Open Access Research

An implicit iterative algorithm with errors for two families of generalized asymptotically nonexpansive mappings

Ravi P Agarwal1, Xiaolong Qin2 and Shin Min Kang3*

Author Affiliations

1 Department of Mathematics, Texas A&M University - Kingsville, Kingsville, TX 78363-8202, USA

2 School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power, Zhengzhou 450011, China

3 Department of Mathematics and RINS, Gyeongsang National University, Jinju 660-701, Korea

For all author emails, please log on.

Fixed Point Theory and Applications 2011, 2011:58  doi:10.1186/1687-1812-2011-58


The electronic version of this article is the complete one and can be found online at: http://www.fixedpointtheoryandapplications.com/content/2011/1/58


Received: 13 April 2011
Accepted: 27 September 2011
Published: 27 September 2011

© 2011 Agarwal et al; licensee Springer.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, an implicit iterative algorithm with errors is considered for two families of generalized asymptotically nonexpansive mappings. Strong and weak convergence theorems of common fixed points are established based on the implicit iterative algorithm.

Mathematics Subject Classification (2000) 47H09 · 47H10 · 47J25

Keywords:
Asymptotically nonexpansive mapping; common fixed point; implicit iterative algorithm; generalized asymptotically nonexpansive mapping

1 Introduction

In nonlinear analysis theory, due to applications to complex real-world problems, a growing number of mathematical models are built up by introducing constraints which can be expressed as subproblems of a more general problem. These constraints can be given by fixed-point problems, see, for example, [1-3]. Study of fixed points of nonlinear mappings and its approximation algorithms constitutes a topic of intensive research efforts. Many well-known problems arising in various branches of science can be studied by using algorithms which are iterative in their nature. The well-known convex feasibility problem which captures applications in various disciplines such as image restoration, computer tomography, and radiation therapy treatment planning is to find a point in the intersection of common fixed point sets of a family of nonexpansive mappings, see, for example, [3-5].

For iterative algorithms, the most oldest and simple one is Picard iterative algorithm. It is known that T enjoys a unique fixed point, and the sequence generated in Picard iterative algorithm can converge to the unique fixed point. However, for more general nonexpansive mappings, Picard iterative algorithm fails to convergence to fixed points of nonexpansive even that it enjoys a fixed point.

Recently, Mann-type iterative algorithm and Ishikawa-type iterative algorithm (implicit and explicit) have been considered for the approximation of common fixed points of nonlinear mappings by many authors, see, for example, [6-24]. A classical convergence theorem of nonexpansive mappings has been established by Xu and Ori [23]. In 2006, Chang et al. [6] considered an implicit iterative algorithm with errors for asymptotically nonexpansive mappings in a Banach space. Strong and weak convergence theorems are established. Recently, Cianciaruso et al. [9] considered an Ishikawa-type iterative algorithm for the class of asymptotically nonexpansive mappings. Strong and weak convergence theorems are also established. In this paper, based on the class of generalized asymptotically nonexpansive mappings, an Ishikawa-type implicit iterative algorithm with errors for two families of mappings is considered. Strong and weak convergence theorems of common fixed points are established. The results presented in this paper mainly improve the corresponding results announced in Chang et al. [6], Chidume and Shahzad [7], Cianciaruso et al. [9], Guo and Cho [10], Khan et al. [12], Plubtieng et al. [14], Qin et al. [15], Shzhzad and Zegeye [18], Thakur [21], Thianwan and Suantai [22], Xu and Ori [23], Zhou and Chang [24].

2 Preliminaries

Let C be a nonempty closed convex subset of a Banach space E. Let T : C C be a mapping. Throughout this paper, we use F(T) to denote the fixed point set of T.

Recall the following definitions.

T is said to be nonexpansive if

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M1">View MathML</a>

T is said to be asymptotically nonexpansive if there exists a positive sequence {hn} ⊂ [1, ∞) with hn → 1 as n → ∞ such that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M2','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M2">View MathML</a>

It is easy to see that every nonexpansive mapping is asymptotically nonexpansive with the asymptotical sequence {1}. The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [25] in 1972. It is known that if C is a nonempty bounded closed convex subset of a uniformly convex Banach space E, then every asymptotically nonexpansive mapping on C has a fixed point. Further, the set F(T) of fixed points of T is closed and convex. Since 1972, a host of authors have studied weak and strong convergence problems of implicit iterative processes for such a class of mappings.

T is said to be asymptotically nonexpansive in the intermediate sense if it is continuous and the following inequality holds:

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M3">View MathML</a>

(2.1)

Putting ξn = max{0, supx,yC(||Tnx - Tny|| - ||x - y||)}, we see that ξn → 0 as n → ∞. Then, (2.1) is reduced to the following:

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M4','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M4">View MathML</a>

The class of asymptotically nonexpansive mappings in the intermediate sense was introduced by Bruck et al. [26] (see also Kirk [27]) as a generalization of the class of asymptotically nonexpansive mappings. It is known that if C is a nonempty closed convex and bounded subset of a real Hilbert space, then every asymptotically nonexpansive self mapping in the intermediate sense has a fixed point; see [28] more details.

T is said to be generalized asymptotically nonexpansive if it is continuous and there exists a positive sequence {hn} ⊂ [1, ∞) with hn → 1 as n → ∞ such that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M5">View MathML</a>

(2.2)

Putting ξn = max{0, supx,yC(||Tnx - Tny|| - hn||x - y||)}, we see that ξn → 0 as n → ∞. Then, (2.2) is reduced to the following:

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M6','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M6">View MathML</a>

We remark that if hn ≡ 1, then the class of generalized asymptotically nonexpansive mappings is reduced to the class of asymptotically nonexpansive mappings in the intermediate.

In 2006, Chang et al. [6] considered the following implicit iterative algorithms for a finite family of asymptotically nonexpansive mappings {T1, T2,..., TN} with {αn} a real sequence in (0, 1), {un} a bounded sequence in C and an initial point x0 C:

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M7">View MathML</a>

The above table can be rewritten in the following compact form:

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M8','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M8">View MathML</a>

where for each n ≥ 1 fixed, j(n) - 1 denotes the quotient of the division of n by N and i(n) the rest, i.e., n = (j(n) - 1)N + i(n).

Based on the implicit iterative algorithm, they obtained, under the assumption that C + C C, weak and strong convergence theorems of common fixed points for a finite family of asymptotically nonexpansive mappings {T1, T2,..., TN}; see [6] for more details.

Recently, Cianciaruso et al. [9] considered a Ishikawa-like iterative algorithm for the class of asymptotically nonexpansive mappings in a Banach space. To be more precise, they introduced and studied the following implicit iterative algorithm with errors.

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M9','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M9">View MathML</a>

(2.3)

where {αn}, {βn}, {γn}, and {δn} are real number sequences in [0,1], {un} and {vn} are bounded sequence in C. Weak and strong convergence theorems are established in a uniformly convex Banach space; see [29] for more details.

In this paper, motivated and inspired by the results announced in Chang et al. [6], Chidume and Shahzad [7], Cianciaruso et al. [9], Guo and Cho [10], Plubtieng et al. [14], Qin et al. [15], Shzhzad and Zegeye [18], Thakur [21], Thianwan and Suantai [22], Xu and Ori [23], Zhou and Chang [24], we consider the following Ishikawa-like implicit iteration algorithm with errors for two finite families of generalized asymptotically nonexpansive mappings {T1, T2,..., TN} and {S1, S2,..., SN}.

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M10">View MathML</a>

where {αn}, {βn}, {γn}, <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M11','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M11">View MathML</a>, <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M12','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M12">View MathML</a>, and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M13">View MathML</a> are sequences in [0,1] such that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M14">View MathML</a> for each n ≥ 1. We have rewritten the above table in the following compact form:

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M15','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M15">View MathML</a>

where for each n ≥ 1 fixed, j(n) - 1 denotes the quotient of the division of n by N and i(n) the rest, i.e., n = (j(n) - 1)N + i(n).

Putting <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M16','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M16">View MathML</a>, we have the following composite iterative algorithm:

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M17">View MathML</a>

(2.4)

We remark that the implicit iterative algorithm (2.4) is general which includes (2.3) as a special case.

Now, we show that (2.4) can be employed to approximate fixed points of generalized asymptotically nonexpansive mappings which is assumed to be Lipschitz continuous. Let Ti be a <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M18">View MathML</a>-Lipschitz generalized asymptotically nonexpansive mapping with a sequence <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M19">View MathML</a> such that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M20','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M20">View MathML</a> as n → ∞ and Si be a <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M21">View MathML</a>-Lipschitz generalized asymptotically nonexpansive mapping with sequences <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M22">View MathML</a> such that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M23','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M23">View MathML</a> as n → ∞ for each 1 ≤ i N. Define a mapping Wn : C C by

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M24','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M24">View MathML</a>

It follows that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M25','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M25">View MathML</a>

where

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M26','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M26">View MathML</a>

(2.5)

If <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M27','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M27">View MathML</a> for all n ≥ 1, then Wn is a contraction. By Banach contraction mapping principal, we see that there exists a unique fixed point xn C such that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M28','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M28">View MathML</a>

That is, the implicit iterative algorithm (2.4) is well defined.

The purpose of this paper is to establish strong and weak convergence theorem of fixed points of generalized asymptotically nonexpansive mappings based on (2.4).

Next, we recall some well-known concepts.

Let E be a real Banach space and UE = {x E : ||x|| = 1}. E is said to be uniformly convex if for any ε ∈ (0, 2] there exists δ > 0 such that for any x, y UE,

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M29','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M29">View MathML</a>

It is known that a uniformly convex Banach space is reflexive and strictly convex.

Recall that E is said to satisfy Opial's condition [30] if for each sequence {xn} in E, the condition that the sequence xn x weakly implies that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M30','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M30">View MathML</a>

for all y E and y x. It is well known [30] that each lp (1 ≤ p < ∞) and Hilbert spaces satisfy Opial's condition. It is also known [29] that any separable Banach space can be equivalently renormed to that it satisfies Opial's condition.

Recall that a mapping T : C C is said to be demiclosed at the origin if for each sequence {xn} in C, the condition xn x0 weakly and Txn → 0 strongly implies Tx0 = 0. T is said to be semicompact if any bounded sequence {xn} in C satisfying limn→∞||xn - Txn|| = 0 has a convergent subsequence.

In order to prove our main results, we also need the following lemmas.

Lemma 2.1. [20]Let {an}, {bn} and {cn} be three nonnegative sequences satisfying the following condition:

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M31','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M31">View MathML</a>

where n0 is some nonnegative integer. If <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M32','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M32">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M33','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M33">View MathML</a>, then limn→∞ an exists.

Lemma 2.2. [17]Let E be a uniformly convex Banach space and 0 < λ tn η < 1 for all n ≥ 1. Suppose that {xn} and {yn} are sequences of E such that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M34','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M34">View MathML</a>

and

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M35','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M35">View MathML</a>

hold for some r ≥ 0. Then limn→∞ ||xn - yn|| = 0.

The following lemma can be obtained from Qin et al. [31] or Sahu et al. [32] immediately.

Lemma 2.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C C be a Lipschitz generalized asymptotically nonexpansive mapping. Then I - T is demiclosed at origin.

3 Main results

Now, we are ready to give our main results in this paper.

Theorem 3.1. Let E be a real uniformly convex Banach space and C be a nonempty closed convex subset of E. Let Ti : C C be a uniformly <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M18">View MathML</a>-Lipschitz and generalized asymptotically nonexpansive mapping with a sequence <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M19">View MathML</a>, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M20','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M20">View MathML</a>as n → ∞ and Si : C C be a uniformly <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M21">View MathML</a>-Lipschitz and generalized asymptotically nonexpansive mapping with a sequence <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M22">View MathML</a>, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M23','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M23">View MathML</a>as n → ∞ for each 1 ≤ i N. Assume that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M36">View MathML</a>. Let {un}, {vn} be bounded sequences in C and en = max{hn, kn}, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M37">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M38">View MathML</a>. Let {αn}, {βn}, {γn}, <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M11','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M11">View MathML</a>, <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M12','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M12">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M13">View MathML</a>be sequences in [0,1] such that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M14">View MathML</a>for each n ≥ 1. Let {xn} be a sequence generated in (2.4). Put <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M39','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M39">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M40">View MathML</a>. Let ξn = max{μn, νn}, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M41">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M42','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M42">View MathML</a>. Assume that the following restrictions are satisfied:

(a) <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M43">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M44">View MathML</a>;

(b) <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M45">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M46">View MathML</a>;

(c) <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M47','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M47">View MathML</a>, where L is defined in (2.5);

(d) there exist constants λ, η ∈ (0, 1) such that λ αn, <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M48">View MathML</a>.

Then

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M49','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M49">View MathML</a>

Proof. Fixing <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M50">View MathML</a>, we see that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M51','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M51">View MathML</a>

(3.1)

and

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M52','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M52">View MathML</a>

(3.2)

Substituting (3.1) into (3.2), we see that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M53','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M53">View MathML</a>

Notice that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M54','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M54">View MathML</a>. We see from the restrictions (b) and (d) that there exists a positive integer n0 such that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M55','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M55">View MathML</a>

where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M56','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M56">View MathML</a>. It follows that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M57','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M57">View MathML</a>

(3.3)

where M1 = supn≥1{en}, M2 = supn≥1{||vn - f||}, and M3 = supn≥1{||un - f||}. In view of Lemma 2.1, we see that limn→∞ ||xn - f|| exists for each <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M50">View MathML</a>. This implies that the sequence {xn} is bounded. Next, we assume that limn→∞ ||xn - f|| = d > 0. From (3.1), we see that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M58','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M58">View MathML</a>

This implies from the restrictions (a) and (b) that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M59">View MathML</a>

Notice that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M60','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M60">View MathML</a>

This shows from the restriction (a) that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M61','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M61">View MathML</a>

On the other hand, we have

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M62','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M62">View MathML</a>

It follows from Lemma 2.2 that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M63','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M63">View MathML</a>

(3.4)

Notice that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M64','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M64">View MathML</a>

It follows from (3.4) and the restriction (a) that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M65','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M65">View MathML</a>

(3.5)

This implies that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M66','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M66">View MathML</a>

(3.6)

Notice that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M67','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M67">View MathML</a>

and

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M68','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M68">View MathML</a>

which in turn imply that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M69','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M69">View MathML</a>

and

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M70','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M70">View MathML</a>

On the other hand, we have

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M71">View MathML</a>

from which it follows that lim infn→∞ ||yn - f|| ≥ d. In view of (3.1), we see that lim supn→∞ ||yn - f|| ≤ d. This proves that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M72','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M72">View MathML</a>

Notice that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M73','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M73">View MathML</a>

This implies from Lemma 2.2 that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M74','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M74">View MathML</a>

(3.7)

On the other hand, we have

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M75','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M75">View MathML</a>

This combines with (3.4), (3.5), and (3.7) gives that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M76','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M76">View MathML</a>

(3.8)

Since n = (j(n) - 1)N + i(n), where i(n) ∈ {1, 2,..., N}, we see that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M77','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M77">View MathML</a>

(3.9)

Notice that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M78','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M78">View MathML</a>

This in turn implies that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M79','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M79">View MathML</a>

(3.10)

and

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M80','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M80">View MathML</a>

(3.11)

Substituting (3.10) and (3.11) into (3.9) yields that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M81','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M81">View MathML</a>

It follows from (3.6) and (3.7) that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M82','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M82">View MathML</a>

(3.12)

In particular, we see that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M83','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M83">View MathML</a>

For any r, s = 1, 2,..., N, we obtain that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M84','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M84">View MathML</a>

Letting j → ∞, we arrive at

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M85','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M85">View MathML</a>

which is equivalent to

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M86','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M86">View MathML</a>

(3.13)

Notice that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M87','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M87">View MathML</a>

(3.14)

On the other hand, we have

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M88','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M88">View MathML</a>

(3.15)

and

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M89','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M89">View MathML</a>

(3.16)

Substituting (3.15) and (3.16) into (3.14) yields that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M90','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M90">View MathML</a>

It follows from (3.6) and (3.8) that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M91','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M91">View MathML</a>

(3.17)

In particular, we see that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M92','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M92">View MathML</a>

For any r, s = 1, 2,..., N, we obtain that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M93','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M93">View MathML</a>

Letting j → ∞, we arrive

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M94','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M94">View MathML</a>

which is equivalent to

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M95','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M95">View MathML</a>

(3.18)

This completes the proof. □

Now, we are in a position to give weak convergence theorems.

Theorem 3.2. Let E be a real Hilbert space and C be a nonempty closed convex subset of E. Let Ti : C C be a uniformly <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M18">View MathML</a>-Lipschitz and generalized asymptotically nonexpansive mapping with a sequence <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M19">View MathML</a>, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M20','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M20">View MathML</a>as n → ∞ and Si : C C be a uniformly <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M21">View MathML</a>-Lipschitz and generalized asymptotically nonexpansive mapping with a sequence <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M22">View MathML</a>, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M23','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M23">View MathML</a>as n → ∞ for each 1 ≤ i N. Assume that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M36">View MathML</a>. Let {un}, {vn} be bounded sequences in C and en = max{hn, kn}, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M37">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M38">View MathML</a>. Let {αn}, {βn}, {γn}, <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M11','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M11">View MathML</a>, <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M12','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M12">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M13">View MathML</a>be sequences in [0,1] such that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M14">View MathML</a>for each n ≥ 1. Let {xn} be a sequence generated in (2.4). Put <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M39','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M39">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M40">View MathML</a>. Let ξn = max{μn, νn}, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M41">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M42','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M42">View MathML</a>. Assume that the following restrictions are satisfied:

(a) <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M43">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M44">View MathML</a>;

(b) <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M45">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M46">View MathML</a>;

(c) <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M47','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M47">View MathML</a>, where L is defined in (2.5);

(d) there exist constants λ, η ∈ (0, 1) such that λ αn, <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M48">View MathML</a>.

Then the sequence {xn} converges weakly to some point in <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M96','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M96">View MathML</a>.

Proof. Since E is a Hilbert space and {xn} is bounded, we can obtain that there exists a subsequence <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M97','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M97">View MathML</a> of {xn} converges weakly to x* ∈ C. It follows from (3.13) and (3.18) that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M98','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M98">View MathML</a>

Since I - Sr and I - Tr are demiclosed at origin by Lemma 2.3, we see that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M99','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M99">View MathML</a>. Next, we show that the whole sequence {xn} converges weakly to x*. Suppose the contrary. Then there exists some subsequence <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M100','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M100">View MathML</a> of {xn} such that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M100','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M100">View MathML</a> converges weakly to x** ∈ C. In the same way, we can show that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M101','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M101">View MathML</a>. Notice that we have proved that limn→∞ ||xn - f|| exists for each <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M50">View MathML</a>. By virtue of Opial's condition of E, we have

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M102','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M102">View MathML</a>

This is a contradiction. Hence, x* = x**. This completes the proof. □

Remark 3.3. Theorem 3.2 which includes the corresponding results announced in Chang et al. [6], Chidume and Shahzad [7], Guo and Cho [10], Plubtieng et al. [14], Qin et al. [15], Thakur [21], Thianwan and Suantai [22], Xu and Ori [23], and Zhou and Chang [24] as special cases mainly improves the results of Cianciaruso et al. [9] in the following aspects.

(1) Extend the mappings from one family of mappings to two families of mappings;

(2) Extend the mappings from the class of asymptotically nonexpansive mappings to the class of generalized asymptotically nonexpansive mappings.

If Sr = I for each r ∈ {1, 2,..., N} and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M103','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M103">View MathML</a>, then Theorem 3.2 is reduced to the following.

Corollary 3.4. Let E be a real Hilbert space and C be a nonempty closed convex subset of E. Let Ti : C C be a uniformly <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M18">View MathML</a>-Lipschitz and generalized asymptotically nonexpansive mapping with a sequence <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M19">View MathML</a>, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M20','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M20">View MathML</a>as n → ∞ for each 1 ≤ i N. Assume that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M104','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M104">View MathML</a>. Let {un} be a bounded sequence in C and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M37">View MathML</a>. Let {αn}, {βn} and {γn} be sequences in [0,1] such that αn + βn + γn = 1 for each n ≥ 1. Let {xn} be a sequence generated in the following process:

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M105','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M105">View MathML</a>

(3.19)

Put <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M39','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M39">View MathML</a>. Let <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M41">View MathML</a>. Assume that the following restrictions are satisfied:

(a) <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M43">View MathML</a>;

(b) <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M106','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M106">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M107','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M107">View MathML</a>;

(c) βnL < 1, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M108','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M108">View MathML</a>;

(d) there exist constants λ, η ∈ (0, 1) such that λ αn, <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M48">View MathML</a>.

Then the sequence {xn} converges weakly to some point in <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M96','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M96">View MathML</a>.

Next, we are in a position to state strong convergence theorems in a Banach space.

Theorem 3.5. Let E be a real uniformly convex Banach space and C be a nonempty closed convex subset of E. Let Ti : C C be a uniformly <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M18">View MathML</a>-Lipschitz and generalized asymptotically nonexpansive mapping with a sequence <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M19">View MathML</a>, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M20','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M20">View MathML</a>as n → ∞ and Si : C C be a uniformly <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M21">View MathML</a>-Lipschitz and generalized asymptotically nonexpansive mapping with a sequence <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M22">View MathML</a>, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M23','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M23">View MathML</a>as n → ∞ for each 1 ≤ i N. Assume that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M36">View MathML</a>. Let {un}, {vn} be bounded sequences in C and en = max{hn, kn}, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M37">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M38">View MathML</a>. Let {αn}, {βn}, {γn}, <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M11','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M11">View MathML</a>, <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M12','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M12">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M13">View MathML</a>be sequences in [0,1] such that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M14">View MathML</a>for each n ≥ 1. Let {xn} be a sequence generated in (2.4). Put <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M39','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M39">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M40">View MathML</a>. Let ξn = max{μn, νn}, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M41">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M42','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M42">View MathML</a>. Assume that the following restrictions are satisfied:

(a) <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M43">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M44">View MathML</a>;

(b) <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M45">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M46">View MathML</a>;

(c) <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M47','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M47">View MathML</a>, where L is defined in (2.5);

(d) there exist constants λ, η ∈ (0, 1) such that λ ≥ αn, <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M48">View MathML</a>.

If one of mappings in {T1, T2,..., TN} or one of mappings in {S1, S2,..., SN} are semicompact, then the sequence {xn} converges strongly to some point in <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M96','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M96">View MathML</a>.

Proof. Without loss of generality, we may assume that S1 are semicompact. It follows from (3.13) that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M109','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M109">View MathML</a>

By the semicompactness of S1, we see that there exists a subsequence <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M97','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M97">View MathML</a> of {xn} such that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M110','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M110">View MathML</a> strongly. From (3.13) and (3.18), we have

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M111','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M111">View MathML</a>

and

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M112','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M112">View MathML</a>

Since Sr and Tr are Lipshcitz continuous, we obtain that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M113','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M113">View MathML</a>. From Theorem 3.1, we know that limn→∞||xn - f|| exists for each <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M50">View MathML</a>. That is, limn→∞||xn - w|| exists. From <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M114','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M114">View MathML</a>, we have

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M115','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M115">View MathML</a>

This completes the proof of Theorem 3.5. □

If Sr = I for each r ∈ {1, 2,..., N} and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M103','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M103">View MathML</a>, then Theorem 3.5 is reduced to the following.

Corollary 3.6. Let E be a real uniformly convex Banach space and C be a nonempty closed convex subset of E. Let Ti : C C be a uniformly <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M18">View MathML</a>-Lipschitz and generalized asymptotically nonexpansive mapping with a sequence <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M19">View MathML</a>, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M20','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M20">View MathML</a>as n → ∞ for each 1 ≤ i N. Assume that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M104','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M104">View MathML</a>. Let {un} be a bounded sequence in C and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M37">View MathML</a>. Let {αn}, {βn} and {γn} be sequences in [0,1] such that αn + βn + γn = 1 for each n ≥ 1. Let {xn} be a sequence generated in (3.19). Put <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M39','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M39">View MathML</a>. Let <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M41">View MathML</a>. Assume that the following restrictions are satisfied:

(a) <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M43">View MathML</a>;

(b) <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M106','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M106">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M107','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M107">View MathML</a>;

(c) βnL < 1, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M108','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M108">View MathML</a>;

(d) there exist constants λ, η ∈ (0, 1) such that λ ≥ αn, <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M48">View MathML</a>.

If one of mappings in {T1, T2,..., TN} is semicompact, then the sequence {xn} converges strongly to some point in <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M96','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M96">View MathML</a>.

Theorem 3.7. Let E be a real uniformly convex Banach space and C be a nonempty closed convex subset of E. Let Ti : C C be a uniformly <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M18">View MathML</a>-Lipschitz and generalized asymptotically nonexpansive mapping with a sequence <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M19">View MathML</a>, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M20','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M20">View MathML</a>as n → ∞ and Si : C C be a uniformly <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M21">View MathML</a>-Lipschitz and generalized asymptotically nonexpansive mapping with a sequence <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M22">View MathML</a>, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M23','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M23">View MathML</a>as n → ∞ for each 1 ≤ i N. Assume that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M36">View MathML</a>. Let {un}, {vn} be bounded sequences in C and en = max{hn, kn}, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M37">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M38">View MathML</a>. Let {αn}, {βn}, {γn}, <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M11','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M11">View MathML</a>, <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M12','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M12">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M13">View MathML</a>be sequences in [0,1] such that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M14">View MathML</a>for each n ≥ 1. Let {xn} be a sequence generated in (2.4). Put <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M39','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M39">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M40">View MathML</a>. Let ξn = max{μn, νn}, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M41">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M42','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M42">View MathML</a>. Assume that the following restrictions are satisfied:

(a) <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M43">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M44">View MathML</a>;

(b) <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M45">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M46">View MathML</a>;

(c) <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M47','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M47">View MathML</a>, where L is defined in (2.5);

(d) there exist constants λ, η ∈ (0, 1) such that λ αn,.<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M48">View MathML</a>.

If there exists a nondecreasing function g : [0, ∞) → [0, ∞) with g(0) = 0 and g(m) > 0 for all m ∈ (0, ∞) such that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M116','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M116">View MathML</a>

then the sequence {xn} converges strongly to some point in <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M96','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M96">View MathML</a>.

Proof. In view of (3.13) and (3.18) that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M117','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M117">View MathML</a>, which implies <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M118','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M118">View MathML</a>. Next, we show that the sequence {xn} is Cauchy. In view of (3.3), we obtain by putting

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M119','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M119">View MathML</a>

that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M120','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M120">View MathML</a>

It follows, for any positive integers m, n, where m > n > n0, that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M121','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M121">View MathML</a>

where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M122','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M122">View MathML</a>. It follows that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M123','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M123">View MathML</a>

Taking the infimum over all <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M50">View MathML</a>, we arrive at

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M124','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M124">View MathML</a>

In view of <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M125','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M125">View MathML</a> and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M118','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M118">View MathML</a>, we see that {xn} is a Cauchy sequence in C and so {xn} converges strongly to some x* ∈ C. Since Tr and Sr are Lipschitz for each r ∈ {1, 2,..., N}, we see that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M96','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M96">View MathML</a> is closed. This in turn implies that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M99','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M99">View MathML</a>. This completes the proof. □

If Sr = I for each r ∈ {1, 2,..., N} and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M103','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M103">View MathML</a>, then Theorem 3.7 is reduced to the following.

Corollary 3.8. Let E be a real uniformly convex Banach space and C be a nonempty closed convex subset of E. Let Ti : C C be a uniformly <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M18">View MathML</a>-Lipschitz and generalized asymptotically nonexpansive mapping with a sequence <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M19">View MathML</a>, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M20','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M20">View MathML</a>as n → ∞ for each 1 ≤ i N. Assume that <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M104','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M104">View MathML</a>. Let {un} be a bounded sequence in C and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M37">View MathML</a>. Let {αn}, {βn} and {γn} be sequences in [0,1] such that αn + βn + γn = 1 for each n ≥ 1. Let {xn} be a sequence generated in (3.19). Put <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M39','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M39">View MathML</a>. Let <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M41">View MathML</a>. Assume that the following restrictions are satisfied:

(a) <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M43">View MathML</a>;

(b) <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M106','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M106">View MathML</a>and <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M107','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M107">View MathML</a>;

(c) βnL < 1, where <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M108','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M108">View MathML</a>;

(d) there exist constants λ, η ∈ (0, 1) such that, λ αn, <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M48">View MathML</a>.

If there exists a nondecreasing function g : [0, ∞) → [0, ∞) with g(0) = 0 and g(m) > 0 for all m ∈ (0, ∞) such that

<a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M126','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M126">View MathML</a>

then the sequence {xn} converges strongly to some point in <a onClick="popup('http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M96','MathML',630,470);return false;" target="_blank" href="http://www.fixedpointtheoryandapplications.com/content/2011/1/58/mathml/M96">View MathML</a>.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Acknowledgements

The authors are indebted to the referees for their helpful comments. The work was supported partially by Natural Science Foundation of Zhejiang Province (Y6110270).

References

  1. Izmaelov, AF, Solodov, MV: An active set Newton method for mathematical program with complementary constraints. SIAM J Optim. 19, 1003–1027 (2008). Publisher Full Text OpenURL

  2. Kaufman, DE, Smith, RL, Wunderlich, KE: User-equilibrium properties of fixed points in dynamic traffic assignment. Transportation Res Part C. 6, 1–16 (1998). Publisher Full Text OpenURL

  3. Kotzer, T, Cohen, N, Shamir, J: Image restoration by an ovel method of parallel projectio onto constraint sets. Optim Lett. 20, 1172–1174 (1995). Publisher Full Text OpenURL

  4. Bauschke, HH, Borwein, JM: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996). Publisher Full Text OpenURL

  5. Youla, DC: Mathematical theory of image restoration by the method of convex projections. In: Stark H (ed.) Image Recovery: Theory and Applications, pp. 29–77. Academic Press, Florida, USA (1987)

  6. Chang, SS, Tan, KK, Lee, HWJ, Chan, CK: On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings. J Math Anal Appl. 313, 273–283 (2006). Publisher Full Text OpenURL

  7. Chidume, CE, Shahzad, N: Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings. Nonlinear Anal. 62, 1149–1156 (2005). Publisher Full Text OpenURL

  8. Cho, SY, Kang, SM: Approximation of fixed points of pseudocontraction semigroups based on a viscosity iterative process. Appl Math Lett. 24, 224–228 (2011). Publisher Full Text OpenURL

  9. Cianciaruso, F, Marino, G, Wang, X: Weak and strong convergence of the Ishikawa iterative process for a finite family of asymptotically nonexpansive mappings. Appl Math Comput. 216, 3558–3567 (2010). Publisher Full Text OpenURL

  10. Guo, W, Cho, YJ: On the strong convergence of the implicit iterative processes with errors for a finite family of asymptotically nonexpansive mappings. Appl Math Lett. 21, 1046–1052 (2008). Publisher Full Text OpenURL

  11. Hao, Y, Cho, SY, Qin, X: Some weak convergence theorems for a family of asymptotically nonexpansive nonself mappings. Fixed Point Theory Appl. 2010, 11 Article ID 218573 (2010)

  12. Khan, SH, Yildirim, I, Ozdemir, M: Convergence of an implicit algorithm for two families of nonexpansive mappings. Comput Math Appl. 59, 3084–3091 (2010). Publisher Full Text OpenURL

  13. Kim, JK, Nam, YM, Sim, JY: Convergence theorems of implicit iterative sequences for a finite family of asymptotically quasi-nonexpansive type mappings. Nonlinear Anal. 71, e2839–e2848 (2009). Publisher Full Text OpenURL

  14. Plubtieng, S, Ungchittrakool, K, Wangkeeree, R: Implicit iterations of two finite families for nonexpansive mappings in Banach spaces. Numer Funct Anal Optim. 28, 737–749 (2007). Publisher Full Text OpenURL

  15. Qin, X, Cho, YJ, Shang, M: Convergence analysis of implicit iterative algorithms for asymptotically nonexpansive mappings. Appl Math Comput. 210, 542–550 (2009). Publisher Full Text OpenURL

  16. Qin, X, Kang, SM, Agarwal, RP: On the convergence of an implicit iterative process for generalized asymptotically quasi-nonexpansive mappings. Fixed Point Theory Appl. 2010, 19 Article ID 714860 (2010)

  17. Schu, J: Weak and strong convergence of fixed points of asymptotically nonexpansive mappings. Bull Austral Math Soc. 43, 153–159 (1991). Publisher Full Text OpenURL

  18. Shzhzad, N, Zegeye, H: Strong convergence of an implicit iteration process for a finite family of genrealized asymptotically quasi-nonexpansive maps. Appl Math Comput. 189, 1058–1065 (2007). Publisher Full Text OpenURL

  19. Su, Y, Qin, X: General iteration algorithm and convergence rate optimal model for common fixed points of nonexpansive mappings. Appl Math Comput. 186, 271–278 (2007). Publisher Full Text OpenURL

  20. Tan, KK, Xu, HK: Approximating fixed points of nonexpansive mappings by the Ishikawa iterative process. J Math Anal Appl. 178, 301–308 (1993). Publisher Full Text OpenURL

  21. Thakur, BS: Weak and strong convergence of composite implicit iteration process. Appl Math Comput. 190, 965–997 (2007). Publisher Full Text OpenURL

  22. Thianwan, S, Suantai, S: Weak and strong convergence of an implicity iteration process for a finite family of nonexpansive mappings. Sci Math Japon. 66, 221–229 (2007)

  23. Xu, HK, Ori, RG: An implicit iteration process for nonexpansive mappings. Numer Funct Anal Optim. 22, 767–773 (2001). Publisher Full Text OpenURL

  24. Zhou, YY, Chang, SS: Convergence of implicit iterative process for a finite of asymptotically nonexpansive mappings in Banach spaces. Numer Funct Anal Optim. 23, 911–921 (2002). Publisher Full Text OpenURL

  25. Goebel, K, Kirk, WA: A fixed point theorem for asymptotically nonexpansive mappings. Proc Amer Math Soc. 35, 171–174 (1972). Publisher Full Text OpenURL

  26. Bruck, RE, Kuczumow, T, Reich, S: Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform opial property. Colloq Math. 65, 169–179 (1993)

  27. Kirk, WA: Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type. Israel J Math. 17, 339–346 (1974). Publisher Full Text OpenURL

  28. Xu, HK: Existence and convergence for fixed points of mappings of asymptotically nonexpansive type. Nonlinear Anal. 16, 1139–1146 (1991). Publisher Full Text OpenURL

  29. van Dulst, D: Equivalent norms and the fixed point property for nonexpansive mapping. J Lond Math Soc. 25, 139–144 (1982). Publisher Full Text OpenURL

  30. Opial, Z: Weak convergence of the sequence of successive appproximations for nonexpansive mappings. Bull Amer Math Soc. 73, 591–597 (1967). Publisher Full Text OpenURL

  31. Qin, X, Cho, SY, Kim, JK: Convergence theorems on asymptotically pseudocontractive mappings in the intermediate sense. Fixed Point Theory Appl. 2010, 14 Article ID 186874 (2010)

  32. Sahu, DR, Xu, HK, Yao, JC: Asymptotically strict pseudocontractive mappings in the intermediate sens. Nonlinear Anal. 70, 3502–3511 (2009). Publisher Full Text OpenURL