It is the cache of ${baseHref}. It is a snapshot of the page. The current page could have changed in the meantime.
Tip: To quickly find your search term on this page, press Ctrl+F or ⌘-F (Mac) and use the find bar.

N-Heterocyclic carbene–palladium(II)-1-methylimidazole complex catalyzed Mizoroki–Heck reaction of aryl chlorides with styrenes
 
 
Beilstein Bozen Symposium 2014: registration and call for papers now open

The 2012 Impact Factor is 2.801 according to the Thomson Reuters Journal Citation Reports.


 
 

N-Heterocyclic carbene–palladium(II)-1-methylimidazole complex catalyzed Mizoroki–Heck reaction of aryl chlorides with styrenes

Ting-Ting Gao, Ai-Ping Jin and Li-Xiong Shao
College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Zhejiang Province 325035, People’s Republic of China
Email of corresponding author Corresponding author email     
Associate Editor: K. Itami
Beilstein J. Org. Chem. 2012, 8, 1916–1919.
doi:10.3762/bjoc.8.222
 
 
 
 

Abstract

A well-defined N-heterocyclic carbene–palladium(II)-1-methylimidazole [NHC-Pd(II)-Im] complex 1 was found to be an effective catalyst for the Mizoroki–Heck reaction of a variety of aryl chlorides with styrenes. Both activated and deactivated aryl chlorides work well to give the corresponding coupling products in good to excellent yields by using tetrabutylammonium bromide (TBAB) as the ionic liquid.

Keywords: aryl chloride; Mizoroki–Heck reaction; N-heterocyclic carbene; palladium complex; synthetic method

Top

Introduction

The palladium-catalyzed reaction between organic halides and alkenes, the Mizoroki–Heck reaction, is one of the most versatile methods for the formation of carbon–carbon bonds [1-7]. Usually, in order to achieve the highest efficiency of the palladium-catalyzed Mizoroki–Heck reaction, toxic, air-sensitive and expensive phosphine ligands are introduced to facilitate the corresponding transformations [8,9]. In order to overcome the drawbacks associated with the phosphine ligands, the development of alternative stable, inexpensive and easily available phosphine-free ligands is still in great demand.

In the meantime, N-heterocyclic carbenes (NHCs), possessing the advantages of being stronger σ-donors and weaker π-acceptors than traditional phosphine ligands, which can then increase the catalytic activity of the metal centre and the stability of the NHC–metal complexes, have attracted growing attention in the metal-catalyzed carbon–carbon and carbon–heteroatom bond-formation reactions during the past two decades [10-15]. Consequently, since the seminal papers reported by Herrmann and co-workers [16,17], the NHC–Pd complexes have become a strong challenge to the phosphine–metal complexes in the Mizoroki–Heck reaction. Among the electrophiles participating in the NHC–Pd-complex-catalyzed Mizoroki–Heck reaction, organic iodides and bromides, which can be easily activated by the metal centre, are usually used as good partners [18-25]. In contrast to the common electrophiles such as organic iodides and bromides, organic chlorides are the most attractive in the Mizoroki–Heck reaction toward industrial applications due to their lower cost and the widest availability [26-28]. However, organic chlorides, especially the deactivated ones, are generally unreactive in the NHC–Pd-complex-catalyzed Mizoroki-Heck reaction [29-31]. Furthermore, synthetic routes for the above mentioned NHC–Pd complexes that showed good catalytic activity toward activated aryl chlorides, are all lengthy [32-36]. Therefore, although the progress has been achieved for the NHC–Pd-complex-catalyzed Mizoroki–Heck reaction of aryl chlorides, the drive to develop easily available and widely applicable complexes with broad substrate scope, is still a current topic of interest.

Recently, we have demonstrated that the well-defined N-heterocyclic carbene–palladium(II)-1-methylimidazole [NHC-Pd(II)-Im] complex 1 (Figure 1), which can be easily prepared from commercially available PdCl2, IPr.HCl [1,3-bis(2,6-diisopropylphenyl)imidazolium chloride], and 1-methylimidazole in a one-step procedure in high yield, was an effective catalyst in C–C and C–N bond-formation reactions [37-44]. In our continuing investigations on the further applications of this complex in organic synthesis, we found that complex 1 was an active catalyst for the Mizoroki–Heck reaction of aryl chlorides, including both activated and deactivated aryl chlorides, with styrenes performed under air. Herein, we wish to report these results in detail.

[1860-5397-8-222-1]
Figure 1: NHC-Pd(II)-Im complex 1.
Top

Results and Discussion

Initially, the model reaction between chlorobenzene (2a) (0.75 mmol) and styrene (3a) (0.90 mmol) was carried out in common polar solvents, such as N,N-dimethylformamide, N,N-dimethylacetamide and dimethylsulfoxide, in the presence of different inorganic bases and NHC-Pd(II)-Im complex 1 (1.0 mol %) at 150 °C for 24 h. To our disappointment, almost no desired product 4a was observed in all cases. It was reported that tetrabutylammonium bromide (TBAB), as a simple ionic liquid, possessing the advantages of low price and easy availability, can facilitate the NHC–Pd-complex-catalyzed Mizoroki–Heck reaction [29-31,33]. Thus, we then turned our interest to carrying out the reaction between chlorobenzene (2a) and styrene (3a) in the presence of NHC-Pd(II)-Im 1 using TBAB as the solvent at 140 °C (Table 1). As can be seen from Table 1, all reactions took place smoothly under air to give the desired coupling product 4a in low to excellent yields within 12 h in the presence of any of the bases tested. To our pleasure, the best result can be achieved when Cs2CO3 was used as the base (Table 1, entry 1) [45].

Table 1: Optimization for the NHC-Pd(II)-Im complex 1 catalyzed reaction of chlorobenzene ( 2a) with styrene ( 3a).
[Graphic 1]
Entrya Base Yield (%)b
1 Cs2CO3 94
2 NaOH 54
3 KOH 67
4 NaHCO3 80
5 KHCO3 22
6 Na2CO3 52
7 K2CO3 34
8 KOt-Bu 15
9 NaOt-Bu 44
10 LiOt-Bu 85

The optimal reaction conditions (Table 1, entry 1) were then applied to a variety of aryl chlorides and styrenes to investigate the generality (Table 2). As can be seen from Table 2, most reactions proceeded well to give products 4 in good to high yields. For instance, in the first round, the reactions between various aryl chlorides 2 and styrene (3a) were examined (Table 2, entries 1–7). It seems that all of the activated and deactivated aryl chlorides work well under the optimal conditions to give the products 4b, 4c, 4e, 4f and 4g in good to high yields (Table 2, entries 1, 2, 4, 5 and 6). 2-Methylphenyl chloride (2d) gave product 4d in a slightly lower yield (71%) probably due to its steric hindrance (Table 2, entry 3). The reaction between 2-chlorothiophene (2h) and styrene (3a) also gave product 4h in 63% yield (Table 2, entry 7). In a second round, the reactions between chlorobenzene (2a) and various styrenes 3 were also investigated (Table 2, entries 8–13). It also seems that the electronic effect of the substituents on the styrenes did not affect the reactions, and all reactions took place smoothly to give products 4 in good yields (Table 2, entries 8–12). The reaction between chlorobenzene (2a) and 2,4-dimethylstyrene (3g) only gave product 4l in 67% yield, which may also be due to the steric effect. In addition, acceptable yields can be achieved from the reactions of 2-chlorothiophene (2h) with 4-fluorostyrene (3b) and 4-methylstyrene (3c), respectively (Table 2, entries 19 and 20).

Table 2: NHC-Pd(II)-Im complex 1 catalyzed Mizoroki–Heck reactions of aryl chlorides 2 with styrenes 3.
[Graphic 2]
Entrya 2 (R1) 3 (R2) Yield (%)b
1 2b (3-MeO) 3a (H) 4b, 85
2 2c (3-Me) 3a 4c, 94
3 2d (2-Me) 3a 4d, 71
4 2e (4-F) 3a 4e, 91
5 2f (4-Me) 3a 4f, 80
6 2g (4-NO2) 3a 4g, 89
7c 2h 3a 4h, 63
8 2a (H) 3b (4-F) 4e, 81
9 2a 3c (4-Me) 4f, 85
10 2a 3d (4-MeO) 4i, 83
11 2a 3e (3-F) 4j, 81
12 2a 3f (4-t-Bu) 4k, 80
13 2a 3g (2,4-Me2) 4l, 67
14 2c (3-Me) 3c 4m, 85
15 2g 3b 4n, 90
16 2g 3c 4o, 89
17 2g 3e 4p, 95
18 2g 3f 4q, 86
19c 2h 3b 4r, 53
20c 2h 3c 4s, 51
Top

Conclusion

In summary, an easily available NHC-Pd(II)-Im complex 1 showed efficient catalytic activity toward the Mizoroki–Heck reaction between aryl chlorides and styrenes under air at 140 °C within 12 h. Various activated and deactivated aryl chlorides work well under the optimal reaction conditions. In addition, TBAB, as a “green solvent” and one of the most advantageous ionic liquids due to its low price and availability, was used as the solvent to facilitate the reaction [46-48]. Compared to the previously reported NHC–Pd(II) complexes used in the Mizoroki–Heck reaction with aryl chlorides as the substrates, the method reported in this paper possesses the advantages of easy availability of the catalyst and broader substrate applicability.

Top

Supporting Information

Supporting Information File 1: General procedure for the NHC-Pd(II)-Im complex 1 catalyzed Mizoroki–Heck reaction, characterization data and copies of spectra.
Format: PDF   Size: 1.3 MB   Download

Top

Acknowledgements

Financial support from the Natural Science Foundation of Zhejiang Province (No. LY12B02012) is greatly appreciated. Ting-Ting Gao thanks the Science and Technology Department of Zhejiang Province (Xinmiao Programme) for financial support (No. 2011R424043).

Top

References

  1. Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581. doi:10.1246/bcsj.44.581
    Return to citation in text: [1]
  2. Heck, R. F.; Nolley, J. P., Jr. J. Org. Chem. 1972, 37, 2320–2322. doi:10.1021/jo00979a024
    Return to citation in text: [1]
  3. Heck, R. F. Palladium Reagents in Organic Synthesis; Academic Press: London, 1985.
    Return to citation in text: [1]
  4. Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009–3066. doi:10.1021/cr9903048
    Return to citation in text: [1]
  5. Whitcombe, N. J.; Hii, K. K.; Gilbson, S. E. Tetrahedron 2001, 57, 7449–7476. doi:10.1016/S0040-4020(01)00665-2
    Return to citation in text: [1]
  6. Alonso, F.; Beletskaya, I. P.; Yus, M. Tetrahedron 2005, 61, 11771–11835. doi:10.1016/j.tet.2005.08.054
    Return to citation in text: [1]
  7. Felpin, F.-X.; Nassar-Hardy, L.; Le Callonnec, F.; Fouquet, E. Tetrahedron 2011, 67, 2815–2831. doi:10.1016/j.tet.2011.02.051
    Return to citation in text: [1]
  8. Birkholz, M.-N.; Freixa, Z.; van Leeuwen, P. W. N. M. Chem. Soc. Rev. 2009, 38, 1099–1118. doi:10.1039/b806211k
    And references therein.
    Return to citation in text: [1]
  9. Fu, G. C. Acc. Chem. Res. 2008, 41, 1555–1564. doi:10.1021/ar800148f
    Return to citation in text: [1]
  10. Hillier, A. C.; Grasa, G. A.; Viciu, M. S.; Lee, H. M.; Yang, C.; Nolan, S. P. J. Organomet. Chem. 2002, 653, 69–82. doi:10.1016/S0022-328X(02)01154-3
    Return to citation in text: [1]
  11. Kantchev, E. A. B.; O’Brien, C. J.; Organ, M. G. Angew. Chem., Int. Ed. 2007, 46, 2768–2813. doi:10.1002/anie.200601663
    Return to citation in text: [1]
  12. Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008, 41, 1440–1449. doi:10.1021/ar800020y
    Return to citation in text: [1]
  13. Würtz, S.; Glorius, F. Acc. Chem. Res. 2008, 41, 1523–1533. doi:10.1021/ar8000876
    Return to citation in text: [1]
  14. Fortman, G. C.; Nolan, S. P. Chem. Soc. Rev. 2011, 40, 5151–5169. doi:10.1039/c1cs15088j
    Return to citation in text: [1]
  15. Valente, C.; Çalimsiz, S.; Hoi, K. H.; Mallik, D.; Sayah, M.; Organ, M. G. Angew. Chem., Int. Ed. 2012, 51, 3314–3332. doi:10.1002/anie.201106131
    Return to citation in text: [1]
  16. Herrmann, W. A.; Elison, M.; Fischer, J.; Köcher, C.; Artus, G. R. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 2371–2374. doi:10.1002/anie.199523711
    Return to citation in text: [1]
  17. Herrmann, W. A.; Reisinger, C.-P.; Spiegler, M. J. Organomet. Chem. 1998, 557, 93–96. doi:10.1016/S0022-328X(97)00736-5
    Return to citation in text: [1]
  18. Paulose, T. A. P.; Wu, S.-C.; Olson, J. A.; Chau, T.; Theaker, N.; Hassler, M.; Wilson Quail, J.; Foley, S. R. Dalton Trans. 2012, 41, 251–260. doi:10.1039/c1dt10858a
    Return to citation in text: [1]
  19. Liu, Y.-M.; Lin, Y.-C.; Chen, W.-C.; Cheng, J.-H.; Chen, Y.-L.; Yap, G. P. A.; Sun, S.-S.; Ong, T.-G. Dalton Trans. 2012, 41, 7382–7389. doi:10.1039/c2dt30520h
    Return to citation in text: [1]
  20. Dunsford, J. J.; Cavell, K. J. Dalton Trans. 2011, 40, 9131–9135. doi:10.1039/c1dt10596e
    Return to citation in text: [1]
  21. Guo, S.; Huynh, H. V. Organometallics 2012, 31, 4565–4573. doi:10.1021/om3003625
    Return to citation in text: [1]
  22. Tang, Y.-Q.; Chu, C.-Y.; Zhu, L.; Qian, B.; Shao, L.-X. Tetrahedron 2011, 67, 9479–9483. doi:10.1016/j.tet.2011.10.033
    Return to citation in text: [1]
  23. Ma, M.-T.; Lu, J.-M. Appl. Organomet. Chem. 2012, 26, 175–179. doi:10.1002/aoc.2833
    Return to citation in text: [1]
  24. Blakemore, J. D.; Chalkley, M. J.; Farnaby, J. H.; Guard, L. M.; Hazari, N.; Incarvito, C. D.; Luzik, E. D.; Suh, H. W., Jr. Organometallics 2011, 30, 1818–1829. doi:10.1021/om100890q
    Return to citation in text: [1]
  25. Saito, S.; Saika, M.; Yamasaki, R.; Azumaya, I.; Masu, H. Organometallics 2011, 1366–1373. doi:10.1021/om1008583
    Return to citation in text: [1]
  26. Grushin, V. V.; Alper, H. Activation of otherwise unreactive C–Cl bonds. In Activation of unreactive bonds and organic synthesis; Murai, S., Ed.; Topics in Organometallic Chemistry, Vol. 3; Springer: Berlin, 1999; pp 193–226. doi:10.1007/3-540-68525-1_8
    Return to citation in text: [1]
  27. Grushin, V. V.; Alper, H. Chem. Rev. 1994, 94, 1047–1062. doi:10.1021/cr00028a008
    Return to citation in text: [1]
  28. Bedford, R. B.; Cazin, C. S. J.; Holder, D. Coord. Chem. Rev. 2004, 248, 2283–2321. doi:10.1016/j.ccr.2004.06.012
    Return to citation in text: [1]
  29. Selvakumar, K.; Zapf, A.; Beller, M. Org. Lett. 2002, 4, 3031–3033. doi:10.1021/ol020103h
    Return to citation in text: [1] [2]
  30. Lee, J.-Y.; Cheng, P.-Y.; Tsai, Y.-H.; Lin, G.-R.; Liu, S.-P.; Sie, M.-H.; Lee, H. M. Organometallics 2010, 29, 3901–3911. doi:10.1021/om1006402
    Return to citation in text: [1] [2]
  31. Sie, M.-H.; Hsieh, Y.-H.; Tsai, Y.-H.; Wu, J.-R.; Chen, S.-J.; Vijaya Kumar, P.; Lii, J.-H.; Lee, H. M. Organometallics 2010, 29, 6473–6481. doi:10.1021/om100819q
    Return to citation in text: [1] [2]
  32. Huynh, H. V.; Ho, J. H. H.; Neo, T. C.; Koh, L. L. J. Organomet. Chem. 2005, 690, 3854–3860. doi:10.1016/j.jorganchem.2005.04.053
    Return to citation in text: [1]
  33. Frey, G. D.; Schütz, J.; Herdtweck, E.; Herrmann, W. A. Organometallics 2005, 24, 4416–4426. doi:10.1021/om049001g
    Return to citation in text: [1] [2]
  34. Huynh, H. V.; Neo, T. C.; Tan, G. K. Organometallics 2006, 25, 1298–1302. doi:10.1021/om0510369
    Return to citation in text: [1]
  35. Inomata, S.; Hiroki, H.; Terashima, T.; Ogata, K.; Fukuzawa, S.-i. Tetrahedron 2011, 67, 7263–7267. doi:10.1016/j.tet.2011.07.045
    Return to citation in text: [1]
  36. Huynh, H. V.; Jothibasu, R. J. Organomet. Chem. 2011, 696, 3369–3375. doi:10.1016/j.jorganchem.2011.07.018
    Return to citation in text: [1]
  37. Tang, Y.-Q.; Lu, J.-M.; Shao, L.-X. J. Organomet. Chem. 2011, 696, 3741–3744. doi:10.1016/j.jorganchem.2011.08.042
    Return to citation in text: [1]
  38. Zhou, X.-X.; Shao, L.-X. Synthesis 2011, 3138–3142. doi:10.1055/s-0030-1260169
    Return to citation in text: [1]
  39. Zhu, L.; Gao, T.-T.; Shao, L.-X. Tetrahedron 2011, 67, 5150–5155. doi:10.1016/j.tet.2011.05.057
    Return to citation in text: [1]
  40. Gu, Z.-S.; Shao, L.-X.; Lu, J.-M. J. Organomet. Chem. 2012, 700, 132–134. doi:10.1016/j.jorganchem.2011.11.030
    Return to citation in text: [1]
  41. Zhu, L.; Ye, Y.-M.; Shao, L.-X. Tetrahedron 2012, 68, 2414–2420. doi:10.1016/j.tet.2012.01.008
    Return to citation in text: [1]
  42. Xiao, Z.-K.; Shao, L.-X. Synthesis 2012, 711–716. doi:10.1055/s-0031-1289698
    Return to citation in text: [1]
  43. Lin, X.-F.; Li, Y.; Li, S.-Y.; Xiao, Z.-K.; Lu, J.-M. Tetrahedron 2012, 68, 5806–5809. doi:10.1016/j.tet.2012.05.016
    Return to citation in text: [1]
  44. Wang, Z.-Y.; Chen, G.-Q.; Shao, L.-X. J. Org. Chem. 2012, 77, 6608–6614. doi:10.1021/jo301270t
    Return to citation in text: [1]
  45. Initial investigations showed that good yields can also be achieved when 1.5 equiv of bases were used, but further studies revealed that the repeatability is very poor.
    Return to citation in text: [1]
  46. Calò, V.; Nacci, A.; Monopoli, A. Eur. J. Org. Chem. 2006, 3791–3802. doi:10.1002/ejoc.200600045
    Return to citation in text: [1]
  47. Calò, V.; Nacci, A.; Monopoli, A.; Cotugno, P. Angew. Chem., Int. Ed. 2009, 48, 6101–6103. doi:10.1002/anie.200902337
    Return to citation in text: [1]
  48. Wang, L.; Li, H.; Li, P. Tetrahedron 2009, 65, 364–368. doi:10.1016/j.tet.2008.10.042
    Return to citation in text: [1]
Top
Figure 1: NHC-Pd(II)-Im complex 1. Move  Close
Table 1: Optimization for the NHC-Pd(II)-Im complex 1 catalyzed reaction of chlorobenzene ( 2a) with styrene ( 3a). Move  Close
[Graphic 1]
Entrya Base Yield (%)b
1 Cs2CO3 94
2 NaOH 54
3 KOH 67
4 NaHCO3 80
5 KHCO3 22
6 Na2CO3 52
7 K2CO3 34
8 KOt-Bu 15
9 NaOt-Bu 44
10 LiOt-Bu 85
Table 2: NHC-Pd(II)-Im complex 1 catalyzed Mizoroki–Heck reactions of aryl chlorides 2 with styrenes 3. Move  Close
[Graphic 2]
Entrya 2 (R1) 3 (R2) Yield (%)b
1 2b (3-MeO) 3a (H) 4b, 85
2 2c (3-Me) 3a 4c, 94
3 2d (2-Me) 3a 4d, 71
4 2e (4-F) 3a 4e, 91
5 2f (4-Me) 3a 4f, 80
6 2g (4-NO2) 3a 4g, 89
7c 2h 3a 4h, 63
8 2a (H) 3b (4-F) 4e, 81
9 2a 3c (4-Me) 4f, 85
10 2a 3d (4-MeO) 4i, 83
11 2a 3e (3-F) 4j, 81
12 2a 3f (4-t-Bu) 4k, 80
13 2a 3g (2,4-Me2) 4l, 67
14 2c (3-Me) 3c 4m, 85
15 2g 3b 4n, 90
16 2g 3c 4o, 89
17 2g 3e 4p, 95
18 2g 3f 4q, 86
19c 2h 3b 4r, 53
20c 2h 3c 4s, 51
32. Huynh, H. V.; Ho, J. H. H.; Neo, T. C.; Koh, L. L. J. Organomet. Chem. 2005, 690, 3854–3860. doi:10.1016/j.jorganchem.2005.04.053
33. Frey, G. D.; Schütz, J.; Herdtweck, E.; Herrmann, W. A. Organometallics 2005, 24, 4416–4426. doi:10.1021/om049001g
34. Huynh, H. V.; Neo, T. C.; Tan, G. K. Organometallics 2006, 25, 1298–1302. doi:10.1021/om0510369
35. Inomata, S.; Hiroki, H.; Terashima, T.; Ogata, K.; Fukuzawa, S.-i. Tetrahedron 2011, 67, 7263–7267. doi:10.1016/j.tet.2011.07.045
36. Huynh, H. V.; Jothibasu, R. J. Organomet. Chem. 2011, 696, 3369–3375. doi:10.1016/j.jorganchem.2011.07.018
Go to references 32-36
37. Tang, Y.-Q.; Lu, J.-M.; Shao, L.-X. J. Organomet. Chem. 2011, 696, 3741–3744. doi:10.1016/j.jorganchem.2011.08.042
38. Zhou, X.-X.; Shao, L.-X. Synthesis 2011, 3138–3142. doi:10.1055/s-0030-1260169
39. Zhu, L.; Gao, T.-T.; Shao, L.-X. Tetrahedron 2011, 67, 5150–5155. doi:10.1016/j.tet.2011.05.057
40. Gu, Z.-S.; Shao, L.-X.; Lu, J.-M. J. Organomet. Chem. 2012, 700, 132–134. doi:10.1016/j.jorganchem.2011.11.030
41. Zhu, L.; Ye, Y.-M.; Shao, L.-X. Tetrahedron 2012, 68, 2414–2420. doi:10.1016/j.tet.2012.01.008
42. Xiao, Z.-K.; Shao, L.-X. Synthesis 2012, 711–716. doi:10.1055/s-0031-1289698
43. Lin, X.-F.; Li, Y.; Li, S.-Y.; Xiao, Z.-K.; Lu, J.-M. Tetrahedron 2012, 68, 5806–5809. doi:10.1016/j.tet.2012.05.016
44. Wang, Z.-Y.; Chen, G.-Q.; Shao, L.-X. J. Org. Chem. 2012, 77, 6608–6614. doi:10.1021/jo301270t
Go to references 37-44
26. Grushin, V. V.; Alper, H. Activation of otherwise unreactive C–Cl bonds. In Activation of unreactive bonds and organic synthesis; Murai, S., Ed.; Topics in Organometallic Chemistry, Vol. 3; Springer: Berlin, 1999; pp 193–226. doi:10.1007/3-540-68525-1_8
27. Grushin, V. V.; Alper, H. Chem. Rev. 1994, 94, 1047–1062. doi:10.1021/cr00028a008
28. Bedford, R. B.; Cazin, C. S. J.; Holder, D. Coord. Chem. Rev. 2004, 248, 2283–2321. doi:10.1016/j.ccr.2004.06.012
Go to references 26-28
29. Selvakumar, K.; Zapf, A.; Beller, M. Org. Lett. 2002, 4, 3031–3033. doi:10.1021/ol020103h
30. Lee, J.-Y.; Cheng, P.-Y.; Tsai, Y.-H.; Lin, G.-R.; Liu, S.-P.; Sie, M.-H.; Lee, H. M. Organometallics 2010, 29, 3901–3911. doi:10.1021/om1006402
31. Sie, M.-H.; Hsieh, Y.-H.; Tsai, Y.-H.; Wu, J.-R.; Chen, S.-J.; Vijaya Kumar, P.; Lii, J.-H.; Lee, H. M. Organometallics 2010, 29, 6473–6481. doi:10.1021/om100819q
Go to references 29-31
16. Herrmann, W. A.; Elison, M.; Fischer, J.; Köcher, C.; Artus, G. R. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 2371–2374. doi:10.1002/anie.199523711
17. Herrmann, W. A.; Reisinger, C.-P.; Spiegler, M. J. Organomet. Chem. 1998, 557, 93–96. doi:10.1016/S0022-328X(97)00736-5
Go to references 16,17
29. Selvakumar, K.; Zapf, A.; Beller, M. Org. Lett. 2002, 4, 3031–3033. doi:10.1021/ol020103h
30. Lee, J.-Y.; Cheng, P.-Y.; Tsai, Y.-H.; Lin, G.-R.; Liu, S.-P.; Sie, M.-H.; Lee, H. M. Organometallics 2010, 29, 3901–3911. doi:10.1021/om1006402
31. Sie, M.-H.; Hsieh, Y.-H.; Tsai, Y.-H.; Wu, J.-R.; Chen, S.-J.; Vijaya Kumar, P.; Lii, J.-H.; Lee, H. M. Organometallics 2010, 29, 6473–6481. doi:10.1021/om100819q
33. Frey, G. D.; Schütz, J.; Herdtweck, E.; Herrmann, W. A. Organometallics 2005, 24, 4416–4426. doi:10.1021/om049001g
Go to references 29-31,33
18. Paulose, T. A. P.; Wu, S.-C.; Olson, J. A.; Chau, T.; Theaker, N.; Hassler, M.; Wilson Quail, J.; Foley, S. R. Dalton Trans. 2012, 41, 251–260. doi:10.1039/c1dt10858a
19. Liu, Y.-M.; Lin, Y.-C.; Chen, W.-C.; Cheng, J.-H.; Chen, Y.-L.; Yap, G. P. A.; Sun, S.-S.; Ong, T.-G. Dalton Trans. 2012, 41, 7382–7389. doi:10.1039/c2dt30520h
20. Dunsford, J. J.; Cavell, K. J. Dalton Trans. 2011, 40, 9131–9135. doi:10.1039/c1dt10596e
21. Guo, S.; Huynh, H. V. Organometallics 2012, 31, 4565–4573. doi:10.1021/om3003625
22. Tang, Y.-Q.; Chu, C.-Y.; Zhu, L.; Qian, B.; Shao, L.-X. Tetrahedron 2011, 67, 9479–9483. doi:10.1016/j.tet.2011.10.033
23. Ma, M.-T.; Lu, J.-M. Appl. Organomet. Chem. 2012, 26, 175–179. doi:10.1002/aoc.2833
24. Blakemore, J. D.; Chalkley, M. J.; Farnaby, J. H.; Guard, L. M.; Hazari, N.; Incarvito, C. D.; Luzik, E. D.; Suh, H. W., Jr. Organometallics 2011, 30, 1818–1829. doi:10.1021/om100890q
25. Saito, S.; Saika, M.; Yamasaki, R.; Azumaya, I.; Masu, H. Organometallics 2011, 1366–1373. doi:10.1021/om1008583
Go to references 18-25
45. Initial investigations showed that good yields can also be achieved when 1.5 equiv of bases were used, but further studies revealed that the repeatability is very poor.
Go to reference 45
8. Birkholz, M.-N.; Freixa, Z.; van Leeuwen, P. W. N. M. Chem. Soc. Rev. 2009, 38, 1099–1118. doi:10.1039/b806211k
And references therein.
9. Fu, G. C. Acc. Chem. Res. 2008, 41, 1555–1564. doi:10.1021/ar800148f
Go to references 8,9
46. Calò, V.; Nacci, A.; Monopoli, A. Eur. J. Org. Chem. 2006, 3791–3802. doi:10.1002/ejoc.200600045
47. Calò, V.; Nacci, A.; Monopoli, A.; Cotugno, P. Angew. Chem., Int. Ed. 2009, 48, 6101–6103. doi:10.1002/anie.200902337
48. Wang, L.; Li, H.; Li, P. Tetrahedron 2009, 65, 364–368. doi:10.1016/j.tet.2008.10.042
Go to references 46-48
10. Hillier, A. C.; Grasa, G. A.; Viciu, M. S.; Lee, H. M.; Yang, C.; Nolan, S. P. J. Organomet. Chem. 2002, 653, 69–82. doi:10.1016/S0022-328X(02)01154-3
11. Kantchev, E. A. B.; O’Brien, C. J.; Organ, M. G. Angew. Chem., Int. Ed. 2007, 46, 2768–2813. doi:10.1002/anie.200601663
12. Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008, 41, 1440–1449. doi:10.1021/ar800020y
13. Würtz, S.; Glorius, F. Acc. Chem. Res. 2008, 41, 1523–1533. doi:10.1021/ar8000876
14. Fortman, G. C.; Nolan, S. P. Chem. Soc. Rev. 2011, 40, 5151–5169. doi:10.1039/c1cs15088j
15. Valente, C.; Çalimsiz, S.; Hoi, K. H.; Mallik, D.; Sayah, M.; Organ, M. G. Angew. Chem., Int. Ed. 2012, 51, 3314–3332. doi:10.1002/anie.201106131
Go to references 10-15
1. Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581. doi:10.1246/bcsj.44.581
2. Heck, R. F.; Nolley, J. P., Jr. J. Org. Chem. 1972, 37, 2320–2322. doi:10.1021/jo00979a024
3. Heck, R. F. Palladium Reagents in Organic Synthesis; Academic Press: London, 1985.
4. Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009–3066. doi:10.1021/cr9903048
5. Whitcombe, N. J.; Hii, K. K.; Gilbson, S. E. Tetrahedron 2001, 57, 7449–7476. doi:10.1016/S0040-4020(01)00665-2
6. Alonso, F.; Beletskaya, I. P.; Yus, M. Tetrahedron 2005, 61, 11771–11835. doi:10.1016/j.tet.2005.08.054
7. Felpin, F.-X.; Nassar-Hardy, L.; Le Callonnec, F.; Fouquet, E. Tetrahedron 2011, 67, 2815–2831. doi:10.1016/j.tet.2011.02.051
Go to references 1-7
© 2012 Gao et al; licensee Beilstein-Institut.
This is an Open Access article under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: ( http://www.beilstein-journals.org/bjoc)