(Az) = ((A1)+0(A2)) + (9(A2) + ¢(A3)) — (0(A1)+¢(Az2) + ¢(As) (5)

and, therefore:

é (I(n)) — ¢ (I(n_l)(t))+ b (I(”_l)(r)) — ¢ (I(”—2) (t, r)) (6)

It can be similarly shown that even #"~2)(¢,r) does not intersecB;, B; or both, the result still
holds.

[1l. THE ALGORITHM

In this Section, we describe in detail the proposed algaritWe remark that the algorithm computes
both the non exclusive intersection areas Beand the exclusive ones (s&}. Since the cardinality of
Z grows exponentially with the number of circles, it followsat also the complexity of the algorithm
is exponential in the worst case (the cardinalityfofnstead increases with the square number of the
deployed circles). Indeed, it is shown in Sectiond IV thasthappens when a common intersection
exists among all the circles, with no nested circles. In ttase, the overall complexity grows as
N22%e The algorithm, exploiting the previously derived resultsratively checks the existence and

computes the intersection areas thus achieving a greatlyceel complexity in most cases.



As stated before, the algorithm is based on a trellis stractwhich is built iteration by iteration
with a simple procedure. After having retrieved all the edeins ofZ, the exclusive intersection areas
are also derived and collected in a set of vectors, whichasothtput of the algorithm.

In this Section, we first describe the trellis structure,vging why it is useful to represent and
order the intersection areas, and how it is built throughpsmransition matrices; secondly, we list
the auxiliary variables which are computed at each step efalgorithm, and explain how they are
used; finally, we show how the auxiliary variables are updiateeach step, and how, at the end of

the last step, the vectors containing the exclusive inttise areas can be retrieved from them.

A. Trdlis Sructure

The algorithm is based on a trellis structure. In each it@natthe algorithm takes as input the
structure and the variables built at the previous stepsrderao update the trellis.

Let us clarify how the algorithm works via a graphical exaeapConsider the circles in Fig] 3,
where the first four steps of the algorithm are depicted insthigfigures A, B, C and D, respectively.
In the first step, the algorithm simply calculates the ardaallothe circles. In the second step, the
algorithm checks the existence and computes the inteoseateas of any pair of circles via simple
geometric calculations. In the third step, the intersectoeas of any existing intersection between
any triplet of circles are computed. This is the last stemlving geometric computations, as in the
subsequent steps the existence and the measure of theeatimnsregions of any set of<n<N,
circles are carried out via simple algebraic manipulatibthe areas computed at the previous steps,
exploiting the two theorems presented in Secfion II.

In order to effectively keep track of the existence and valine regions computed in each step we
build a proper graph, in which the various intersection sirearespond to the vertices of the graph.
In this way, the relationships can be represented as thesaafgbe graph. As a byproduct, the graph
is also useful to list and order all the areas to be computed.

Consider a sef of N, circles, labeled as;, with 1<i<N.. Our trellis structure is given by a set
of verticesV and a set of edgeR. Each vertex corresponds to an intersection among someeof th
circles belonging to the sét considered. Hence, there is a one-to-one relationship grti@nvertices
and all possible subsets 6f except the empty set. We define 86v)CC the set of circles whose
intersection corresponds to vertexn the graph.

The vertices are divided into the subs&8:), with n=1,2,..., N.. The subseV(n) is the set of



all the intersections among circles out of the/N, considered (that is, the set of all the subset§€ of
with exactlyn elements).

The obtained subsets can be ordered fiofh) to V(N,.). Each edge can connect only two vertices
belonging to two consecutive subseéi§:) andV(n+1). An edge connectingeV(n) andi€V(n+1)
exists if and only ifS(7)CS(¢). In other words; is reachable fronj if it corresponds to the intersection
of all the circles associated withplus another one.

Finally, also the elements of eadi(n) can be ordered. Vertex of the graph can be uniquely
identified by a binary sequence &f. elementsb,=[b}, b}, ..., by ] such thatbj=1 if v,€S(i). For
instance, ifN.=5, the vertex corresponding to the intersectionyef 73 and v5; can be labeled as
01101. An equivalent labeling is obtained using the decimal repngations of the binary sequences.
In the example above, the same vertex is hence labeléd.abBhe vertices ofY(n) are then ordered
with decreasing labels. An example of the full graph fq=5 is also reported in Fid.14.

The idea behind the trellis is straightforward: a vertexohging to)’(3), for instance, corresponds
to the intersection of three circles. It follows that thigaris related to the three intersection areas
among any pair of the three considered circles (represetdtiree vertices belonging 13,), since
it can be derived from each one of them by adding the missirgjeciThe exact way through which
this can be done is explained below, and relies on Thebatem 2.

With the ordering described above, the graph can be fullgriteesd by N.—1 transition matrices. We
define the transition matrik %il for 1<n<N,, as a binary matrix containing the information about
which edges exist between the verticesVi(r) and the ones iV(n+1). ngil(z‘,j) = 1 if there
exists an edge connecting theth vertex ofV(n+1) and thej—th vertex ofV(n), and0 otherwise.

The computation of the transition matrices can be perforreedrsively, if we consider an additional
subsetV(0), which contains a single element corresponding to the ersgt§, that is, to the region
not covered by any circle. This “virtual” vertex is not indied in the trellis in Fig[ 4, though it can
be inserted on the left side and connected to all the verbeésnging toV(1).

With this modification, the following properties about thartsition matrices hold:

. ijilil for 1 <n < N, is ap x ¢ matrix, where

N, N,
p=<n+1),q=<n) (7)

. Mé{\{c) is a V. x 1 column vector whose elements are all equal to 1.

. If n>[N,./2], then Mﬁﬁf}rl = (M 5@63,1_1%_”) , Where ¢ indicates the transposition along the



secondary diagonal, i.e., the element of the matrix ofithk row andj—th column is moved to
the ¢g—j+1-th row andp—i+1—th column.

« Each transition matrix can be derived recursively as:

Nc—1
M(Nc—)‘rl — M1(’L—1,7L) | ]

0 M (=) (8)

wherel is the identity matrix. We point out that, in any case, it mbstn < N.. However,
for n>[N./2], due to the third property of the transition matrix, we cammpate instead
M%ﬁc_)n_l,Nc_n. The recursion appears in the first and in the fourth term ef rtiatrix on the
right side in Eq.[(B). In the first term botN, andn are reduced at each iteration, until we get to
a matrix withn = 0, which can be derived using the second property of the tiansinatrices.

As regards the fourth term, at each recursion aklyis reduced. In this case, the recursion ends

(No—1)

when N. — 1 = n + 1. In fact, with the exception of the trivial case= 0, the matrlxMMJrl

(Nc—l

can now be derived frorv , due to the third property, which is in turn computed acaogdi

to the second property.
Different transition matrices can be multiplied togethkus giving information about which vertices
of a setV(n) are connected to vertices belongingt(+k), with k>1. The elements of the transition

matrices are binary variables, and we define the transitiatrixnbetween)(n) and V(n+k) as
Ne)
nn+k = ]{7' H £L+k‘ i—1l,n+k—i (9)

B. Auxiliary Variables

As stated before, the algorithm at each stefinds the intersection areas represented by the vertices
belonging toV(n). In order to obtain these areas, it exploits the areas belgng V(n—1), found
in the previous step, and applies Theorem 2 based on théoredhips expressed by the transition
matrix Mn 7 nH During the subsequent steps, however, some information Ipeusollected and stored.
Before describing the steps in detail, we list the auxiligayiables which are computed at each step.

At the end of the algorithm, they are used to retrieve theireduntersection areas.

« We define the:—th label vectoLl ,, as the vector containing the decimal labels of all the eldmen

N, . : .
of the setV(n). ThereforeL,, has Iength( ) and its elements are sorted in decreasing order.
n

®In the following we drop the superscript of the transitiontrites for notation clarity.



These vectors are computed using the transition matricese &, = [2%Ve=! 2N=2 2 1]T,

and

1
Ln - Mn—l,n Ln—l (10)
n—1

The n—th existence vectdE, is a binary vector containing information on the intersactareas
of n circles; therefore, its size is equal to the cardinalitp¢f). Thei—th element oE,, is equal
to 1 if the intersection among the circles associated withitith vertex inV(n) is not empty.
Assuming that all theV, circles belonging t@ have positive radius, the; is an N.x1 column
vector whose elements are all equal to 1. The other vectorbeaecursively computed with the
following rule:

E,+1 = max (M, ,1E,—n1, 0) 11

where1l and O are here column vectors of leng hn]:icl , with all elements equal to 1 and O
respectively, and the maximum is taken element-wise. Egugil) can be explained as follows.
The intersection aread,, of n+1 circles, represented by vertexc)(n+1), can exist only if all
the intersection areas among anyf those circles also exist. These areas are in turn regegben
by n+1 vertices belonging td’(n), which are all connected t@ in the graph. Assume that

is the i—th vertex ofV(n+1): the existence of4,, is indicated byE,,(i). Note now that the
multiplication of thei—th row ofM,, ,,;; andE,, is equal to the number of existing intersections
amongn circles out of then+1 associated witho. Therefore, in order fot4,, to exist, this
product must be equal te+1. This holds for each element &, ., which is then reduced to a
binary vector by subtracting and nulling the negative elements. When we are considegtg) s
of up to two circles we need to do an additional check. In paldir, This means that even when
E,.1(7)=1, the corresponding area may not exist, and the existendervewst therefore be
modified accordingly. This check is not needed for sets adetor more circles due to Theorem
1.

We define thexw—th area vectoA,, as the vector containing the values of all the intersectreas
amongn circles. AsL,, andE,, itis a column vector o Ne elements. The values corresponding
to non existing areas are equal to 0. We remark thatnthe owtarfnthese calculations is the set
Z™, n=1,..., N., while our goal is to compute also the exclusive intersectigions, i.e., the

set€™. We will show how to compute those areas later.



Besides those vectors, the algorithm also keeps track of¢lstorsr, x. andy., containing the
radii and the coordinates of the centers of theircles. Finally, the symmetric matriR contains the

distances among the centeB(s, j) is the distance between the centers of the cirgleand ;.

C. Computation of the Intersection Areas

Based on the trellis structure and the auxiliary variabfgsoduced above, we now illustrate how
the algorithm works.

We recall that the aim of the algorithm is to calculate theaaref all the exclusive intersections of
the set€. The algorithm uses the auxiliary variableg and E,, to efficiently compute the elements
of the vectorsA,,, forn € {1,2,..., N.}.

The algorithm is divided in three phases:

« Initialization phase, where all the auxiliary variableg amitialized;

. Trellis Computation phase, whose aim is to compute the satieall the vectorsA,,, for n €

{1,2,...,N.};
« Data Processing phase, where the exclusive intersectidhe set€ are retrieved from the vectors
A,.

We report in the following how the algorithm works in each gha

In the initialization phase, the auxiliary variables, E; andA; are calculated as stated in Section
[MI-Bl Also, the transition matrices are recursively dexv We assume that all the€, circles involved
have finite and positive radius, and thus the measure of tierreovered by each circle is strictly
positive.

The Trellis Computation phase then is performedVin— 1 subsequent steps. At each stepthe
aim of the algorithm is to calculate and store the correspmndrea vecto,,. To this purpose, it

performs the following operations:

« generation otf_,, from L,,_; using [10). This variable is useful, since the binary labelsich can
be easily obtained from the decimal ones, provide an effeatiay to recognize which vertices
of V(n—1) are connected to each vertex ¥{n);

« generation ofg, from E,_; using [11). The number and positions of the nonzero elements
of E,, provide information on which intersection areas must bewated. Forn<3, however, a
geometric check is necessary for each of these elements, aimonzero value does not necessarily

mean that the intersection represented by the correspprditex exists. The check is done based



on the centers and the radii of the involved circles (idesdifihrough the label vectdr,), and

it is then possible to obtaik,,. No checks are needed far-3, thanks to Theorernl 1;
calculation ofA, from the already known vector;, with ¢ < n. If n < 3, the existing areas,
according to the information given bk,, can be calculated geometrically, applying known
formulas with the centers and the radii of the intersectiigles, again retrieved through,,.

If on the contraryn>3, then we proceed as follows. For theth element ofA,,, that is,A,(k),
we can consider a reduced version of the trellis, contaiwiny the circles whose intersection
is represented by, (k). In this reduced trellis, all the vectoss;, for i < n, are known, each
of them containing a suitable subset of the elements of tlotéoke of the original trellis. The
problem is now equivalent to the more general one of finding in a trellis when all the other
vectorsA; are already known, and we refer to this case from now on.

To solve this problem, we define the vectdxs for i € {1,2,...,N.— 1}, as:
Ne—1

A=Y (—1)TTIMTA; i<N—1
J=i+1

A= (12)
Now A ., which is a scalar, can be found from the vectdrs More specifically, we state that,
for N. > 4, Ay, is equal to the maximum element efANC_Q. This holds also forN, = 4,
unless the minimum elements Af, andA; are equal, and greater than the maximum element of
—ANC_Q. In this special case, an additional geometric check isiredusince the value of\y,

may instead be equal to the minimum elemenlﬁ@jfc_l. A formal proof of these statements, as
well as the required check for the special cage= 4, is reported in Section IlI-D, and is based
on Theoreni 2.

After the last step of the Trellis Computation phase, all WeetorsA;, with i € {1,2,..., N.},

are known. However, the elements of these vectors are nohdielg to the se€, since they are the

areas of the non exclusive intersections. The Data Prowgggiase of the algorithm performs the

computation of the exclusive intersection areas, conthinghe vectorsA;, with i € {1,2,...,N.}.

It can be shown (a sketch of the proof is reported in Sedii&)Ithat the following equation

holds:

Ne
A— Ay (1) THIMEA; Q<N
‘ j=i+1

Ai 7f:]Vc

(13)



where the equality betweeAy, and Ay, is intuitive, since the non exclusive and the exclusive
intersection among all théV, circles are necessarily equal. Equatidnl (13) is similafli®),(except
that now the sum is up t&v,, since here all the vectos; are known. The elements of the vectors

A, are the required areas, and this concludes the algorithm.

D. Proof of algorithm correctness

We prove here that, if the vectoss; and AZ- are known, forl < i < N, thenAy_, which is a
scalar, can be found as the maximum valu&dich_g. This holds forN,. > 4, and very often also
for N. = 4 where, however, in some special cases the required valustisaid equal to the minimum
value ofANc_l. Finally, for N, < 3, all the areas can be found geometrically.

We recall that the vectorA; contain the non exclusive intersection areas, whereas ab®nsA,;

can be obtained using (12). The proof is structured as feliow

. we first determine an expression for the elements of the ¥@Ato We focus on the first element
of A, since all the other ones can be retrieved in an analogousenaie express them as sums
of exclusive intersection areas.

. using the expression &; and applying Theorerl 2, we prove the statementNor> 4.

« We point out in which cases the statement is not trueNoe= 4, and determine how the correct

value ofANc can be found in these special cases.

In the previous Section, it has been stated that the two gewmmEneoremd 1l andl2 cannot be
applied directly in the proposed algorithm. This is becawden the algorithm is executed, it is
not known a priori how the circles intersect with each othehi¢ch would require an exponentially
complex conditions check). The only available data atittiestep are the numerical values of the areas
computed in the previous— 1 steps. More precisely, at stéy., the vectorsA,; for 1 < i < N, are
available. However, the elements of these vectors are patxblusive intersection areas, as explained
before. VectorsA;, for 1 < i < N,, can also be computed, according[fal (12), but also thesergedbd
not contain the values of the exclusive intersection ars@seA y, is not known, and consequently
the sums in[(12) are up t&, — 1.

Therefore, it is not straightforward how the value/f;, can be obtained starting from the vectors
A; andA,, for 1 < i < N.. We focus OnAy, since, in order to compute each elementAqf for
3 < i < N, it is sufficient to run the algorithm while considering onlycircles. In this reduced

version of the algorithmA; has only one element, and its role is exactly the sam&asin the non



reduced version of the algorithm. Finally, the element®pfor : < 3 can be derived via geometric
computation.

The unknown valueA y, is the intersection area of all th¥, circles. In order to explain how this
value can be retrieved, we first clarify which are the areasesponding to the elements of the known
vectors. Each element &f; is the non exclusive intersection area:dafircles. In other words, it is the
value of the area whose points belong to all thensidered circles, but which may be included also
in other circles. In order to distinguish them, we gall ;, ;. the element oA, corresponding to the
non exclusive intersection of circles,, 7,,..., ;. In Figure[$, we depict an example of deployment
of four circles. In this scenario, for example, » is given byg + m + o, whereasy, 54 is equal to
[+ o. We simply callu the intersection of all theéV, circles, which is the only element &_, and,

thus, the value we want to find. Analogously, we qall,, , the exclusive intersection of circles

Yirs Vige-s Vi, With reference to Figurel 5, we hayg , = g, andyuj 3 , = [. Note that these values are
not necessarily contained in any of the vectarsor A..

We now want to express the elements of the veddordor 1 < i < N, as a function of the exclusive
intersection areas, and we start with, which has exactlyV,. elements. The rationale behind equation
(@2) is the following. SincéA; contains the whole areas of all the circles, in order to firel dheas
covered by exactly one circle we need to subtract the frastmf these areas which are shared with
other circles. We first subtract the areas shared by twoesiyalhich are contained iA,. In doing
S0, sinceA, does not contain the exclusive intersection areas, we dteasting the areas shared by
three circles more than once. Hence, we need to sum them. 8day are contained iAs. For the
same reason, we then need to subtract again the areas skdmd bircles, contained i\, and so
forth. If we had the intersection area of all tié circles, at the end of this sum we would get the
exclusive intersection areas of one circle, that is, withight abuse of expression, the areas covered
by exactly one circle.

For the sake of clarity, we recall again the example of Fidgir@he first element of\; contains



the area ofy;, which we calli;. According to equatior_(12), the first elementAf is computed as:
A(l) = i — g — g — tia+ 23 + ti2a + fi34
= (at+et+f+g+l+m+o)—(g+m+o)+
—(f+l+m+o)—(e+1+0)+
+(m+0)+ (o) + (I +0)
= a+o (24)

As can be observed, the result is not the area covered onlyréde ¢;, which would be instead if
A, = o was subtracted by the result. Sindeg is the area we are looking for, it is necessary to find a
way to determine its value.

We first derive an expression for the elements of the vecqrslt is clear from [IR) that the
number of elements oA, is equal to the number of elements &f for eachk. Since the derivation
is analogous for every value &f we focus onA;.

The first element of this vector is obtained as:
Nce—1

Ai(l) = m+ Z G Z HLin iz eoyin—1
n=2

1<i1<19<...<ip—1<N¢

Ne—1
= Y ), (15)
where we define "~
A1 = s
An = Z i izin (16)

1<i1 <io<...<in—1<N¢
Since we are computing the first elementfof, we are focusing on circle;. The first term of the

sum is the area of the circle. The second oxe,s the sum of all the non exclusive intersection areas

betweerny; and another circle)s is the sum of all the non exclusive intersections betwgeand two
other circles, and so on. These areas are not disjoint, siieyeare the non exclusive intersections.
We want to rewrite them in terms of disjoint areas, in ordesitoplify the expression i (15). Define

the following sums of disjoint areas:
Al = m
A, = Z #>1k7z'17i27...,in,1 (17)

1<i1<i2<...<in—1<N¢



According to the above definitiong; is the area covered only by, A} is the sum of all the areas

covered only byy; and another circle, that is, the sum of all the exclusiverggetion areas between

~, and another circle. With reference to Figlte 5, we can waoteiristance:

M=at+e+f+g+l+m+o , A\]=a,

=e+f+g+20+2m+30 , Ny=e+f+g.

We can now express the non exclusive intersection areashvampear in[(15), as functions of the

exclusive ones, by writing relationships between Mye and the\’s. In order to do so, we note the

following facts:

« )\ is the area ofy;, and is hence given by the sum of all the exclusive interseareas involving

~1, that is:

(18)

Ne
Moo= >N
i=1
A2 is the sum of all the non exclusive intersection areas betweend another circle. In doing
this sum, the areas covered by more than two circles (one afhwik, by definition,~;), are

counted more than once. More precisely, the areas coveredchygles are counted — 1 times,

and hence:
Ne

S -1)x

1=2

in general, when computing,, the areas covered hy > £ circles are counted as many times

as the number of possible extractionskof 1 circles out ofn — 1. On the contrary, the areas

covered byn < k circles are never counted. Therefore:

Y /n—1 .
A = Z(k_l)/\n

n=k

(20)

We can order the expressions of thein an N, — 1 x N, matrix L, whosei—th row contains the

terms of the sum defining;. The sign of the even rows is then changed, to get:

[N (o) ()N R
0 =X =X —(" DA
L=1| 0 0 (XN (75 7) AN (21)
L 0o 00 (=1 (V2) Ak




With this representation, according f0{15), the first elenaf A, is simply given by the sum of
all the elements of.. However, while in[(16) the sum is computed row by row, we ndwgearve that
it is simpler to consider the columns. The sum of the elemehtke first column is clearly equal to
A}. For2 <n < N, — 1, the sums,, of the elements of column is expressed as:

n—1
Su = Z(—l)’“(" i 1)A;; =0 (22)

k=0
The sum of all the columns is hence 0, with the exception ofldeeone, due to the fact that the sum

in (I2) is up toN. — 1. The calculation ofs,, is straightforward:
Ne—2
- N.—1\ .,
sve =) <_1)k( k )AN&

k=0
Nc.—1

= (Y e,

k=0
= (DA, (23)

Putting all together, we have that

A1) = Y s,

= MI+(—1)NCMT,2,3,...,NC

= w4 (=) (24)

where i, as defined above, is the intersection area of all AQecircles. It is clear that the same
derivation can be done for all the elementsAof, such thatA, (k) = u} + (—1)Veu. It can also be
shown that an analogous procedure can be followed to deterthe elements of the other vectors
A, with 2 < n < N.. In this case, for each elemeAt, (k) the sums); and \} can be defined in the
same manner, fon < i < N,, and an(N, —n — 1) x (N. — n) matrix can be constructed, finally

resulting in

A.(k) = [N +(_1)Nc_n+1,u (25)



In the expression above, the indicasis, ..., i, depend on the element which is being calculated.

Reporting again the example in Figlire 5, we have:

i, — ]
Wi+ p Pis— Piag+ 1
A ps+ | A Piga— 1 | & Higat 1
A = i Ay = ¥ Az = 26
! Mg+ 2 Moz — M s H134 T M (26)
py + Hq — P34+ 1
| H34— 1

The vectors above can be computed by the algorithm at eaph\We stress again that the area
as well as all the exclusive intersection areas, are unknawd cannot in general be retrieved from
the vectorsA,. This is true forN, > 3, as stated before, since otherwise all the intersecticasacan
be found geometrically. We skip for now the special case= 4. For N, > 5, we can now exploit
Theorenm 2. The theorem holds only if the numbeof circular arcs that delimit the intersection area
of all the circles (in this case equal 19 is greater than or equal to 4.

If this is not true, then there is a circhg, that fully contains the intersection area of all the other
N.—1 circles. This area also belongs+g which implies that there is at least one exclusive intdisec
area amongV, — 1 circles which is empty. Looking at the example fof = 4, whose vectors are
reported in[(26), this means that one of the valugs, in A, is zero. As a consequence, in order to
retrievey it is sufficient in general to take the minimum elementﬁqtrc_l.

If on the contrary the hypothesis of Theorém 2 holds, thengiins that there are two circlgsand
~ that fully contain the intersection area of all the otiAér— 2 circles. Following the same reasoning
as above, it can be concluded that there exists at least mhgsise intersection area among. — 2
circles which is empty, and the value pfis the maximum of—ANc_z.

Unfortunately, this is not enough, since it is not known aprwhether the hypothesis of Theorem
holds or not. If it does not, however, we can use the follgnangument. Ifm = p, with 1 < p < 3,
there arep circles whose intersection is fully included in any othercla (for p = 1, there is one
circle which is contained in any other circle). We c®llthe set of these circles, where@sis the set
of the remainingV, — p circles. ConsidefN, — p — 2 other circles belonging t@. The intersection of
these circles and the ones belongingAas fully contained in the remaining two circles @. As a
conseqguence, at least one of the exclusive intersecti@s amongV, — 2 circles is empty, and again
1 can be obtained as the maximum eﬁ\Nc_2, as in the case where the hypothesis of Thedrem 2

holds. The abovementioned consideration clearly requiras/V, is at least equal to 5, otherwise, if



p = 3, it is not possible to takéV, — p — 2 circles fromQ H
The only case to be studied separatelyVis= 4, which is analyzed in depth in AppendiX B.

IV. ALGORITHM COMPLEXITY

The computation of the algorithm complexity is not strafghwvard, given its strong dependence on
the specific circles deployment. We therefore proceed terdehe an upper bound. We first observe
that the complexity not only depends on the number of cirdlesconsidered, but rather on how
these circles are deployed. For instance, the time needdéuebgigorithm when théV, circles are not
intersecting at all grows a&? (linearly for the calculation of the areas, quadraticabyverify the
absence of any intersection). However, the complexity gradien more circles are intersecting.

We now make the following observation. The algorithm giv@s,a result, both the non exclusive
and the exclusive intersection areas/\of circles. Both these results can be useful, depending on the
considered application. The most demanding task regasdadh exclusive intersection areas, whose
number can rise up t@™<. This number is reached when an intersection among all\heircles
exists. If this is not true, only a subset of the areas reptesgeby the vertices of the graph reported in
Fig.[4 must be computed. Due to Theorem 1, this subset is inatedylidentified after the calculation
of the non exclusive intersection areas among tripletsrofes. In the following we then consider the
case where the intersection between all Mecircles exists.

As regards the exclusive intersection areas, instead, mtioenber is no greater than the number of
disjoint areas in which the plane is divided when the cirees deployed. It can be observed that this
number can be at most equal A¢ — N, + 2, which happens when every circumference intersects all
the remaining circumferen%s

The worst case therefore occurs when there exists an iotenseamong all theV, circles and no
circles are fully included in other ones. We will focus onstlsase from now on.

We start with the computation of the non exclusive inteiisacareas. Having already computed
the ones created by couples and triplets of circles, we Iste to obtain those among5s,... k

circles. We observe from equation {12) that in order to findhealement of the vectoA;, with

'if N. =5 andp = 3, the intersection of the circles belonging ®is fully included in the two circles belonging t@, and the
same reasoning still holds.

8This can be easily proved by adding a circle at a time. The dirste creates two disjoint areas. When th¢h circumference is
added, it can intersect at most all the other 1 ones already deployed, each one in at most 2 different paoiifsse2(i — 1) points
divide the added circumference ir2¢; — 1) arcs. Since all the— 1 already deployed circumferences intersect each other pgthgsis,
each of these arcs divides an existing intersection area2irstreas, hence creating a total2gf — 1) new areas. It follows that, when

all the N. circles have been deployed, the total number of exclusiterdaction areas is given [+ ZZI.\L‘E 2(i—1) = N> = N.+2.



4 < i < k we need to compute the maximum between a subset of the eleroBAt_,, which is
in turn obtained a#\,_» — M7, A, ;. All the matricesM7; are ("°) x (]\;) binary matrices, with
exactly (]g_‘j) non-zero elements per row. Therefore, they can be moreesftigireplaced by lists of

indices, each containing}*) x ("7

: ) indices. These lists should be precomputed, possibly inatsm

(2

manner, exploiting the recursive formulation expresse@)nand the symmetry betwedw,, .., and
MNc—n—l,Nc—n-

With these matrices available, we focus on the number ofatjoers needed to find the vectas,
with 4 < i < k. The vector ha:{]?) elements. The vectok; , has (Z]XQ) elements. The computation
of each one, following the expressidn_, — MiT_z,i_lAi_l, requiresN, — i subtractions, since this is
the number of non-zero elements in each rowidt,; ;. Summing over all the values of the total
number of subtractions is

Ng—2 N, » 1
; ( Z, )(NC —i) = 5N (2% — 2N, - 2) (27)

Having derived the vectok, ,, each element oA, is found as the minimum among a subse(@f
elements ofA;_,. Assuming that finding the minimum betweenelements requires comparisons,
the overall number of comparisons needed is:

i (N) (;) = % (2% = 4N + 4) (Ne = DN, (28)

=4 g

We have shown that, in order to compute tH& non exclusive intersection areas of a family of
N, circles, the number of subtractions needed growsVez“e, while the number of comparisons
needed grows ad’>2e. However, in a smart implementation, once an elemem,df found, it may
also be compared with theelements ofA;_; which correspond to the intersections of all but 1 of
the i circles. In fact, whenevef) . .. is equal toZ{, ;) .. it follows that the circley; fully
contains the intersection of the other 1 circles, and therefore all the exclusive intersectionsvben
subsets of circles containing,, v;,,...7;,_, and not containingy;, can be immediately set to zero.
In this manner, at the end of the computation of the non ex@ustersection areas, several of the
non existing exclusive intersection areas have been atsdifokd.

Having computed all the non exclusive intersection ardas Jdst step is to compute the exclusive
ones. Instead of using equatidnl(13), the following retatop is also valid:

Ne
A_JAi- > MIA; <N,
¢ j=i+1

Ai Z:Nc

(29)



which can be used recursively, froﬂnNc back toA,. Although it seems that the same number of
operations is involved, this is not actually true. This iedo the fact that the number of exclusive
intersection areas is much lower, as said above. Startmmg the exclusive intersection of all the
N, circles, which is known (being equal to the non exclusive)ptiege intersections amongy, — 1
circles are retrieved by means of matN’bgTvc_LNc through the equation defined above. However, some
of these areas may result equal to zero. This informationb@aimmediately exploited, by deleting
the corresponding elements in the malh:/rbﬁc_z]\,c_1 (which can be written in the form of a list, as
explained above). The result is that when computing thesetgion areas amony,. — 2 circles, only

the required operations are performed, neglecting theattiins of non existing areas.

Now, in order to compute the number of required operatioresyafer to the symmetric case where
all the N, circles have the same radius, and when the intersectionekeatwll of them is bounded
by a circular polygon withV, sides, each belonging to a different circle. It is easy tafyehat by
changing the positions or the radii of the circles, the numidfeexclusive intersection areas cannot
increase any mare

In the configuration taken into account, it can be proveddiaah non exclusive intersection between

—k+1

k circles containg ™

) + 1 exclusive intersection areas. The corresponding exausitersection

—k+1

area, therefore, can be computed throggh,*™") subtractions. The overall number of operations, in

order to find all the exclusive intersection areas, is given b

N.—1

~ [N\ (N.—k+1 1

> ( ) ) ( ) + ) =2 (2YNo(N, + 3) — AN(N. + 1)) (30)

k=1
which grows as fast a&/22"-,

We conclude that, in the worst case, where all Mecircles intersect each other and there are no

nested circles, the complexity of the algorithm, in ordefinal all the 2¥ non exclusive intersection

areas and all th&/? — N, + 2 exclusive intersection ones, grows #% N2.

A. Comparison with Monte-Carlo approximation

Other numerical methods can be used to approximate thesvaluthe intersection areas. One of
the most common ones is the Monte-Carlo approximation: abeudV,, of points is randomly chosen
in the area where the circles are deployed. For each of theendistances from thé&/. centers are

®This number actually does not change, as long as the hypstaksut the intersection area among all fie circles holds, except

for cases where three or more circles intersect in a singlg.pdowever, these cases lead to a lower number of exclisteesection
areas; in addition, if the circles are randomly deployeé, ghobability of these configurations is 0.



computed, thus finding the intersection area it belongs itaceSthe probability of choosing a point
in a given intersection area is equal to the ratio betwees d@dhea and the total deployment area,
the values of the intersection areas can be approximated ashigh enough number of test points.
Although the Monte—Carlo method is simpler to implement, va¢éice that/V, distance computations
and comparisons are needed for each deployed point. In@udite precision of this method depends
on the number of deployed points, especially if the ratioMeein the average circle radius and the
side of the deployment area is small. If this is the case, ehexking the existence of the intersection
areas between small circles may require a huge number ofspdiaieed, for an area which jistimes
smaller than the total deployment area, in order to find aevalith a relative error equal te with
probability A, the numberN,, of points needed can be approximated as follows.

When N,, points are tested, each of them is within the desired area pyitbability p. Therefore,
the total number of points which falls within the desiredaais a binomial random variable, with
meanpN,. If N, is high enough, which is true in our case, then the binomiadloan variable can be
well approximated with a Gaussian random variable, withme¥, and variancer?> = pN,(1 — p).

Call this variableX. The condition is then:
P{(1—€)pN, <X < (14 ¢€)pN,) = A (31)

By introducingY” = X /o, — pN,, which is therefore a Gaussian random variable with zeronnaeal

unit variance, we can rewrite the condition as:

epN, epN,
Pl-————<Y<— | =A (32)
[ VPNy(1 = p) VPNy(1 = p)
from which, given the simmetry of the Gaussian pdf, we get:
epN, 1—A
Q| = = — (33)
PN, (1 —p)
where Q)(-) is the Gaussian Complementary Cumulative Distributiondiion. Solving for V,,, we
finally obtain the result:
U el P 1-A\7? (34)
Poep 2

Forp =0.1, e = 0.01 andA = 0.9, the required points are almost 250000. The proposed #igwri
on the contrary, gives the exact values of all the non exatusind exclusive intersection areas,
even when the deployment area is much larger than the avenade area (in this case, indeed, the
probability that all the circles are intersecting with eaather is quite small, which further reduces
the algorithm computational burden).



V. NETWORK DESIGN APPLICATION

The algorithm presented in this paper may become a usefutdatetermine distribution functions
which would be hard to derive analytically. In this Sectioe whow how this can help in network
design problems, in order to determine the optimal settingpecific parameters.

Consider a wireless network where fixed Access Points ateldited in a given area, and a mobile
terminal whose position is randomly chosen in the same avigh,uniform distribution. Assume that
the transmitted power of the mobile terminal is fixed and éqoaP,;, and that a target SNR is
required for decoding. With a commonly used approximatimonsider a circular area around each
access point as its coverage area. The radius of this areaecahosen based on the average SNR
or on the outage probability. Once the channel model is oetexd, the radius depends only on the
transmission powepP;,.

It is clear that, if the power is high enough, there are regicovered by two or more access points.
If we assume some sort of cooperation among the access posets that are located in these areas
can take advantage of the spatial diversity by transmittongnultiple access points. The network
topology has a strong impact on the overall performancehef donsidered area is fixed, increasing
the density of access points makes it easier for a transmissibe decoded by several receivers, but
also implies an increased network deployment cost.

In the following example, we assume flat Rayleigh fadinghstiat, if W is the noise power, the

SNR at distancel from the receiver is given by the well known equation:
_ Pyo

AW
where A is a pathloss factoky is the pathloss exponent, ands the channel fading gain, distributed

SNR(d) d=|n|? (35)

as a complex Gaussian random variable with zero mean andrantnce. The attenuation facter
due to shadowing effects, is here considered constant. dies? of the coverage circles is defined
as the distance at which the average SNR at the access peiguas to a given valué\. Therefore,

PMO' é
= (aa) (36)

Alternatively, the radius can be determined based on a gigage probability, with no substantial

difference in the results. Note also that, since fixed tranpower is assumed, the same analysis could
be done for the downlink as well, with Base Stations coojpggan the transmission phase. Usually,
however, the coverage bottleneck lies in the uplink, duéhéoreduced available power at the mobile

terminals, thus we focus our attention on this scenario.



In this Section, we set the parameters as in TAble I. To aedlye performance, we compute the
outage probability in the absence of interference, defirsetha probability that the SNR is below the
target valuel'. If the node is in the coverage area of two or more access oiveg assume that a
Maximum Ratio Combining strategy is applied. A very robusted channel among the access points
is assumed, and the fading is considered independent anifi@ggt channels. Therefore, the SNR

of the transmission from a source toaccess points can be simply written as

SNR(dy,ds, . ...d, PMUZd Ik (37)

which depends on the distances from all the access pmrilmmbverage range. The circumferences
around the positions of the access points partition theayepént aread, into N disjoint areas.
Call them A4;, with i € {1,2,..., N}, and call¢(i) the number of coverage circled; belongs to.

If we call P[A;] the probability that the source node is located4n the global outage probability
§= P[SNR < T has the general expression:

€= ZP / / P [SNR(51, 8, ..., 0,a) <T] £ o (01,02, 0,0))dO1d0s - . B
(38)
Note thaty(z) may also be equal to O, if the chosen parameters and topologyod guarantee
full coverage of the deployment area. For users located esethareas, we consider that the outage
event has probability 1. In general/ depends on the selected topology, and grows quadraticithy w
the number of circles. We point out that, if interference Isoaaken into account, the SNR should
be replaced with the Signal to Interference-plus-NoisddRE@INR). In this case, however, also the
interference term should be averaged, by integrating dwerpbsition of the interferer(s). Although
a simplified interference model may be used, we notice thatrtiodel should take into account the
correlation between interference levels at all the Baseddsconnected with the source of the useful
signal. Such a model is beyond the scope of this paper.
Equation [(3B) requires the knowledge of three distribigion
« distribution of the source node position, which is uniforgnassumption. This means thR{.A;)
is given by the ratio between the area.4f and the area of the whole deployment asa.
« distribution of the SNR, given the number of access pointhiwitransmission range and their
distances from the source node. Once the distances are fixéallows from (37) that its
distribution is the distribution of a finite sum of indepentiexponential random variables, whose

parameters are related to the distances of the access.pimgsdistribution is known.



« distribution fcgj{@ (01,02, ...,0,3)) of the distances between the source node and the access

----- (i)
points within coverage range, dependent on the consideesl.4. This distribution strongly
depends on the shape of;,. Note that also for areas covered by only one access poist, th
distribution is no longer the distribution of the distandeagpoint randomly placed in a circular

area from its center.

As to the topology, in this example we consider a cellullee-ldeployment of the access points,
which are distributed in a hexagonal grid with side equal.tcEvery other possible deployment is
admissible; however, our choice leads to a lower computatiburden due to the symmetries of the
selected topology. In Figuild 6, an example of the consideypdlogy is reported, for a fixed and
R. The overall performance can be studied as a function okttves parameters, or equivalently, bf
and P,,. For the sake of power saving, lower valuesiyf are preferable, whereas, in order to reduce
the network deployment cost, a highéris desirable. This in turn increases the outage probapility
thus highlighting the need for a tradeoft.

The proposed algorithm can be used to fiag4;] for each aread;. Moreover, it can also be used
to find fﬁ)’cb 77777 d, (01,02, ., 05)), @ we describe in the following.

Consider an areal; covered by only one access point, for example the quasi beshghaded area
around access point 6 in Figuré 6. An analytical expressiorttfe cumulative distribution function
of the distance from the access point here is hardly deevabbwever, we can approximate it by
running the proposed algorithm several times, and propslgcting the radii of the circles. More
specifically, we quantize the cdf with arbitarily small stepTo obtain the desired cdf, we keep the
center of the circles and all the radii, except the radiushefdircle around the access point 1, which
is set to 0, and then increased pyach time the algorithm is run. It is then sufficient to conepait
each iteration the value of the area covered only by acces$ poand normalize it with the area of
A; to get the required cdf and, by numerical differentiatidng torresponding pdf. For areas covered
by two or more circles, the same method is used, now proparlying the radii of the circles around
the involved access points. Two and three-dimensionatiliigtions are obtained for areas covered
by two and three circles respectively. However, for areag@ by four or more circles, only three
dimensional distributions are to be computed, since this@mtes uniquely determine the position
of the source node, and hence all the other distances as Mneliefore, at most three integrals are
to be numerically computed i _(B8). Results become more am@ precise for smaller values of the

guantization step, but the computational burden is also increased.



If we consider the cellular like distribution of Figuré 6, wan assume an infinite deployment area
Ap. In fact, due to the tessellation of the plane, the analyars lue limited to a finite region (the
coloured region in Figure]6), whose area can be regardedeawlible deployment area. With this
choice, border effects are avoided, and a small number oliesirare to be considered. The number
of areas to be computed depends on the ratio betwieand R.

In FigurelT, we report the success probability, thais N R > T'], as a function of the transmission
power Py, and the distancé& between the access points, 0= 10 dB. Once the target SNR is set,
and the corresponding graph is plotted, it is possible terd@he the required transmission power to
achieve a given outage probability with a fixed access pansiy; vice versa, the minimum density
to achieve the same outage probability can be found whenrémsrhission power is instead fixed.
Clearly, the success probability is higher when more poweavailable at the source, or when the
density of the access points is increased. However, thisesoat the cost of a higher number of
required access points or of a shorter battery life of theuode. Depending on the relevance of
these two costs, an objective functigfl) could be also defined. Several choices are possible; as an

example, the objective function may have the following form

 1=&(Pu, L)
o(Far L) = (tPy +nD(L)

where the success probability appears at the numerator,isamtkrivable through[(38). At the

(39)

denominatorD(L) is the access points density, equabig+/3L?), whereas: andn are normalizing
constants, whose values can be properly selected. As anpéxatime value ofy as a function ofP,,
and L is depicted in Figurel8 for specific valuesofaindr. Although the success probability increases
with P, and withD(L), the additional cost in terms of energy and number of degl@ezess points

penalizes the choice of high,, and low L, thus identifying an optimal region.

VI. CONCLUSION

In this paper, a practical algorithm for the computationh# intersection areas among any number
of circles has been presented. The algorithm, based on taxmefeical results, is designed to operate
in an iterative manner, and takes advantage of a trellistsirel to order and calculate all the required
areas, given the radii and the mutual positions of the @radn application of the algorithm has been
presented in a network design problem, where cooperati@vagable among several access points.

Our algorithm makes it possible to derive the distributidrihee location of the source terminal, thus



allowing the calculation of the outage probability as a tiowc of the transmission power and the

density of access points.

APPENDIX A
PROOF OFTHEOREM[2

Proof: Analogously to the proof of Theorelm 1, we distinguish thrases:

1) HVurs -+ Yy JCS:a(uy), - - ., (uy,)=0;

2) VeS8 |a(i)|=1;

3) Vv.eS a(i)#0 and3j : |a(j)|>1.

We skip for now the first case, and focus on the following ones.

In the second case, each cirglehas one arc belonging th. Sincem>4, there exist two circles;,
€S such thaty,ea(t) anda,.€a(r) are non-consecutive sides Af Let us denote a® and() the
points of intersection of, and~,. Note that the existence d? and () is guaranteed by hypothesis,
asZ(™#£(). We also define as the arc ofA belonging toy; and fully contained iny,, anda! as the
arc of A belonging tov, and fully contained iny;.

Moreover, there exists a circtg, €S such thatP¢~;,. In fact, if this circle did not exist, thecZ™
and the arcsy, anda, would be consecutive arcs of.

We need to distinguish two configurations for pofpt

« In the first configuration() does not belong to;, (see Fig[B). Therefore, the intersection of

the circumferences of, and~, belongs to the are’ and the intersection of the circumferences
of v, and~, belongs toa]. As a consequencey, is divided into three disjoint aread;C~,,
AsC, My, and A3Cy,. We thus conclude that, Cv,Uy,. Since,Z"=2)(r,t) is contained iny;,,
then it is also included iny,U~;.

« In the second configuratiorf) belongs toy, (see Fig[1D). In this case there exists,asuch

that Q¢~,. If P¢~,, the theorem can be proved as in the previous configuratioR<ky,., then

ol anda} belong toy,Ny,, as they are sides ak and hence are part @™, Thus, the points
of intersection between the circumferencesypfand, cannot belong toy,.N~;. It follows that
~-MN; is divided into three regions4, Cvy, AxCvy,Ny, and A3C,. Therefore,y, Ny, CynUv.,

and sinceZ™=?) (h, x)Cv,Ny, the thesis is proved.

In the third case, consider the circle with |a(j)|>1. In the proof of Theoremll, we showed
that the two arcsA\ adjacent ton;€a(j) must belong to the circumference of two different circles,

say v, and .. By construction, the arey, is contained iny,N~,. Moreover, alsow,.€a(j), with



a,#aoy, 1S contained iny,Ny,, asa, is an arc ofA. Therefore,y; can be divided into three disjoint
regions analogous to those of the previous case, naetyy,., A>Cv.Ny, and.AsCyy,, which implies
v, CyU7n. SinceZ™=2 (z, h)Cv;, the thesis in the third case is proved.

We now conclude the proof with the first case. Here, theret exisircles containing[&’wl.n}, with
1<w<n-3. Define the subsaf§ =S\ {".,, ..., ., CS that contains the circles; such that
a(j)#£0, and their intersectio ™) (uy, ..., u,_,). Thus, there area—w circles with a non-empty

n)

set of arcsa(j) andw circles that fully contairiZ{(Z i,}- This case is equivalent to the second or

Lyeeey
third case, if we consider only the circles with a non-empmy &f arcs ofA. Since we have already
shown that the theorem holds in those cases, we have hergjthatcS™* : =2 (¢, r)Cy,U,.
Therefore,

=D (r t) I (r,t) C 7,Un,, (40)

In fact, Z"~*)(r, ¢) is equal to the intersection betwef 2 (r,t) and (s snw 7> and is thus
a subset oZ"~*=2)(r t). That proves the theorem in this case. Note that:—3, in fact in order to
havem>4 arcs, we need\ to be bounded by at least three circles. [ |

APPENDIX B
DERIVATION OF Ay, FORN, =4

We describe here howy, can be computed wheN,. = 4 and when an additional geometric check
is necessary. The available vectors in this casedareA, and A;, whose expressions have been
reported in[(ZB). It is useful to considér; = —A,. In this manner, all the elements éf; are smaller
than or equal tq:, whereas all the elements &f, andA; are greater than or equal to Therefore,

we define
@, = min (Al) , by = max (A;) , Cy = min (Ag) 41

According to the considerations reported abovenif> 4 at least one of the exclusive intersection
areas between 2 circles is 0, ands simply equal td,. The same holds alsoifi = 1 andm = 2, so
the only case that must be studied is whens equal to 3. Assume, without loss of generality, that
the circlev, contains the intersection of;, 7, and~s. Then, there are two possible cases, as reported
also in Figurd1N:

« 74 is contained in the union of the other three circles. In tlasecy; = 0, and hencg: = a,;

« 74 IS not contained in the union of the other three circles. s tase, it can be shown that it

fully contains the exclusive intersection of two circlesgaming thaf. = b,.



Moreover, since the intersection areaef v, and~s is included inv,, alsouj , 3 = 0, and in both
cases alsq. = c¢,. In this manner, we have proved that in any case the unknoWwe \&f 1. is equal
to one of the three values,, b, or ¢,, as summarized also in Talle Il. However, it is still to be
determined how the algorithm can recognize which one ofliheetterms is the actual value. In most
cases, this can be inferred by the relationships among ¥ag&ies. We can distinguish the following
exhaustive possibilities:

e ay # b, # c,: in this case, looking at TablelIl, it follows that # 3, and thereforg: = b.,;

e ay, = by # ¢, Ora, # b, = ¢, in both these cases, recalling that ¢, > ;. whereash, < p, it

follows that necessarily. = b.;

e a, =0b, =c,: as in the previous case,

e a, = cy # b, thisis the only case where it is not possible to determinetidr;. = b, or u = a,,.

In fact, looking at Tablé ]I, this may happen bothnif £ 3 and if m = 3 and~, C Ule ~ie N
the former casey = b, in the latter insteagh = a.,.

It is clear that, in the last case, it is very unlikely that# 3, since this would mean that the smallest
exclusive intersection among 1 circle has the same (nophaeea as the smallest exclusive intersection
of three circles (since, = c,). Anyway, since this may happen, it is necessary to deteritia value
of m in a different way.

We first of all calculate which values of. may effectively result i, = ¢, # b,,. Since it can be
shown thatl < m < 2(N, — 1), for N. = 4 we havel < m < 6. We exclude the following cases:

« m = 1:in this casedi: v; C W, Yk € {1,2,3,4}, k # ¢. This implies thatu = 0. Moreover,
Vj # i, we havey; Nvy; C v, Yk € {1,2,3,4}, k # i, j. Hence, alsqu; ; = 0, which implies that
ay = bs.

o m = 2:in this casedi, j, i # j: 7:NY; C W Vk € {1,2,3,4}, k # 4, j. This means that; ; = 0.

In addition,Vk # i, j, it is also true that; Ny, Ny, C v, Vp € {1,2,3,4}, p # 4, j, k, which in
turn implies that alsq:; ;, = 0. As a consequence, = c,.

. m = 4, with 2 sides belonging to the same circle: in this case Térad2 holds, meaning that
there exists one exclusive intersection among two circlél wero area. Moreover, it is clear
that there exists a circlg; that fully contains the intersection of the other threelesdthe ones
whose arcs delimit the intersection area of all the fourleg; meaning that = 0, with

J.k,pe{l1,2,3,4}, andi # j # k # p. Thereforeb, = c,.

« m = 5. here again Theorerl 2 holds, meaning thatj € {1,2,3,4}, i # j: puf; = 0. In

k
Jsksp



addition, as reported in Figute]12, it is clear that two nonsezutive arcs; and ] delimiting
the intersection area of the four circles belong to the samodec say~,. Assume that the arc
between them, namely,, belongs toy,. This arc divides the circle; in two parts. The one
containing the intersection of the four circles is fully taimed in,, since the two circumferences
41 and4, cannot intersect in more than two points, and they alreathrsact inP and@. The
other part ofy, is contained iny; (as well as iny,). In fact, if this were not true, sinc€ and@
both belong toy;, the arc; should intersect the circumferenge in two points. Sincey; and
75 already intersect ik, this would cause them to intersect in more than two poirtslvis
not possible. Thereforey; C v, U~s, andp; = 0, meaning that., = b,.

. m = 6: the same reasoning as for = 5 can be done in this case, again resulting.in= b,.

Having excluded all the above listed cases, there are ordyptvgsible deployments that may result
in a, = c, # b, eitherm = 3 or m = 4 with all the four arcs belonging to different circles. Thega
reported in Figuré_13.

Recall that ifm = 3, the only possible case is the one reported in Figuie 11 onetfihgand
depicted also in Figure_13 on the left). The deployment dediin Figure_Ill on the right is instead
not possible, since it implies, = c,, as reported also in Table II.

From the previous investigation, we can conclude that whe#s- ¢, # b, the value ofy is a., if
the circles are deployed as in Figlrd 13 on the left, and islepub, if the circles are deployed as
in Figure[13 on the right. No other deployments are compatitith the given inequality among,,

b, andc,. The straightforward way to distinguish between the tweesds to calculate all the twelve
intersection points between the four circles. In both s$itues each circle contains exactly three points
of intersection between the other three circles. More pedgiVi € {1,2,3,4}, 3P, Q, R: P € 4; N,

Q €49;,N%, andR € 4, N4, with 5, k,p € {1,2, 3,4}, andi, j, k£ andp all different from each other,
such thatP, @, R € v;, where againy; indicates the circumference of circlg.

However, if m = 3 there is one circle that contains the intersection area efother three circles,
meaning that there is one (and only one) cirglesuch that, using the same notation as abéve, v,

Q € v, and R € ;. This is not true whem: = 4, since in that case, one of the three points contained
in each circley;, given by the intersection of two circumferencgsand 4,, does not belong to the
third circle ,. Simple geometric comparisons among the distances betegrgrrs and intersection
points and the radii of the circles are then enough to distsigthe two cases and, finally, determine

the correct value of.. Note that this check is necessary only fér = 4, and only wheru, = ¢, # b,.
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Fig. 1. Example of configuration with three circles and idfergtion of the regions of interest.

Fig. 2. Intersection of: circles. Here each circumference contains one arc belgngirthe circular polygom\, which delimits the
intersection.



Fig. 3. Example of circles configuration and areas consitiérahe first four steps of the algorithm.

Fig. 4. The trellis structure fon = 5. Some of the binary labels are reported. Thth column of vertices corresponds to the subset
Vi.
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Fig. 9. First configuration of the two possible when=n, and each of the intersecting circles has exactly one arc of circumference
belonging to the polygor\. In the figure.A; containsA.
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Fig. 10. Second configuration of the two possible whesn, and each of the intersecting circles has exactly one arc of circumference
belonging to the polygor\.
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Fig. 11. Possible deployments of 4 circles whenis equal to 3. On the lefty, is included in the union of the other three circles,
whereas on the right this is not true.
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Fig. 12. Intersection of 4 circles, witth = 5.



Fig. 13. The only two possible deployments of 4 circles sui@td, = ¢, # bs.



TABLE |
SYSTEM PARAMETERS FOR THE CELLULARLIKE TOPOLOGY.

Noise powerlV/ —103dBm
Path-loss exponent 3
Shadowing margirw 10 dB
Fixed attenuation parameter 30 dB

SNR thresholdA for decoding radius 10 dB
SNR threshold for outage probability] 10 dB
Quantization step R/50 m

TABLE Il
RELATIONSHIPS AMONGa~, by AND ¢, DEPENDING ON THE POSITIONS OF THE CIRCLES

Case Ordering Value of u
m# 3 Uy, Cy 2 by by

m=3andy, C U?:l Vi | ay =cy = by | ay(=cy)
m=3andy ¢ U?:l Vi | @y 2by=¢ | by(=¢)
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