It is the cache of ${baseHref}. It is a snapshot of the page. The current page could have changed in the meantime.
Tip: To quickly find your search term on this page, press Ctrl+F or ⌘-F (Mac) and use the find bar.

GPU Accelerated 2-D Staggered-grid Finite Difference Seismic Modelling | Wang | Journal of Software
Journal of Software, Vol 6, No 8 (2011), 1554-1561, Aug 2011
doi:10.4304/jsw.6.8.1554-1561

GPU Accelerated 2-D Staggered-grid Finite Difference Seismic Modelling

Zhangang Wang, Suping Peng, Tao Liu

Abstract


The staggered-grid finite difference (FD) method demands significantly computational capability and is inefficient for seismic wave modelling in 2-D viscoelastic media on a single PC. To improve computation speedup, a graphic processing units (GPUs) accelerated method was proposed, for modern GPUs have now become ubiquitous in desktop computers and offer an excellent cost-to-performance-ratio parallelism. The geophysical model is decomposed into subdomains for PML absorbing conditions. The vertex and fragment processing are fully used to solve FD schemes in parallel and the latest updated frames are swapped in Framebuffer Object (FBO) attachments as inputs for the next simulation step. The seismic simulation program running on modern PCs provides significant speedup over a CPU implementation, which makes it possible to simulate realtime complex seismic propagation in high resolution of 2048*2048 gridsizes on low-cost PCs.


Keywords


seismic; wave propagation; finite difference; viscoelastic media; parallel algorithms; GPU

References


[1] T. Bohlen, “Parallel 3-D viscoelastic finite difference seismic modelling,” Computers & Geosciences, vol. 28, no.8, pp.887–899, October 2002
http://dx.doi.org/10.1016/S0098-3004(02)00006-7

[2] D.H. Sheen, K. Tuncay, C.E. Baag, and P. J. Ortoleva, “Parallel implementation of a velocity-stress staggered-grid finite-difference method for 2-D poroelastic wave propagation,” Computers & Geosciences, vol. 32, no.8, 2006, pp.1182–1191.
http://dx.doi.org/10.1016/j.cageo.2005.11.001

[3] W. Sun, J.W. Shu, and W. Zheng, “Parallel Seismic Propagation Simulation in Anisotropic Media by Irregular Grids Finite Difference Method on PC Cluster,” Gervasi et al. (Eds.): ICCSA 2005, LNCS 3483, 2005, pp.762 – 771

[4] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. Lefohn and T. Purcell, “ A survey of general-purpose computation on graphics hardware,” In Eurographics 2005, State of the Art Reports, pp. 21-51.

[5] J. F. Ohmer, N.J. Redding, “GPU-Accelerated KLT Tracking with Monte-Carlo-Based Feature.Reselection,” IEEE Computer Society, Digital Image Computing: Techniques and Applications, DICTA 2008, pp. 234-242.
http://dx.doi.org/10.1109/DICTA.2008.50

[6] S. Tzeng and L.Y. Wei, “Parallel white noise generation on a GPU via cryptographic hash,” ACM:In Proceedings of the 2008 symposium on Interactive 3D Graphics (SI3D 2008), 2008, pp. 79–87.

[7] H. Mark, “Mapping Computational Concepts to CPUs,” GPU Gems2, Addison-Wesley. NVIDIA, 2005, Chapter 47, pp.493-508

[8] J. F. Ohmer, F. Maire and R. Brown, “Implementation of kernel methods on the GPU,” IEEE Computer Society, In Digital Image Computing: Techniques and Applications, DICTA 2005, pp. 543-550

[9] D. Göddeke. GPGPU Basic Math Tutorial. Available: http://www.mathematik.unidortmund.de/~goeddeke/gpgpu/tutorial.html

[10] J. Virieux, “SH-wave propagation in heterogeneous media: velocity-stress finite-difference method,” Geophysics, vol. 49 issue 11, 1984, pp.1933–1957.
http://dx.doi.org/10.1190/1.1441605

[11] J. Virieux, “P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method,” Geophysics, vol. 51 issue 4, 1986, pp.889–901.
http://dx.doi.org/10.1190/1.1442147

[12] A.R. Levander, “Fourth-order finite-difference P-SV seismograms,” Geophysics, vol. 53, issue 11, pp.1425–1436, 1988
http://dx.doi.org/10.1190/1.1442422

[13] K.R Kelly, “Numerical study of love wave propagation,” Geophysics, vol.48, issue 7, 1983, pp.833–853
http://dx.doi.org/10.1190/1.1441515

[14] K.R. Kelly, R.W. Ward, S. Treitel, and R.M. Alford, “Synthetic seismograms: a finite-difference approach,” Geophysics, vol. 41, issue 1, 1976, pp.2–27
http://dx.doi.org/10.1190/1.1440605

[15] R. W. Graves, “Simulating seismic wave propagation in 3D elastic media using staggered grid finite differences,” Bull. Seism. soc. Am., vol. 86, 1996, pp.1091–1106

[16] G. Kneib and C. Kerner, “Accurate and efficient seismic modeling in random media,” Geophysics, vol. 58, issue 4, 1993, pp.576–588
http://dx.doi.org/10.1190/1.1443440

[17] S.M. Day and J.B. Minster, “ Numerical simulation of wavefields using a Pade approximant method,” Geophysical Journal of the Royal Astronomical Society, vol. 78, 1984, pp.105–118
http://dx.doi.org/10.1111/j.1365-246X.1984.tb06474.x

[18] H. Emmerich, M. Korn, “Incorporation of attenuationinto time-domain computations of seismic wave fields”. Geophysics, vol. 52, issue 9, 1987, pp.1252–1264.
http://dx.doi.org/10.1190/1.1442386

[19] H.P. Liu, D.L. Anderson and H. Kanamori, “Velocity dispersion due to anelasticity: implications for seismology and mantle composition,” Geophysical Journal of the Royal Astronomical Society, vol. 47, 1976, pp.41–58
http://dx.doi.org/10.1111/j.1365-246X.1976.tb01261.x

[20] J.O. A, Robertsson, J.O. Blanch, and W.W. Symes, “Viscoelastic finite-difference modeling,” Geophysics, vol. 59, issue 9, 1994, pp.1444–1456.

[21] M.A. Biot, “Mechanics deformation and acoustic propagation in porous media,” Journal of Applied Physics, vol. 33, 1962, pp.1482-1498
http://dx.doi.org/10.1063/1.1728759

[22] Y.Q. Zeng and Q.H. Liu, “A staggered-grid finite-difference method with perfectly matched layers for poroelastic wave equations,” The Journal of the Acoustical Society of America, vol. 109, 2001, pp. 2571–2580.
http://dx.doi.org/10.1121/1.1369783
PMid:11425097

[23] J.M. Carcione, D. Kosloff, and R. Kosloff, “Wave propagation simulation in a viscoelastic medium,” Geophysical Journal of the Royal Astronomical Society, vol. 93, 1988, pp.597–611

[24] R. Clayton and B. Engquist, “Absorbing boundary conditions for acoustic and elastic wave equations,” Bulletin of the Seismological Society of America, vol. 67, 1977, pp.1529–1540

[25] J.P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics, vol. 114, 1994, pp.185–200
http://dx.doi.org/10.1006/jcph.1994.1159

[26] F. D. Hastings, J. B. Schneider, and S. L. Broschat, “Application of the perfectly matched layer (PML): absorbing boundary condition to elastic wave propagation,” J. Acoust. Soc. Am, vol. 100, 1996, pp.3061–3069
http://dx.doi.org/10.1121/1.417118

[27] Q. H. Liu and J. Tao, “The perfectly matched layer for acoustic waves in absorptive media,” J. Acoust. Soc. Am, vol. 102, 1997, pp.2072–2082
http://dx.doi.org/10.1121/1.419657

[28] W.C. Chew and Q.H. Liu, “Perfectly matched layers for elastodynamics: a new absorbing boundary condition,” Journal of Computational Acoustics, vol. 4, 1996, pp.72–79
http://dx.doi.org/10.1142/S0218396X96000118


Full Text: PDF


Journal of Software (JSW, ISSN 1796-217X)

Copyright @ 2006-2014 by ACADEMY PUBLISHER – All rights reserved.