
JSS Journal of Statistical Software
March 2011, Volume 39, Issue 4. http://www.jstatsoft.org/

Hidden Semi Markov Models for Multiple

Observation Sequences: The mhsmm Package for R

Jared O’Connell
University of Oxford

Søren Højsgaard
Aarhus University

Abstract

This paper describes the R package mhsmm which implements estimation and pre-
diction methods for hidden Markov and semi-Markov models for multiple observation
sequences. Such techniques are of interest when observed data is thought to be dependent
on some unobserved (or hidden) state. Hidden Markov models only allow a geometrically
distributed sojourn time in a given state, while hidden semi-Markov models extend this by
allowing an arbitrary sojourn distribution. We demonstrate the software with simulation
examples and an application involving the modelling of the ovarian cycle of dairy cows.

Keywords: duration density, EM algorithm, hidden Markov model, R, sojourn time, Viterbi
algorithm.

1. Introduction

The package mhsmm in the R system for statistical computing (R Development Core Team
2010) performs inference in multiple hidden Markov models and hidden semi-Markov models.
A good overview of these models is given by Rabiner (1989). Efficient algorithms for parameter
estimation are described by Guédon (2003). The models (and the mhsmm package) have been
applied to oestrus detection in dairy cows (O’Connell, Tøgersen, Friggens, Løvendahl, and
Højsgaard 2011).

The main features of the mhsmm package are as follows: Observations are allowed to be multi-
variate. Missing values are allowed. Observations must be recorded at equidistant times. The
package is designed to allow the specification of custom emission distributions. It is possible to
have multiple sequences of data. Parameter estimation is made using EM algorithms. Crucial
parts of the code is written in C which makes estimation fast. The package is available from
the Comprehensive R Archive Network at http://CRAN.R-project.org/package=mhsmm.

To our knowledge, there are two other software packages available for hidden semi-Markov

http://www.jstatsoft.org/
http://CRAN.R-project.org/package=mhsmm

2 mhsmm: Multiple Hidden Semi Markov Models in R

models: The first is the AMAPmod software (Godin and Guédon 2007), which is specifically
for the exploration of plant architecture. Another R package for for hidden semi-Markov mod-
els is hsmm package, Bulla, Bulla, and Nenadic (2010). The mhsmm package is distinguished
from hsmm in mainly two aspects: (1) mhsmm has the ability to estimate parameters for
multiple observation sequences. (2) mhsmm is extensible because the user can create custom
emission distributions.

The paper is organized as follows: Section 2 presents an example of a hidden Markov model
based on simulated data. Section 3 goes more into the theory of the models and Section 4
contains various simulation examples each illustrating different aspects of the package. In
Section 5 a real application on modelling the reproductive status of dairy cows is presented.
Section 6 illustrates how to make user defined extensions. Finally Section 7 contains a dis-
cussion.

2. An introductory example

This example is based on simulation and illustrates hidden Markov models. A hidden Markov
model can be described as follows (see Section 3 for more details): We consider a process
evolving over discrete time points. Let S = (St, t = 0, . . . , T) denote a sequence of unobserved
random variables, each with a finite state space {1, . . . , J}, and let X = (Xt, t = 1, . . . , T)
denote a corresponding set of observed random vectors. A hidden Markov model has the
functional form

P (S,X) = P (S0)
T∏
t=1

P (St|St−1)
T∏
t=1

P (Xt|St). (1)

From (1) it follows that (1) the observables X are all conditionally independent given the
latent variables S and (2) Xt depends on the latent variables S only through St in a hidden
Markov model,

The term P (S0) is called the initial distribution, P (St|St−1) is the transition distribution and
P (Xt|St) is the emission distribution. In practice P (S0) is given as a vector π, P (St|St−1) is
a transition matrix P (so the model is homogeneous because it is the same transition matrix
for all t) while the emission distribution P (Xt|St) (generically denoted by b) can be given in
various different forms; see the examples below. Hence, a triple θ = (π, P, b) specifies a hidden
Markov model.

In mhsmm, a HMM can be specified as:

R> J <- 3

R> initial <- rep(1/J, J)

R> P <- matrix(c(0.8, 0.5, 0.1, 0.05, 0.2, 0.5, 0.15, 0.3, 0.4), nrow = J)

R> b <- list(mu = c(-3, 0, 2), sigma = c(2, 1, 0.5))

R> model <- hmmspec(init = initial, trans = P, parms.emis = b,

+ dens.emis = dnorm.hsmm)

R> model

Hidden Markov Model specification:

J (number of states):

3

Journal of Statistical Software 3

init:

[1] 0.3333333 0.3333333 0.3333333

transition:

[,1] [,2] [,3]

[1,] 0.8 0.05 0.15

[2,] 0.5 0.20 0.30

[3,] 0.1 0.50 0.40

emission:

$mu

[1] -3 0 2

$sigma

[1] 2.0 1.0 0.5

The function dnorm.hsmm provides the density function for the emission distribution. The
argument rnorm.hsmm is essentially a wrapper for the rnorm() function and takes the nec-
essary specifcations from the model object. The specification of the emission distribution
states that Xt|St = s ∼ N(µs, σ

2
s). Notice that the elements of sigma are variances, not stan-

dard deviations. Section 6.2 shows an example of specifying a multivariate normal emission
distribution.

We simulate data and plot the simulated data as follows (see Figure 1):

R> train <- simulate(model, nsim = 300, seed = 1234, rand.emis = rnorm.hsmm)

R> str(train)

List of 3

$ s: int [1:300] 1 1 1 1 3 3 1 1 1 1 ...

$ x: num [1:300] -3.533 -2.862 -0.682 -4.238 2.086 ...

$ N: num 300

- attr(*, "class")= chr "hsmm.data"

> plot(train, xlim = c(0, 100))

The parameters θ = (π, P, b) of the model are estimated using an EM algorithm (details and
further references are given in Section 3) as follows. First we specify a starting value for the
EM algorithm. This can be done with the hmmspec() function:

R> init0 <- rep(1/J, J)

R> P0 <- matrix(1/J, nrow = J, ncol = J)

R> b0 <- list(mu = c(-3, 1, 3), sigma = c(1, 1, 1))

R> startval <- hmmspec(init = init0, trans = P0, parms.emis = b0,

+ dens.emis = dnorm.hsmm)

The function dnorm.hsmm provides the density function for the emission distribution. The
hmmfit() function implements the EM algorithm:

R> h1 = hmmfit(train, startval, mstep = mstep.norm)

R> plot(h1$loglik, type = "b", ylab = "Log-likelihood", xlab = "Iteration")

4 mhsmm: Multiple Hidden Semi Markov Models in R

Time

ts
(x
$
x
)

0 20 40 60 80 100

-8
-6

-4
-2

0
2

4

Figure 1: Simulated data from a hidden Markov model. The horizontal bar shows the different
states while the curve shows the simulated values from the emission distribution. The colours
correspond to states as follows: S1=green, S2=blue and S3=orange.

Notice that the function mstep.norm provides the re-estimating formula for emission distri-
bution (in this case, univariate Gaussian; see Section 3). We show how users can implement
their own emission distributions in Section 6.

The estimated parameters are:

R> summary(h1)

init:

1 0 0

transition:

[,1] [,2] [,3]

[1,] 0.867 0.000 0.133

[2,] 0.477 0.210 0.313

[3,] 0.129 0.863 0.008

emission:

$mu

[1] -2.7728921 0.8137147 2.2085682

$sigma

[1] 2.253767 1.183886 0.499294

As a validation step, we simulate a test set of data from the original model and then try to
reconstruct the state sequence using the predict() function:

Journal of Statistical Software 5

Time

ts
(x
$
x
)

0 10 20 30 40 50

-6
-4

-2
0

2

Time

ts
(x
$
x
)

0 10 20 30 40 50
-6

-4
-2

0
2

Figure 2: The simulated observation sequence and the true state sequence (left). The esti-
mated state sequence from the Viterbi algorithm (right).

R> train2 <- simulate(model, nsim = 50, seed = 1234, rand.emis = rnorm.hsmm)

R> yhat <- predict(h1, train2)

R> mean(yhat$s != train2$s)

[1] 0.12

Plots of the simulated data along with the true and estimated state sequence can be seen in
Figure 2.

The predict() returns a list in which the component named s contains the jointly most likely
configuration of the states, which is found using a Viterbi algorithm, (Forney Jr 1973).

In some practical applications data consists of multiple sequences of observation. For example,
in Section 5 we have multivariate data measured over time from several individual cows. The
mhsmm package provides estimation and simulation routines for such data. For illustration,
we generate three sequences of data, and fit the model with:

R> train = simulate(model, c(100, 20, 30), rand.emis = rnorm.hsmm)

R> h2 = hmmfit(train, startval, mstep = mstep.norm)

3. Theory of hidden Markov and semi-Markov models

This section contains a brief summary of Markov chains, hidden Markov and hidden semi-
Markov models, or HMMs and HSMMs respectively. For a comprehensive introduction we
refer to Rabiner (1989).

6 mhsmm: Multiple Hidden Semi Markov Models in R

3.1. Discrete Markov chains

A discrete Markov chain is a random process (in discrete time) taking discrete values (states)
from the state space S, that is, St ∈ S = {1, . . . , J} for t = 1, 2, . . . , T . The process St is a
Markov chain if it has the Markov property

P (St+1 = st+1|S0 = s0, S1 = s1, . . . , St = st) = P (St+1 = st+1|St = st)

for any s0, s1, . . . , st+1 ∈ {1, . . . , J}. Hence the state at any given time t+ 1 depends on the
previous states only through the state at time t.

Let pij = P (St+1 = j|St = i) with the properties
∑J
j=1 pij = 1 and pij ≥ 0 denote the

probability of jumping from state i at time t to state j at time t + 1. The matrix P = (pij)
is then the transition matrix of the Markov chain. To fully specify the model we require the
distribution of the initial state πi = P (S0 = i).

The number of time steps spent in a given state is called the sojourn time. The probability
of spending u consecutive time steps in state i under this model is

di(u) = P (St+u+1 6= i, St+u = i, St+u−1 = i, . . . , St+2 = i|St+1 = i, St 6= i)

= pu−1ii (1− pi). (2)

We call di(u) the sojourn density. Hence the sojourn time is geometrically distributed for any
Markov chain.

3.2. Hidden Markov models

Suppose we can only observe a variable Xt which is related to the state St but not the
state itself. This situation is visualized in Figure 3. The conditional distribution of the
observed variable Xt given the unobserved (or hidden) state St is referred to as the emission
distribution. We refer to the parameters defining such a process as a hidden Markov model,
henceforth referred to as an HMM. These models have been used for a variety of different
applications, such as speech recognition (Rabiner 1989), weather modeling (Hughes, Guttorp,
and Charles 1999) and DNA sequence analysis (Krogh, Mian, and Haussler 1994).

In addition to the parameters π and P which defines a Markov chain, a HMM also requires
an emission distribution to be defined, that is

bi(xt) = P (Xt = xt|St = i).

Figure 3: Visual representation of a hidden Markov process. Xt are some observed variables
and St is the unobserved, hidden state.

Journal of Statistical Software 7

For example, bi(x) may be a multivariate Gaussian distribution. As stated in Section 2, a
HMM is hence specified by a triple θ = (π, P, b).

The Baum-Welch algorithm is the original procedure for estimating the parameters of a HMM
(Baum, Petrie, Soules, and Weiss 1970). This technique was later grouped with a more
general class of algorithms for incomplete data, named the expectation-maximization (EM)
algorithm (Dempster, Laird, and Rubin 1977). We again point to Rabiner (1989) for a very
clear overview.

3.3. Hidden semi-Markov models

In standard HMMs, the sojourn time is geometrically distributed (as shown by Equation
(2)). In some real-world problems (see for example Section 5) this is an unrealistic and severe
limitation because the probability of a state change depends on the time spent in the current
state.

A possible solution to this issue is to explicitly estimate the duration density d(u), producing
what is referred as a hidden semi-Markov model, henceforth called an HSMM. Thus rather
than having d(u) defined by P as in (2) we model the d(u) explicitely. Therefore, a HSMM
is specified by a quadruple θ = (π, P, b, d).

Ferguson (1980) was the first to propose such models along with an algorithm to fit them,
as Rabiner (1989) summarizes. Guédon (2003) developed a more efficient algorithm and a
method to deal with right censoring which we have implemented.

The complete data likelihood of a HSMM is

P (X = x, S = s; θ) = πs∗1ds∗1(u1)

{
R∏
r=2

ps∗r−1s
∗
r
ds∗r (ur)

}
ps∗R−1s

∗
R
Ds∗R

(uR)
T∏
t=1

bst(xt), (3)

where s∗r is the rth visited state and ur is the time spent in that state. Guédon proposed
using the survivor function

Di(u) =
∑
v≥u

di(v),

for the sojourn time in the last state so we do not have to assume the process is leaving a
state immediately after time T . Using this survivor function has two advantages: It improves
parameter estimation and, perhaps more importantly, it provides a more accurate prediction
of the last state visited which is important for online applications where we wish to estimate
the most recent state when monitoring a process.

As we have not observed the state sequence, maximising this likelihood constitutes an incom-
plete data problem. A local maximum can be found using the EM algorithm. We briefly
outline the procedure below. The EM algorithm involves iterating over two steps until con-
vergence. In the E-step, we calculate the expected complete data likelihood given the value
of the parameters at iteration k and the observed data,

Q(θ|θ(k)) = E[log(P (X = x, S = s; θ))|X = x; θ(k)].

This term is typically broken down into a sum of terms involving subsets of the parameters.
The M-step then involves choosing θ(k+1) as the values that maximize Q(θ|θ(k)). These steps
are repeated until convergence.

8 mhsmm: Multiple Hidden Semi Markov Models in R

3.4. The EM algorithm for hidden Markov models

A local maximum of the HMM likelihood (1) can be found via the EM algorithm through the
following steps:

E-step: The E-step involves estimating two terms: (1) The probability of being in state i at
time t given the observed sequence,

γt(i) = P (St = i|X = x; θ), (4)

and (2) the probability that the process left state i at time t and entered state j at t+ 1
given the observed sequence,

ξt(i, j) = P (St = i, St+1 = j|X = x; θ). (5)

These values can be calculated via a dynamic programming method known as the
forward-backward algorithm which has complexity O(J2T) as Rabiner (1989) discusses.

M-step: Based on (4) and (5) the initial transition probabilities are estimated as

π̂′i = γ0(i) and p̂′ij =

∑T−1
t=1 ξt(i, j)∑T−1

t=1

∑
i 6=j ξt(i, j)

. (6)

Estimates for the parameters of the emission distribution are, of course, dependent on
the choice of distribution. If we assume Xt are normally distributed given St = i, that
is, Xt|St = i ∼ N(µi, σ

2
i), then the parameters µi and σ2i can be estimated as

µ̂i =

∑T
t=1 γt(i)xt∑T
t=1 γt(i)

and σ̂i =

∑T
t=1 γt(i)(xt − µ̂i)2∑T

t=1 γt(i)
. (7)

Equations (6) and (7) are implemented in the mstep.norm() function in the mhsmm
package.

The mhsmm package is extensible in that users can specify custom distributions. See
Section 6 for examples.

3.5. The EM algorithm for hidden semi-Markov models

Parameter estimation for HSMMs is more complicated than for HMMs, both in terms of the
mathematical description and in terms of the computational effort required. The EM algo-
rithm for HSMMs is as follows:

E-step: Calculate the E-steps for HMMs as given in (4) and (5). Furthermore, we also need
the expected number of times a process spends u time steps in state j,

ηiu = P (Su 6= i, Su−v = i, v = 1, . . . , u|X = x; θ)

+
T∑
t=1

P (St+u+1 6= i, St+u−v = i, v = 0, . . . , u− 1, St 6= i|X = x; θ). (8)

Journal of Statistical Software 9

Guédon (2003) provides a version of the forward-backward algorithm for estimating (8)
which is implemented in the mhsmm package. The algorithm has worst-case complexity
O(JT (J+T)). However if we restrict the maximum possible sojourn time to a moderate
value M this is reduced to O(JT (J + M)). For example, in one of the simulation
examples of Section 4, we know sojourns of length greater than 500 are impossible for
all practical purposes, so we set M = 500.

M-step: Calculate the M-steps for HMMs as given in (6) and (7). In addition we also
need to estimate the state duration density. Guédon provides derivations for di(u) as a
non-parametric probability mass function using (8) as

di(u) =
ηiu∑
v ηiv

but then proposes an ad-hoc solution for using parametric distributions with ηiu which
we have followed in mhsmm. One possibility is to use common discrete distributions
with an additional shift parameter d that sets the minimum sojourn time (d ≥ 1). For
example, we may use the Poisson distribution with density,

dj(u) =
eλλ(u−d)

(u− d)!
.

We estimate λ̄i =
∑T
v=1(v − d)ηiv for all possible shift parameters, d = 1, . . . ,min(u :

ηiu > 0), choosing the d which gives the maximum likelihood. Guédon states that
this ad-hoc procedure works well in practice and we have found this to be the case in
simulations. Such an approach is also possible for other common distributions.

Another possiblity is to assume that the sojourn times are Gamma distributed, that
is, Ur|Sr = i ∼ Γ(ai, bi). For this case, we estimated the parameters as follows: The
likelihood for the Gamma distribution can be maximized with respect to its parameters
by solving,

log(âi)− ψ(âi) = log(ūi)− log ui,

where ψ() is the digamma function. We use

ūi =

∑
u ηiuu∑
u ηiu

and log ui =

∑
u ηiu log(u)∑

u ηiu

and then solve the equation using Newton’s method (Choi and Wette 1969). This
methodology is implemented in the gammafit() function. The scale parameter is esti-
mated as b̂i = ūi/âi.

4. Further simulation examples

This section contains several simulation examples, each illustrating features of the package.

4.1. Shifted Poisson sojourn distribution

We simulate data from a HSMM with a shifted Poisson sojourn distribution and Gaussian
emission distribution. First we create a model using hsmmspec(). Data simulated using this
model is shown in Figure 4.

10 mhsmm: Multiple Hidden Semi Markov Models in R

Time

ts
(x
$
x
)

0 100 200 300 400

1
0

1
5

2
0

2
5

Figure 4: Simulated data from a hidden semi-Markov model with a shifted Poisson sojourn
distribution and Gaussion emission distribution. That horizontal bar shows the different
states while the curve shows the simulated values from the emission distribution.

R> J <- 3

R> init <- c(0, 0, 1)

R> P <- matrix(c(0, 0.1, 0.4, 0.5, 0, 0.6, 0.5, 0.9, 0), nrow = J)

R> B <- list(mu = c(10, 15, 20), sigma = c(2, 1, 1.5))

R> d <- list(lambda = c(10, 30, 60), shift = c(10, 100, 30),

+ type = "poisson")

R> model <- hsmmspec(init, P, parms.emis = B, sojourn = d,

+ dens.emis = dnorm.hsmm)

R> train <- simulate(model, nsim = 100, seed = 123456,

+ rand.emis = rnorm.hsmm)

We then estimate the parameters using some starting values (which can also be set using the
hsmmspec() function):

R> start.pois <- hsmmspec(

+ init = rep(1/J, J),

+ transition = matrix(c(0, .5, .5, .5, 0, .5, .5, .5, 0), nrow = J),

+ parms.emis = list(mu=c(4, 12, 23), sigma = c(1, 1, 1)),

+ sojourn = list(lambda = c(9, 25, 40), shift = c(5, 95, 45),

+ type = "poisson"),

+ dens.emis = dnorm.hsmm)

R> M <- 500

R> h.poisson <- hsmmfit(train, start.pois, mstep = mstep.norm, M = M)

R> plot(h.poisson$loglik, type = "b", ylab = "Log-likelihood",

+ xlab = "Iteration")

R> summary(h.poisson)

Journal of Statistical Software 11

Starting distribution =

[1] 0.0e+00 3.8e-16 1.0e+00

Transition matrix =

[,1] [,2] [,3]

[1,] 0.000 0.65 0.35

[2,] 0.028 0.00 0.97

[3,] 0.465 0.53 0.00

Sojourn distribution parameters =

$lambda

[1] 6.59148 28.44452 54.97052

$shift

[1] 14 100 36

$type

[1] "poisson"

Emission distribution parameters =

$mu

[1] 9.97767 15.02050 20.00953

$sigma

[1] 1.742085 1.012044 1.496591

R> predicted <- predict(h.poisson, train)

R> table(train$s, predicted$s)

1 2 3

1 428 0 0

2 491 4133 0

3 323 0 3574

R> mean(predicted$s != train$s)

[1] 0.09095988

In this case we knew that the sojourn distribution was shifted Poisson and the EM algorithm
has performed well in estimating the parameters (Figure 5, left).

4.2. Nonparametric sojourn distribution

Cases may arise where we do not know the sojourn distribution. We can estimate a non-
parameteric sojourn distribution, perhaps as an initial step before deciding on a parametric
distribution.

12 mhsmm: Multiple Hidden Semi Markov Models in R

0 50 100 150

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

u

d
(u

)

1
2
3

0 50 100 150
0

.0
0

0
.0

5
0

.1
0

0
.1

5
0

.2
0

u

d
(u

)

Estimated density
True density

Figure 5: Theoretical and estimated sojourn densities for the parametric sojourn distribution
model (left). Parametric theoretical and estimated non-parametric sojourn densities for the
same simulated data set (right).

We can estimate a non-parametric sojourn distribution as in (3.5). The parameters for such
a distribution are a M ×J matrix, with entries (u, j) corresponding to dj(u). A good starting
value to use is a uniform distribution covering the range of reasonable values for the sojourns.
We can view the estimated non-parametric sojourn densities in Figure 5, right.

R> d <- cbind(dunif(1:M, 0, 50), dunif(1:M, 100, 175), dunif(1:M, 50, 130))

R> start.np <- hsmmspec(

+ init = rep(1/J, J),

+ transition = matrix(c(0, .5, .5, .5, 0, .5, .5, .5, 0), nrow = J),

+ parms.emis = list(mu = c(4, 12, 23), sigma = c(1, 1, 1)),

+ sojourn = list(d = d, type = "nonparametric"),

+ dens.emis = dnorm.hsmm)

R> h.np <- hsmmfit(train, start.np, mstep = mstep.norm, M = M,

+ graphical = TRUE)

5. Detecting reproductive status of dairy cows

5.1. The ovarian cycle in cattle

The ovarian cycle in cattle takes approximately 21 days (but with a large variation) and can
be divided into four stages, which can be further grouped into two longer stages (see Table 1).
The use of days is an insufficiently granular timescale for the oestrus stage, as oestrus lasts

Journal of Statistical Software 13

Time Stage Meta-phase Activity Progesterone

Day 0 oestrus
follicular

high
low

Days 1-4 metoestrus normal

Days 5-18 dioestrus
luteal

normal
high

Days 18-20 pro-oestrus normal

Table 1: Table displaying the ovarian stages of a cow and the related variables. Ovulation
occurs within the first day of metoestrus.

between 6 and 30 hours (Ball and Peters 2004). Ovulation occurs on the day following oestrus,
so identifying oestrus allows a farm manager to know when to artificially inseminate a cow.

Following ovulation a structure called the corpus luteum forms in the ovary. The corpus
luteum produces the hormone progesterone and remains in the ovary until a few days prior
to the next ovulation (the luteal phase), at which time it degenerates rapidly. That is,
progesterone is high during the luteal phase and low during the follicular phase. Progesterone
directly reflects the biological processes occurring in the ovary and is a very useful indicator
of reproductive status. Progesterone can be automatically measured from milk samples, with
milking occurring every 6 - 20 hours (in robotic milking systems). A typical progesterone
profile after calving can be viewed in Figure 6 (bottom).

In the period leading up to ovulation, the cow will try to attract the attention of a bull by
standing to be mounted, mounting other cows and being mounted by other cows. This is
sometimes referred to as standing heat and is traditionally how a stockman would identify a
cow that is about to ovulate, allowing them to proceed with artificial insemination or bring
the cow to a bull. This behaviour leads to an increase in the number of counts on a pedometer
the cow is wearing, and so can be exploited for automated detection of oestrus. Having a

cow 1

days.from.calving

A
c

ti
v

it
y

 i
n

d
e

x

-3
-1

0
1

2
3

0 20 40 60 80

0
5

1
5

2
5

Days after calving

P
ro

g
e

s
te

ro
n

e
 (

n
g

/L
)

Figure 6: The activity index from a pedometer against time since calving (grey), the black line
is as 24 hour centered moving average (top). The progesterone concentrations over the same
time and cow. The dashed vertical lines are times when an artificial insemination occurred
(an indicator of oestrus). Note that these occur after a drop in progesterone and brief spike
in activity levels (bottom).

14 mhsmm: Multiple Hidden Semi Markov Models in R

PPA Standing heat Not standing heat

Figure 7: The underlying states for a univariate activity model.

stockman manually detect oestrus in farms with hundreds of cows is expensive and inaccurate,
so automated systems are of great interest. These spikes in activity correspond with the drop
in progesterone and can be seen in Figure 6 (top).

5.2. Analysis

We provide a simplified version of an analysis performed in O’Connell et al. (2011) using
HSMMs to model reproductive data from dairy cows. Since the period of the ovarian cycle is
irregular, a more conventional time series approach such as ARIMA is not suitable. We may
hypothesize that the stages given in Table 1 are suitable states for a hidden Markov model
but we know the states will not have geometrically distributed sojourn times. This is because
the reproductive states of cows are not a memoryless process, since a follicular stage is likely
to occur after 18 days in a luteal stage. Hence, a HSMM may be a suitable model for this
data.

The dataset reprocows contains time-series data from seven cows with two measured vari-
ables, progesterone and the activity index derived in O’Connell et al. (2011). In addition, the
dataset reproai contains days artifical insemination occurred for each cow and the dataset
reproppa contains post-partum anoestrus lengths (in days) for 73 cows. We can use these
auxilliary data sets for model validation and calculating start values, respectively.

R> data("reproai")

R> data("reprocows")

R> data("reproppa")

We fit a HSMM to the activity data, using the states;

SActivity = {post-partum anoestrus, standing heat, not standing heat}

(Figure 7). Validation for such a model is difficult, but we have two indicators:

� progesterone must be low for oestrus (and hence standing heat) to have occurred

� the artificial insemination at the end of each series was known to result in pregnancy

We begin by defining the model in Figure 7 and setting reasonable starting values for the
emission distribution.

R> J <- 3

R> init <- c(1, 0, 0)

R> trans <- matrix(c(0, 0, 0, 1, 0, 1, 0, 1, 0), nrow = J)

R> emis <- list(mu = c(0, 2.5, 0), sigma = c(1, 1, 1))

We must also put the data into a hsmm.data object. To do this we need to calculate the
length of the sequence from each individual cow (N here).

Journal of Statistical Software 15

R> N <- as.numeric(table(reprocows$id))

R> train <- list(x = reprocows$activity, N = N)

R> class(train) <- "hsmm.data"

We need starting values for the sojourn distribution. We have found the Gamma distribution
works well for these data. We can use the reproppa data set to estimate parameters for the
initial states.

R> tmp <- gammafit(reproppa * 24)

As we are unsure of the parameters for the other two states, we just crudely use a uniform
distribution with a reasonable range. The software will use this dj(u) for the initial E-step
and then calculate Gamma parameters on the M-step. This ad-hoc procedure has been found
to work well in simulation and in this practical application.

R> M <- max(N)

R> d <- cbind(dgamma(1:M, shape = tmp$shape, scale = tmp$scale),

+ dunif(1:M, 4, 30), dunif(1:M, 15 * 24, 40 * 24))

Finally, we create a hsmmspec object and fit the model with hsmm

R> startval <- hsmmspec(init, trans, emis, list(d = d, type = "gamma"),

+ dens.emis = dnorm.hsmm)

R> h.activity <- hsmmfit(train, startval, mstep = mstep.norm, maxit = 10,

+ M = M, lock.transition = TRUE)

We can view the predicted states for the first cow in Figure 8, the predicted states are
consistent with the biological processes of the cow. As more formal validation, we compare
the artifical insemination times with the timings of predicted standing heat (and therefore
oestrus).

R> yhat <- predict(h.activity,train)$s

R> last.heat.hour <- cumsum(rle(yhat)$lengths)[rle(yhat)$values == 2]

R> cows.validation <- reprocows[last.heat.hour,]

R> dif <- list()

R> for(i in 1:nrow(reproai)) {

+ for(j in reproai$days.from.calving[reproai$id == i])

+ dif[[paste(i,j)]] <- j -

+ subset(cows.validation, id == i)$days.from.calving

+ }

R> dif <- unlist(dif)

R> dif <- dif[abs(dif) < 15]

R> plot(density(dif), xlab = "Standing heat time - AI time", main = "")

R> rug(jitter(dif))

R> dif

1 55.52 1 76.53 2 72.53 2 97.54 3 55.52 3 77.53

0.79166667 0.62500000 0.62500000 0.62500000 0.04166667 0.58333333

4 53.52 4 73.53 5 43.52 5 45.52 6 32.5 7 51.52

0.25000000 0.25000000 -1.66666667 0.33333333 0.25000000 0.00000000

16 mhsmm: Multiple Hidden Semi Markov Models in R

cow 1

days.from.calving

A
c

ti
v

it
y

 i
n

d
e

x

-3
-1

0
1

2
3

0 20 40 60 80 100

0
5

1
5

2
5

Days after calving

P
ro

g
e

s
te

ro
n

e
 (

n
g

/L
)

Figure 8: The cow data with the predicted states via the Viterbi algorithm. Notice that
oestrus is predicted around the time progesterone drops and just prior to artificial insemina-
tion, that is, the model is consistent with biological knowledge.

cow 5

days.from.calving

A
c

ti
v

it
y

 i
n

d
e

x

-2
-1

0
1

2
3

0 20 40 60 80 100

0
5

1
5

2
5

Days after calving

P
ro

g
e

s
te

ro
n

e
 (

n
g

/L
)

Figure 9: The cow data with the predicted states via the Viterbi algorithm.

All the artificial inseminations occurred within a day after the last predicted standing heat
period except one (Figure 10, left), and this is consistent with the information in cattle repro-
duction texts, e.g. Ball and Peters (2004). If we view the “missed” insemination (Figure 9),
we can see that two inseminations occurred around this oestrus, and that the first one was
likely premature. We can view the estimated sojourn distributions in Figure 10, right.

A more rigorous analysis and validation of a larger version of this data set is presented in
O’Connell et al. (2011).

6. User-defined extensions

Cases may arise where we wish to simulate or estimate a model whose emission distribution
is not provided in the mhsmm packages. If users can provide

Journal of Statistical Software 17

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

density.default(x = dif)

N = 12 Bandwidth = 0.1745

D
e

n
s

it
y

0 200 400 600 800

0
.0

0
0

.0
5

0
.1

0
0

.1
5

u

d
(u

)

1
2
3

Figure 10: Kernel density estimate of the differences between last hour of predicted heat and
artifical insemination times (left). The estimated sojourn distributions for each state (right).

� a function for generating values from the emission distribution

� a density function for the emission distribution

� implement a M-step for the emission distribution (see Section 3)

then they may use their own custom emission distributions. We provide two brief examples,
we show how to do this with a HMM that has Poisson emission distribution and a HSMM
with a Multivariate normal emission distribution.

6.1. Poisson emission distribution

We assume Xt are Poisson distributed given S = i, that is, Xt|St = i ∼ P (λi). Then λi can
be reestimated via the equation,

λ̂i =

∑T
t=1 γt(i)xt∑T
t=1 γt(i)

.

We implement this in the function mstep.pois. Functions for the emission M-step take two
arguments, x, the vector or dataframe of observed data and wt which is a T × K matrix
representing the values γt(j) in (4). The return value is a list corresponding to the $emission
slot in a hsmmspec or hmmspec object.

R> mstep.pois <- function(x, wt)

+ list(lambda = apply(wt, 2, function(w) weighted.mean(x, w)))

Functions to simulate from and for calculating densities can be defined as:

R> rpois.hsmm <- function(j, model) rpois(1, model$parms.emission$lambda[j])

R> dpois.hsmm <- function(x, j, model)

+ dpois(x, model$parms.emission$lambda[j])

18 mhsmm: Multiple Hidden Semi Markov Models in R

The rpois.hsmm function simulates data for state j from model, where model is a hmmspec or
hsmmspec class. This class contains an emission list which should have the relevant parameters
of the emission distribution. Similarly, dpois.hsmm calculates the densities for the observation
vector (or data.frame for multivariate data) x, given state j for model.

R> J <- 2

R> init <- rep(1/J, J)

R> P <- matrix(c(.3, .2, .7, .8), nrow = J)

R> B <- list(lambda = c(5,10))

R> model <- hmmspec(init, P, parms.emis = B, dens.emis = dpois.hsmm)

R> train <- simulate(model, 1000, seed = 1, rand.emis = rpois.hsmm)

R> start.val <- hmmspec(init = rep(1/J, J),

+ trans = matrix(1/J, nrow = J, ncol = J),

+ parms.emis = list(lambda = c(2, 14)),

+ dens.emis = dpois.hsmm)

R> h1 <- hmmfit(train, start.val, mstep = mstep.pois)

R> summary(h1)

init:

1 0

transition:

[,1] [,2]

[1,] 0.403 0.597

[2,] 0.213 0.787

emission:

$lambda

[1] 5.205141 10.129875

6.2. Multivariate normal emission distribution

In the case of multivariate data with p variables, the functions will expect the data x to be a
matrix or dataframe of dimension

∑N
Tn ×p (for N sequences of length Tn). First we define a

M-step.

R> mstep.mvnorm <- function(x, wt) {

+ emission <- list(mu = list(), sigma = list())

+ for(i in 1:ncol(x)) {

+ tmp <- cov.wt(x, wt[, i])

+ emission$mu[[i]] <- tmp$center

+ emission$sigma[[i]] <- tmp$cov

+ }

+ emission

+ }

Journal of Statistical Software 19

Notice here we have used lists to hold the parameter values of each state rather than a vector.
Users can design custom emission distributions. We then provide functions to generate from
the distribution and calculate the density:

R> rmvnorm.hsmm <- function(j, model) rmvnorm(1,

+ mean = model$parms.emission$mu[[j]],

+ sigma = model$parms.emission$sigma[[j]])

R> dmvnorm.hsmm <- function(x, j, model) dmvnorm(x,

+ mean = model$parms.emission$mu[[j]],

+ sigma = model$parms.emission$sigma[[j]])

In this example, we will simulate from a two state HSMM with Gamma distributed sojourn
times and the multivariate Gaussion distribution we have just defined. We will generate
multiple observations sequences.

R> J <- 2

R> init <- c(1, 0)

R> P <- matrix(c(0, 1, 1, 0), nrow = J)

R> B <- list(mu = list(c(2, 3), c(3, 4)),

+ sigma = list(matrix(c(4, 2, 2, 3), ncol = J), diag(J)))

R> d <- list(shape = c(10, 25), scale = c(2, 2), type = "gamma")

R> model <- hsmmspec(init, P, parms.emis = B, sojourn = d,

+ dens.emis = dmvnorm.hsmm)

R> train <- simulate(model, c(10, 12, 13, 14), seed = 123,

+ rand.emis = rmvnorm.hsmm)

R> plot(train)

Now we create some perturbed starting values and try to recreate the true model. Note that
in the two state case, the embedded Markov chain must be cyclical for a HSMM. Suppose
that we do not have reasonable starting values for the Gamma sojourn distribution and use
a uniform distribution with a reasonable range of values as the initial dj(u).

R> init0 <- rep(1/J, J)

R> B0 <- list(mu = list(c(1, 2), c(2, 3)),

+ sigma = list(matrix(c(3, 1.5, 1.5, 2.5), ncol = J), diag(J) * 1.5))

R> M <- 200

R> d0 <- cbind(dunif(1:M, 1, 50), dunif(1:M, 20, 100))

R> startval <- hsmmspec(init0, P, parms.emis = B0,

+ sojourn=list(d = d0, type = "gamma"), dens.emis = dmvnorm.hsmm)

R> hmv <- hsmmfit(train, startval, mstep = mstep.mvnorm, M = 200)

R> summary(hmv)

Starting distribution =

[1] 1 0

Transition matrix =

[,1] [,2]

20 mhsmm: Multiple Hidden Semi Markov Models in R

[1,] 0 1

[2,] 1 0

Sojourn distribution parameters =

$shape

[1] 13.49753 37.71941

$scale

[1] 1.456604 1.357940

$type

[1] "gamma"

Emission distribution parameters =

$mu

$mu[[1]]

[1] 1.905447 2.892303

$mu[[2]]

[1] 3.022554 4.022453

$sigma

$sigma[[1]]

[,1] [,2]

[1,] 4.150780 2.151244

[2,] 2.151244 2.995578

$sigma[[2]]

[,1] [,2]

[1,] 9.974962e-01 -5.556017e-05

[2,] -5.556017e-05 1.008613e+00

7. Summary and perspectives

In this paper we have presented the mhsmm package for R through several examples. We
have also outlined the theory behind the hidden Markov and hidden semi-Markov models and
we have described the estimation algorithms in some detail. In particular, we have shown
that mhsmm is extensible as we have tried to facilitate the design and use of custom emission
distributions. These features come perhaps at the cost of some simplicity and ease of use.

The creation the mhsmm package was motivated by the work on detecting reproductive
status of dairy cows, (O’Connell et al. 2011) where two indicators of oestrus were used for
estimating the reproductive status of cows, (see also Section 5). Problems of this type are
commen, for example, in modern highly efficient farming because modern sensor technology

Journal of Statistical Software 21

allows for frequent online measurement of many indicators on a large group of animals. As an
additional example, Højsgaard and Friggens (2010) consider estimating the degree of mastitis
for dairy cows from a panel of three indicators (measured with different intensities). It is an
ongoing activity to apply hidden semi-Markov models for monitoring the mastitis status of a
cow. The mhsmm package allows for missing values among the observables and this facility
allows different sampling intensities to be handled in a natural way.

Acknowledgments

This study was part of the BIOSENS project funded by the Danish Ministry of Food, Agri-
culture and Fisheries and the Danish Cattle Industry via Finance Committee Cattle.

References

Ball PJH, Peters AR (2004). Reproduction in Cattle. 3rd edition. Blackwell Publishing.

Baum LE, Petrie T, Soules G, Weiss N (1970). “A Maximization Technique Occurring in the
Statistical Analysis of Probabilistic Functions of Markov Chains.” The Annals of Mathe-
matical Statistics, 41(1), 164–171.

Bulla J, Bulla I, Nenadic O (2010). “hsmm – An R Package for Analyzing Hidden Semi-Markov
Models.” Computational Statistics & Data Analysis, 54(3), 611–619.

Choi SC, Wette R (1969). “Maximum Likelihood Estimation of the Parameters of the Gamma
Distribution and Their Bias.” Technometrics, 11(4), 683–690.

Dempster AP, Laird NM, Rubin DB (1977). “Maximum Likelihood from Incomplete Data via
the EM Algorithm.” Journal of the Royal Statistical Society B, 39(1), 1–38.

Ferguson JD (1980). “Hidden Markov Analysis: An Introduction.” In Hidden Markov Models
for Speech. Institute for Defense Analyses, Princeton.

Forney Jr GD (1973). “The Viterbi Algorithm.” Proceedings of the IEEE, 61(3), 268–278.

Godin C, Guédon Y (2007). “AMAPmod Version 1.8 Reference Manual.” URL http://amap.

cirad.fr/amapmod/refermanual18/partHome.html.

Guédon Y (2003). “Estimating Hidden Semi-Markov Chains from Discrete Sequences.” Jour-
nal of Computational and Graphical Statistics, 12(3), 604–639.

Højsgaard S, Friggens NC (2010). “Quantifying Degree of Mastitis from Common Trends in a
Panel of Indicators for Mastitis in Dairy Cows.” Journal of Dairy Science, 93(2), 582–592.

Hughes JP, Guttorp P, Charles SP (1999). “A Non-Homogeneous Hidden Markov Model for
Precipitation Occurrence.” Journal of the Royal Statistical Society C, 48(1), 15–30.

Krogh A, Mian IS, Haussler D (1994). “A Hidden Markov Model that Finds Genes in E. coli
DNA.” Nucleic Acids Research, 22(22), 4768–4778.

http://amap.cirad.fr/amapmod/refermanual18/partHome.html
http://amap.cirad.fr/amapmod/refermanual18/partHome.html

22 mhsmm: Multiple Hidden Semi Markov Models in R

O’Connell J, Tøgersen FA, Friggens NC, Løvendahl P, Højsgaard S (2011). “Combining Cattle
Activity and Progesterone Measurements Using Hidden Semi-Markov Models.” Journal
of Agricultural, Biological and Ecological Statistics. doi:10.1007/s13253-010-0033-7.
Forthcoming.

Rabiner LR (1989). “A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition.” Proceedings of the IEEE, 77(2), 257–286.

R Development Core Team (2010). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Affiliation:

Jared O’Connell
Wellcome Trust Centre for Human Genetics
University of Oxford
Roosevelt Drive
Oxford, OX3 7BN, United Kingdom
E-mail: jared@well.ox.ac.uk

Søren Højsgaard
Department of Genetics and Biotechnology
Faculty of Agricultural Sciences
Aarhus University
8830 Tjele, Denmark
E-mail: sorenh@agrsci.dk
URL: http://gbi.agrsci.dk/~sorenh/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 39, Issue 4 Submitted: 2009-03-02
March 2011 Accepted: 2010-09-29

http://dx.doi.org/10.1007/s13253-010-0033-7
http://www.R-project.org/
http://www.R-project.org/
mailto:jared@well.ox.ac.uk
mailto:sorenh@agrsci.dk
http://gbi.agrsci.dk/~sorenh/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	An introductory example
	Theory of hidden Markov and semi-Markov models
	Discrete Markov chains
	Hidden Markov models
	Hidden semi-Markov models
	The EM algorithm for hidden Markov models
	The EM algorithm for hidden semi-Markov models

	Further simulation examples
	Shifted Poisson sojourn distribution
	Nonparametric sojourn distribution

	Detecting reproductive status of dairy cows
	The ovarian cycle in cattle
	Analysis

	User-defined extensions
	Poisson emission distribution
	Multivariate normal emission distribution

	Summary and perspectives

