
ar
X

iv
:1

50
4.

06
35

5v
1

 [
cs

.L
O

]
 2

3
A

pr
 2

01
5

On Freeze LTL with Ordered Attributes

Normann Decker and Daniel Thoma

Institute for Software Engineering and Programming Languages
Universität zu Lübeck, Germany

{decker, thoma}@isp.uni-luebeck.de

Abstract. This paper is concerned with Freeze LTL, a temporal logic
on data words with registers. In a (multi-attributed) data word each
position carries a letter from a finite alphabet and assigns a data value
to a fixed, finite set of attributes. The satisfiability problem of Freeze
LTL is undecidable if more than one register is available or tuples of
data values can be stored and compared arbitrarily. Starting from the
decidable one-register fragment we propose an extension that allows for
specifying a dependency relation on attributes. This restricts in a flexi-
ble way how collections of attribute values can be stored and compared.
This new conceptual dimension is orthogonal to the number of registers
or the available temporal operators. The extension is strict. Admitting
arbitrary dependency relations satisfiability becomes undecidable. Tree-
like relations, however, induce a family of decidable fragments escalat-
ing the ordinal-indexed hierarchy of fast-growing complexity classes, a
recently introduced framework for non-primitive recursive complexities.
This results in completeness for the class Fε0 . We employ nested counter
systems and show that they relate to the hierarchy in terms of the nesting
depth.

1 Introduction

A central aspect in modern programming languages and software architectures
is dynamic and unbounded creation of entities. In particular object oriented
designs rely on instantiation of objects on demand and flexible multi-threaded
execution. Finite abstractions can hardly reflect these dynamics and therefore
infinite models are very valuable for specification and analysis. This motivates
us to study the theoretical framework of words over infinite alphabets since it
allows for abstracting, e.g., the internal structure and state of particular objects
or processes while still being able to capture the architectural design in terms of
interaction and relations between dynamically instantiated program parts.

These data words as we consider them here are finite, non-empty sequences
w = (a1,d1)(a2,d2). . . (an,dn) where the i-th position carries a letter ai from
a finite alphabet Σ. Additionally, for a fixed, finite set of attributes A a data
valuation di : A → ∆ assigns to each attribute a data value from an infinite
domain ∆ with equality.

Freeze LTL. In formal verification temporal logics are widely used for formulat-
ing behavioural specifications and regarding data the concept of storing values

http://arxiv.org/abs/1504.06355v1

in registers for comparison at different points in time is very natural. This paper
is therefore concerned with the logic Freeze LTL [DLN05] that extends classi-
cal Linear-time Temporal Logic (LTL) by registers and was extensively studied
during the past decade. Since the satisfiability problem of Freeze LTL is undecid-
able in general we specifically consider the decidable fragment LTL↓

1 [DL06] that
is restricted to a single register and future-time modalities. More precisely, we
propose a generalisation of this fragment and study the consequences in terms
of decidability and complexity.

Considering specification and modelling the ability of comparing tuples of
data values arbitrarily is a valuable feature. Unfortunately, this generically ren-
ders logics on data words undecidable (cf. related work below). We therefore
extend Freeze LTL by a mechanism for carefully restricting the collections of
values that can be compared in terms of a dependency relation on attributes. In
general this does not suffice to regain decidability of the satisfiability problem.
Imposing, however, a hierarchical dependency structure such that comparison
of attribute values is carried out in an ordered fashion we obtain a strict hierar-
chy of decidable fragments parameterised by the maximal depth of the attribute
hierarchy.

Before we exemplify this concept let us introduce basic notation. Let Σ be
a finite alphabet and (A,⊑) a finite set of attributes together with a reflexive
and transitive relation ⊑⊆ A× A, i.e., a quasi-ordering, simply denoted A if ⊑
is understood. We call our logic LTL↓

qo and define its syntax according to the
grammar

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Xϕ | ϕUϕ | ϕRϕ | Fϕ | Gϕ | ↓xϕ | ↑x

for letters a ∈ Σ and attributes x ∈ A. We use common syntactical abbrevi-
ations, e.g., implication. When referring to syntactical fragments, we annotate
the available temporal operators and write, e.g., LTL↓

qo[X,F] for the fragment

restricted to the temporal modalities X and F. The restriction of LTL↓
qo to a

particular, fixed set of attributes (A,⊑) is denoted LTL↓
(A,⊑) (or simply LTL↓

A).

To formalise that the attribute relation has a hierarchical, tree-like structure
we use the notion of a tree-quasi-ordering defined as a quasi-ordering where the
downward-closure of every element is totally ordered. Intuitively, a tree-quasi-
ordering is (the reflexive and transitive closure of) a forest of strongly connected
components. The depth of a finite tree-quasi-ordering A is the maximal length
k of strictly increasing sequences x1 ⊏ x2 ⊏ . . . ⊏ xk of attributes in A. We
denote by LTL↓

tqo the fragment of LTL↓
qo restricted to tree-quasi-ordered sets of

attributes.
In the following we explain the idea of our extension by means of an example.

The formal semantics is defined in Section 2.

Example 1. Consider a system with arbitrarily many processes that can lock,
unlock and use an arbitrary number of resources. A data word over the alphabet
Σ = {lock, unlock, use, halt} can model its behaviour in terms of an interleaving
of individual actions and global signals. The corresponding data valuation can

2

provide specific properties of an action, such as a unique identifier for the involved
process and the resource. Let us use attributes A = {pid, res} and interpret data
values from ∆ as IDs. Notice that this way we do not assume a bound on the
number of involved entities.

Consider now the property that locked resources must not be used by foreign
processes and all locks must be released on system halt. To express this, we need
to store both, the process and resource ID for every lock action and verify that
a use involving the same resource also involves the same process. As mentioned
earlier, employing a too liberal mechanism to store multiple data values at once
breaks the possibility of automatic analysis. In our case, however, we do not
need to refer to processes independently. It suffices to consider only resources
individually and formulate that the particular process that locks a resource is the
only one using it before unlocking. This one-to-many correspondence between
processes and resources allows us to declare the attribute pid to be dependent
on the attribute res and formulate the property by the formula

G(lock → ↓pid((use ∧ ↑res→ ↑pid) ∧ ¬halt)U(unlock ∧ ↑pid)).

The freeze quantifier ↓pid stores the current value assigned to pid and also im-
plicitly that of all its dependencies, res in this case. The check operator ↑x for
an attribute x ∈ A then verifies at some position that the current values of x
and its dependencies coincide with the information that was stored earlier. Also,
properties independent of the data can be verified within the same context, e.g.,
¬halt for preventing a shut down as long as any resource is still locked.

Using this extended storing mechanism we can select the values of the two
attributes (↓pid) and identify and distinguish positions in a data word where
both (↑pid), a particular one of them (↑res) or a global signal (e.g., halt) occurs.
In contrast to other decidable fragments of Freeze LTL we are thus able to store
collections of values and can compare individual values across the hierarchy
of attributes. This allows for reasoning on complex interaction of entities, also
witnessed by the high, yet decidable, complexity of the logic.

Outline and results. We define the semantics of LTL↓
qo in Section 2 gener-

alising Freeze LTL based on quasi-ordered attribute sets. We show that every
fragment LTL↓

A is undecidable unless A is a tree-quasi-ordering.

Section 3 is devoted to nested counter systems (NCS) and an analysis of
their coverability problem. We determine its non-primitive recursive complexity
in terms of fast-growing complexity classes [Sch13]. These classes Fα are indexed
by ordinal numbers α and characterise complexities by fast-growing functions
from the extended Grzegorczyk hierarchy (details are provided in Section 3). We
show that with increasing nesting level coverability in NCS exceeds every class
Fα for ordinals α < ε0. By also providing a matching upper bound we establish
the following.

Theorem 1 (NCS). The coverability problem in NCS is Fε0-complete.

3

We consider the fragment LTL↓
tqo in Section 4. By reducing the satisfiability

problem to NCS coverability we obtain a precise characterisation of the decid-
ability frontier in LTL↓

qo. Moreover, we transfer the lower bounds obtained for
NCS to the logic setting. This leads us to a strict hierarchy of decidable frag-
ments of LTL↓

tqo parameterised by the depth of the attribute orderings and a

completeness result for LTL↓
tqo.

Theorem 2 (LTL↓
qo). The satisfiability problem of

– LTL↓
A is decidable if and only if A is a tree-quasi-ordering.

– LTL↓
tqo is Fε0-complete.

Related work. The freeze [Hen90] mechanism was introduced as a natural form
of storing and comparing (real-time) data at different positions in time [AH89]
and since studied extensively in different contexts, e.g., [Gor96,Fit02,LP05]. In
particular linear temporal logic employing the freeze mechanism over domains
with only equality, i.e., data words, was considered in [DLN05] and shown highly
undecidable (Σ1

1 -hard). Therefore several decidable fragments were proposed in
the literature with complexities ranging from exponential [Laz06] and double-
exponential space [DFP13] to non-primitive recursive complexities [DL09]. For

the one-register fragment LTL↓
1 that we build on here an Fω upper bound was

given in [Fig12]. Due to its decidability and expressiveness it is called in [DL09] a
“competitor” for the two-variable first-order logic over data words FO2(∼, <,+1)
studied in [BDM+11]. There, satisfiability was reduced to and from reachability
in Petri Nets in double-exponential time and polynomial time, respectively, for
which recent results provide an Fω3 upper bound [LS15].

Our main ambition is to incorporate means of storing and comparing col-
lections of data values. The apparent extension of storing and comparing even
only pairs generically renders logics on data words, even those with essential
restrictions, undecidable [BDM+11,KSZ10,DHLT14]. This applies in particular

to fragments of LTL↓
1 [DFP13].

Therefore, the logic Nested Data LTL (ND-LTL) was studied in [DHLT14]
that employs a storing mechanism on an ordered set of attributes. In contrast
to Freeze LTL, data values are not stored explicitly resulting in incomparable
expressiveness and substantially different notions of natural restrictions. The
future fragment ND-LTL+ was shown decidable and non-primitive recursive on
finite A-attributed data words for tree-ordered attribute sets A. However, no
upper complexity bounds were provided and the developments in this paper
significantly rise the lower bounds (cf. Section 5). It should be noted that, in

contrast to LTL↓
tqo, ND-LTL+ also contains (ordinary) past-time operators and

that this fragment is decidable even on infinite words whereas satisfiability of
LTL↓

1 is already Π0
1 -complete [DL09].

4

2 Semantics and Undecidability of LTL↓
qo

By specifying dependencies between attributes from a set A in terms of a quasi-
ordering ⊑⊆ A × A the freeze mechanism can be used to store the values of
multiple attributes at once. In a formula ↓xϕ the scope ϕ of the freeze quantifier
↓x is evaluated under the context of the current values of the attribute x ∈ A
and the values of all smaller attributes y ⊑ x. The set of these attributes is
the downward-closure of x that we denote cl(x) = {y ∈ A | y ⊑ x}. Let ∆A =
{d : A → ∆} denote the set of all data valuations. To represent contexts of
multiple attribute values we define the set of partial data valuations ∆A

⊥ = {d :
A′ → ∆ | A′ ⊆ A}. They can be obtained from complete valuations d ∈ ∆A

by means of restrictions d|A′ : A′ → ∆ for A′ ⊆ A where d|A′(x) = d(x) for
x ∈ dom(d|A′) = A′.

Valuation equivalence. We compare partial valuations with respect to their struc-
ture but up to attribute names: let ≃⊆ ∆A

⊥ × ∆A
⊥ be the equivalence relation

defined as d ≃ d′ if and only if there is a bijection h : dom(d) → dom(d′) such
that, for all x, y ∈ dom(d), x ⊑ y ⇔ h(x) ⊑ h(y) and d(x) = d′(h(x)).

Semantics of LTL↓
qo
. For a non-empty data word w = (a1,d1). . . (an,dn) ∈

(Σ ×∆A)+, an index 1 ≤ i ≤ n in w and a partial data valuation d ∈ ∆A
⊥ the

semantics of LTL↓
A formulae is defined inductively by

(w, i,d) |= ai
(w, i,d) |= ¬ϕ :⇔ (w, i,d) 6|= ϕ
(w, i,d) |= ϕ ∧ ψ :⇔ (w, i,d) |= ϕ and (w, i,d) |= ψ
(w, i,d) |= Xϕ :⇔ i+ 1 ≤ n and (w, i + 1,d) |= ϕ
(w, i,d) |= ϕUψ :⇔ ∃i≤k≤n : (w, k,d) |= ψ and ∀i≤j<k : (w, j,d) |= ϕ
(w, i,d) |= Fϕ :⇔ ∃i≤k≤n : (w, k,d) |= ϕ
(w, i,d) |= ↓xϕ :⇔ (w, i,di|cl(x)) |= ϕ
(w, i,d) |= ↑x :⇔ ∃y∈A : di|cl(x) ≃ d|cl(y).

The operators ∨, X, R and G are defined as usual to be the duals of ∧, X, U
and F, respectively. We call a formula a sentence if every check operator ↑x is
within the scope of some freeze quantifier ↓y and for sentences ϕ define w |= ϕ
if (w, 1,d) |= ϕ for any valuation d.

Example 2. Consider a set of attributes A = {x1, x2, x3, y1, y2} with x1 ⊑ x2 ⊑ x3
and y1 ⊑ y2 (notice that this is a tree-quasi-ordering), the formula ↓x3 X(↑y2 U ↑x3)
and a data word w = (a1,d1). . . (an,dn). The formula reads as: “Store the
current values d1, d2, d3 of x1, x2, x3, respectively. Move on to the next position.
Verify that the stored value d1 appears in y1 and that d2 appears in y2 until the
values d1, d2, d3 appear again in attributes x1, x2, x3, respectively.”

At the first position, the values d1 = d1(x1), d2 = d1(x2) and d3 = d1(x3)
are stored in terms of the valuation d = d1|cl(x3) : {x1, x2, x3} → ∆ since x1, x2, x3
depend on x3. Assume for the second position d2(x1) 6= d1(x1) = d1. The formula

5

↑x3 is not satisfied at the second position in the context of d since the only
attribute p ∈ A such that cl(p) is isomorphic to {x1, x2, x3} is p = x3. Then,
however, any order preserving isomorphism needs to map x1 ∈ dom(d) to x1 ∈
dom(d2) since x1 is the minimal element in both domains but d(x1) 6= d2(x1).
The only way to not violate the formula is hence that d2(y1) = d1(x1) and
d2(y2) = d1(x2). Then, we can choose p = x2 and have d|cl(x2) ≃ d2|cl(y2) meaning
that ↑y2 is satisfied.

For ⊑= {(x, x) | x ∈ A} (identity) we obtain the special case where only
single values can be stored and compared. If |A| = 1 we obtain the one-register

fragment LTL↓
1 from [DLS08]. On the other hand, if A contains three attributes

x, y, z such that x and y are incomparable and x ⊑ z ⊒ y storing the value of
z also stores the values of x and y. This amounts to storing and comparing the
set {dx, dy} ⊂ ∆ of values assigned to x and y. This is not precisely the same
as storing the ordered tuple (dx, dy) ∈ ∆ × ∆ but together with the ability of
storing and comparing x and y independently it turns out to be just as contagious
considering decidability.

In [BDM+11] it is shown that the satisfiability problem of two-variable first-
order logic over data words with two class relations is undecidable by reduction
from Post’s correspondence problem. We can adapt this proof and formulate
the necessary conditions for a data word to encode a solution using only the
attributes x ⊑ z ⊒ y. With ideas from [DFP13] we can also omit using past-time
operators. Moreover, this result can be generalised to arbitrary quasi-orderings
that contain three attributes x ⊑ z ⊒ y. For the details see Appendix A.

Theorem 3 (Undecidability). Let (A,⊑) be a quasi-ordered set of attributes

that is not a tree-quasi-ordering. Then the satisfiability problem of LTL↓
A[X,F]

is Σ0
1 -complete over A-attributed data words.

3 Nested Counter Systems

Nested Counter Systems (NCS) are a generalisation of counter systems simi-
lar to higher-order multi-counter automata as used in [BB07] and nested Petri
Nets [LS99]. In this section we establish novel complexity results for their cov-
erability problem. A finite number of counters can equivalently be seen as a
multiset M = {c1 : n1, . . . , cm : nm} ∈ N

C over a set of counter names
C = {c1, . . . , cn}. We therefore define NCS in the flavor of [DHLT14] as sys-
tems transforming nested multisets.

For k ∈ N let [k] denote the set {1, . . . , k} ⊂ N with the natural linear
ordering ≤. A k-nested counter system (k-NCS) is a tuple N = (Q, δ) comprised
of a finite set Q of states and a set of transition rules δ ⊆

⋃

i,j∈[k+1](Q
i × Qj).

For 0 ≤ i ≤ k the set Ci of configurations of level i is inductively defined by
Ck = Q and Ci−1 = Q × N

Ci . The set of configurations of N is then CN =
C0. An element of CN can be represented as a term constructed over unary
function symbols Q, constants Q and a binary operator + that is associative
and commutative. For example, the configuration (q0, {(q1, ∅) : 1, (q1, {(q2, ∅) :

6

2}) : 2, (q1, {(q2, ∅) : 2, (q3, {(q4, ∅) : 1}) : 1}) : 1}) can be represented by the term
q0(q1+q1(q2+q2)+q1(q2+q2)+q1(q2+q2+q3(q4))). The operational semantics
of N is defined in terms of the transition relation →⊆ CN ×CN on configurations
given by rewrite rules: for ((q0, . . . , qi), (q

′
0, . . . , q

′
j)) ∈ δ and i, j < k we have

q0(X1 + q1(. . . qi(Xi+1). . .)) → q′0(X1 + q′1(. . . q
′
j(Xj+1). . .))

with Xh ∈ N
Ch for 1 ≤ h ≤ k and Xℓ = ∅ for i + 2 ≤ ℓ ≤ j + 1. The cases for

i = k or j = k, or both, are defined accordingly.
As usual we denote by →∗ the reflexive and transitive closure of →. By �

we denote the nested multiset ordering, i.e. M ′ � M iff M ′ can be obtained
by removing elements (or nested multisets) from M . Given two configurations
C,C′ ∈ CN the coverability problem asks for the existence of a configuration
C′′ ∈ CN with C′′ � C′ and C →∗ C′′.

To establish our complexity results on NCS we require some notions on ordi-
nal numbers, ordinal recursive functions and respective complexity classes. We
represent ordinals using the Cantor Normal Form (CNF). An ordinal α < ε0
is represented in CNF as a term α = ωα1 + . . . + ωαk over the symbol ω and
the associative binary operator + where α > α1 ≥ . . . ≥ αk. Furthermore, we
denote limit ordinals by λ. These are ordinals such that α + 1 < λ for every
α < λ. We associate them with a fundamental sequence (λn)n converging to λ
defined by

(α+ ωβ+1)n := α+

n
︷ ︸︸ ︷

ωβ + . . . + ωβ

and (α+ωµ)n := α+ωµn for limit ordinals µ. We denote the n-th exponentiation
of ω by m as Ωm

n , i.e. Ωm
1 := m and Ωm

n+1 := ωΩm
n and define Ωn := Ωω

n . Then,
ε0 is the smallest ordinal α such that α = ωα. Given a monotone and expansive
function h : N → N, a Hardy hierarchy is an ordinal-indexed family of functions
hα : N → N defined by h0(n) := n, hα+1(n) := hα(h(n)) and hλ(n) := hλn(n).
Choosing h as the incrementing functionH(n) := n+1 the fast growing hierarchy
is the family of functions Fα(n) with Fα(n) := Hωα

(n).
The hierarchy of fast growing complexity classes Fα for ordinals α is defined

in terms of the fast-growing functions Fα. We refer the reader to [Sch13] for
details and only remark that F<ω is the class of primitive recursive problems
and problems in Fω,Fωω are solvable with resources bound by Ackermannian
and Hyper-Ackermenian functions, respectively. The fact most relevant for our
classification is that a basic Fα-complete problem is the termination problem
of Minsky Machines M where the sum of the counters is bounded by Fα(|M |)
[Sch13].

Upper bound. To obtain an upper bound for the coverability problem in k-
NCS we reduce it to that in Priority Channel Systems (PCS) [HSS13]. PCS are
comprised of a finite control and a fixed number of channels each storing a string
to which a letter can be appended (write) and from which the first letter can be
read and removed (read). Every letter carries a priority and can be lost at any

7

time and any position in a channel if its successor in the channel carries a higher
or equal priority. PCS can easily simulate NCS by storing and manipulating an
NCS configuration in a channel s.t. the level of a state in the NCS configuration
is reflected by the priority of the corresponding letter in the channel. E.g., the
3-NCS configuration (q0, q1 + q1(q2 + q2) + q1(q2 + q2 + q3(q4))) can be encoded
as a channel of the form (2, q1)(2, q1)(1, q2)(1, q2)(2, q1)(1, q2)(1, q2)(1, q3)(0, q4)
while q0 can be encoded in the finite control.

Taking the highest priority for the outermost level ensures that the lossi-
ness of PCS corresponds to descending with respect to � for the encoded NCS
configuration. Thus the coverability problem in NCS directly translates to that
in PCS. The coverability (control-state reachability) problem in PCS with one
channel and k priorities lies in the class FΩ2k

[HSS14] and we thus obtain an
upper bound for NCS coverability.

Proposition 1. Coverability in k-NCS is in FΩ2k
.

Lower bound. We can show the following theorem by reducing the halting
problem of FΩl

k
-bounded Minsky Machines to coverability in (k + 1)-NCS with

the number of states bounded by l + c, where c is some constant.

Theorem 4. Coverability of (k + 1)-NCS is FΩk
-hard.

We construct a k-NCS that can simulate the evaluation of the Hardy function
Hα(n) for α < Ωl

k in forward as well as backward direction. For sake of simplic-
ity, we first explain the construction using k + 1 levels. We encode the ordinal
parameter α of Hα(n) using nested multisets and its argument n ∈ N (unary)
into a configuration

Cα,n := (main, (s,Mα) + (c,

n
︷ ︸︸ ︷

1 + . . . + 1))

with control-states main, s, c and M0 := ∅ and Mωα+β := (ω,Mα) +Mβ . The
construction has to fulfil two properties. As NCS do not feature a zero test exact
simulation cannot be enforced but errors can be restricted to be “lossy”.

Lemma 1. For all configurations Cα,n →∗ Cα′,n′ we have Hα(n) ≥ Hα′

(n′).

Further, the construction has to admit at least one run maintaining exact values.

Lemma 2. If Hα(n) = Hα′

(n′) then there is a run Cα,n →∗ Cα′,n′ .

The main challenge of the construction is simulating a step from a limit or-
dinal to an element of its fundamental sequence, i.e., from Cα+λ,n to Cα+λn,n

and conversely. The encoding of the ordinal parameter loses the ordering of the
addends of the respective CNF terms. Thus, instead of taking the last element of
the CNF term we have to select the smallest element of the corresponding linearly
ordered multiset. To achieve that, we extend NCS by two operations cp and min.
Given some configuration C1 = (q1, (m1,M)) the operation (q1,m1)cp(q2,m2)

8

copies M resulting in C2 = (q2, (m1,M1) + (m2,M2)) with M1,M2 � M . Con-
versely, given the configuration C2 the operation (q2,m2)min(q1,m1) results in
C1 with M � M1,M2. Both operations can be implemented in a depth first
search fashion using the standard NCS operations.

Instead of directly selecting the smallest element of a multiset we copy all
elements to another set in descending order, guessing in each step whether the
smallest element is reached. Using the min operation we can ensure that we
either proceed indeed in descending order or make a “lossy” error. Once the
supposedly smallest element is reached, the original, now presumed to be empty,
multiset is deleted. Thereby it is ensured, that the smallest element has been
selected or, again, a “lossy” error occurs. The additional level in the encoding
of Cα,n enables us to perform this deletion step.

We now construct an NCS simulating an Hα(s)-bounded Minsky Machine
M of size s := |M| analogously to the constructions in [CS08,HSS14] for Turing
Machines. It starts in a configuration Cα,s to evaluate Hα(s). When it reaches
C0,n for some n ≤ Hα(s) it switches its control state and starts to simulate M
using n as a budget for the sum of the two simulated counters. Zero tests can then
be simulated by resets (deleting and creating multisets) causing a “lossy” error
in case of an actually non-zero counter. When the simulation of M reaches a
final state the NCS moves the current counter values back to the budged counter
and performs a construction similar to the one above but now evaluating Hα(s)
backwards until reaching (Cα,s)

′, the initial configuration with a different control
state. If (Cα,s)

′ can be reached (or even covered) no “lossy” errors occurred and
the Minsky Machine M was thus simulated correctly regarding zero tests.

One may observe that for α < ωl
k the exponents of the innermost level of the

CNF of ordinals occurring during the computation of Hα(n) are bounded by l.
Thus, we can use explicit symbols for ω0, . . . , ωl in our encoding and avoid one
level of nesting. See Appendix B for the detailed construction.

4 From LTL
↓
tqo to NCS and Back

The decidability and complexity results for NCS can be transferred to LTL↓
tqo

to obtain upper and lower bounds for the satisfiability problem of the logic. We
show a correspondence between the nesting depth in NCS and the depths of the
tree-quasi-ordered attribute sets that thus constitutes a semantic hierarchy of
logical fragments. We provide the essential ideas in the following and refer the
reader to Appendix D and E for the detailed constructions.

The first observation is that, as far as satisfiability is concerned, we can
reduce the syntactical features of LTL↓

tqo by restricting to attribute sets of the
form [k] = {1, . . . , k} for some k ∈ N with the natural linear ordering. This will
also reveal the depth of the chosen attribute ordering to be the crucial parameter
concerning complexity.

Proposition 2 (Linearisation). If A is a tree-quasi-ordered set of attributes

of depth k then every LTL↓
A formula can be translated into an equisatisfiable

LTL↓
[k] formula.

9

To reduce an arbitrary tree-quasi-ordering A of depth k we first remove
maximal strongly connected components (SCC) in the graph of A and replace
them by a single attribute. This does only affect the semantics of formulae ϕ if
attributes are compared that did not have an isomorphic downward-closure in
A. These cases can, however, be handled by additional constraints added to ϕ.

Data words over a thus obtained partially ordered attribute set of depth
k can now be encoded into words over the linear order [k] of equal depth k.
The idea is to encode a single position into a frame of positions in the fashion
of [KSZ10,DHLT14]. That way a single attribute on every level suffices. Any
formula can now be transformed to operate on these frames instead of single
positions.

From LTL↓

[k] to NCS. Given an LTL↓
[k] formula Φ we can now construct a

(k + 1)-NCS N and two configurations Cinit, Cfinal ∈ CN s.t. Φ is satisfiable if
and only if Cfinal can be covered from Cinit.

The idea is to encode sets of guarantees into NCS configurations. These
guarantees are subformulae of Φ and are guaranteed to be satisfiable. The con-
structed NCS can instantiate new guarantees and combine existing ones while
maintaining the invariant that there is always a data word w ∈ (Σ×∆[k])+ that
satisfies all of them. To ensure the invariant, the guarantees are organised in a
tree structure of depth k. All formulae ϕ contained in the same node v of this
tree are moreover not only satisfied by the same word w but also wrt. a com-

mon valuation dv ∈ ∆
[k]
⊥ , i.e., (w, 1,dv) |= ϕ. The tree-structure represents how

these common valuations are related. For two nodes that share some prefix of
length i ∈ [k] in the tree, the corresponding valuations also coincide on the first
i attributes. The uniquely marked branch in the tree further corresponds to the
valuation d1 at the first position in w. Thus, if a formula ϕ is contained in the
marked node at level i in the tree then (w, 1,d1|[i]) |= ϕ. Hence (w, 1,d) |= ↓iϕ

for any d ∈ ∆
[k]
⊥ and the formula ↓iϕ could be added to any of the nodes in the

tree without violating the invariant. Indeed the NCS N can perform transitions
accordingly. Similarly, for a checked node v at level i the formulae ↑i can be
added to any node in the subtree with root v. Other atomic formulae, Boolean
combinations, and temporal operators can also be added consistently. Recall
that we only need to consider subformulae of Φ and thus remain finite-state for
representing nodes.

A crucial aspect is constructing formulae of the form Xϕ. This needs to be
done for all guarantees at once but NCS do not have an atomic operation for
modifying all states in a configuration. Therefore, the tree is copied recursively,
processing each copied node. The NCS can choose at any time to stop and remove
the tree. That way it might loose guarantees but maintains the invariant since
only processed nodes remain. The tree of depth k itself could be maintained by
a k-NCS but to implement the copy operation an additional level is needed.

The initial configuration Cinit consists of a tree without any guarantees. In
a setup phase, the NCS can add branches and formulae of the form Xϕ since
they are satisfied by any word of length 1. Once the formula Φ is encountered in

10

q0

q1

q2 q3

q1 q4

q5

q0 q0 q0 q0 q0 q0 q0 q0
q1 q1 q1 q1 q1 q1 q4 q4
q2 q2 q3 q3 − − q5 q5

1 10 1 10 6 60 4 40
2 20 3 30 7 70 5 50

Fig. 1. Encoding of a 2-NCS configuration as [2]-attributed data word. Even positions
are shaded and the encoded tree structure is highlighted. Instead of letters from Σ the
encoded tuples of states from Q are displayed.

the current tree the NCS can enter a specific target state qfinal. A path starting
in Cinit and covering the configuration Cfinal = qfinal then constitutes a model
of Φ and vice versa. By Proposition 2 we hence obtain the following theorem.

Theorem 5. For tree-quasi-ordered attribute sets A with depth k satisfiability
of LTL↓

A can be reduced in exponential space to coverability in (k + 1)-NCS.

From k-NCS to LTL↓

[k]. Let N = (Q, δ) be a k-NCS. We are interested in
describing witnesses for coverability. It hence suffices to construct a formula
ΦN that characterises precisely those words that encode a lossy run from some
configuration Cstart to some configuration Cend. A sequence C0C1. . . Cn of con-
figurations Cj ∈ CN is a lossy run if there is a run C′

0 → C′
1 → . . . → C′

n of N
with C′

j � Cj for 0 ≤ j ≤ n.

Configurations. A configuration of a k-NCS is essentially a tree of depth k + 1
and can be encoded into a [k]-attributed data word as a frame of positions,
similar as done to prove Proposition 2. We use an alphabet Σ where every letter
a ∈ Σ encodes a (k+1)-tuple of states from Q, i.e., a possible branch in the tree.
Then a sequence of such letters represents a set of branches that form a tree. The
data valuations represent the information which of the branches share a common
prefix. Further, this representation is interlaced: it only uses odd positions. The
even position in between are used to represent an exact copy of the structure
but with distinct data values. We use appropriate LTL↓

[k] formulae to express

this shape. Figure 1 shows an example.

Transitions. To be able to formulate the effect of transition rules without using
past-time operators we encode runs reversed. Given that a data word encodes a
sequence C0C1. . . Cn of configurations as above we model the (reversed) control
flow of the NCS N = (Q, δ) by requiring that every configuration but for the
last be annotated by some transition rule tj ∈ δ for 0 ≤ j < n. We impose that
this labelling by transitions actually represents the reversal of a lossy run. That
is, for every configuration Cj in the sequence (for 0 ≤ j < n) with annotated
transition rule tj there is a configuration C′ (not necessarily in the sequence)

such that C′ t
→ Cj and C′ � Cj+1.

For the transition tj to be executed correctly (up to lossiness) we impose
that every branch in Cj must have a corresponding branch in Cj+1. Yet, there

11

may be branches in Cj+1 that have no counterpart in Cj and were thus lost
upon executing tj . Shared data values are now used to establish a link between
corresponding branches: for every even position in the frame encoding Cj there
must be an odd position in the consecutive frame (thus encoding Cj+1) with
the same data valuation. To ensure such a link to be unambiguous we require
that every data valuation occurs at most twice in the whole word. Depending
on the effect of the current transition the letters of linked positions are related
accordingly. E.g., for branches not affected at all by tj the letters are enforced to
be equal. This creates a chain of branches along the run that are identified: an
odd position links forward to an even one, the consecutive odd position mimics it
and links again forward. Based on these ideas we can construct a formula satisfied
precisely by words encoding a lossy run between particular configurations.

Theorem 6. The coverability problem of k-NCS can be reduced in exponential
space to LTL↓

[k] satisfiability.

5 Conclusion

By Theorem 5 together with Proposition 1 and Theorem 6 with Theorem 4 we
can now characterise the complexity of LTL↓

tqo fragments as follows.

Proposition 3. Satisfiability of LTL↓
A over a tree-quasi-ordered attribute set of

depth k is in FΩ2(k+1)
and FΩk

-hard.

Together with Theorem 3 this completes the proof of Theorem 2 stating that
LTL↓

tqo is the maximal decidable fragment of LTL↓
qo and Fε0 -complete. The result

also shows that the complexity and thereby expressiveness of the logic continues
to increase strictly with the depth of the attribute ordering.

Our result on NCS also provides a first upper bound for the satisfiability
problems of the logics ND-LTL± (on finite words) introduced in [DHLT14]. A
significantly improved lower bound can further be derived from the proof of
Theorem 6.

Corollary 1. Satisfiability of ND-LTL±
[k+1] is in FΩ2(k+1)

and FΩk
-hard.

While Freeze LTL allows for freezing and comparing values while navigating
globally along a word ND-LTL can only use navigation along positions with
equal data values. The subtle differences in the complexity results reflect the
effect of these different capabilities.

PCS were proposed as a “master problem” for Fε0 [HSS14] and indeed our
upper complexity bounds for NCS rely on them. However, they are not well
suited to prove our hardness results. This is due to PCS being based on sequences
and the embedding ordering while NCS are only based on multisets and the
subset ordering. In a sense, PCS generalise the concept of channels to multiple
levels of nesting, whereas NCS generalise the concept of counters. Hence, we
believe NCS are a valuable addition to the list of Fε0 -complete models. They
may serve well to prove lower bounds for formalisms that are like Freeze LTL
more closely related to the concept of counting.

12

References

AH89. Rajeev Alur and Thomas A. Henzinger. A really temporal logic. In 30th
Annual Symposium on Foundations of Computer Science. IEEE Computer
Society, 1989.

BB07. Henrik Björklund and Mikolaj Bojanczyk. Shuffle expressions and words
with nested data. In Ludek Kucera and Antońın Kucera, editors, Mathemat-
ical Foundations of Computer Science 2007, 32nd International Symposium,
MFCS 2007, volume 4708 of Lecture Notes in Computer Science. Springer,
2007.

BDM+11. Mikolaj Bojanczyk, Claire David, Anca Muscholl, Thomas Schwentick, and
Luc Segoufin. Two-variable logic on data words. ACM Trans. Comput. Log.,
12(4), 2011.

CS08. Pierre Chambart and Philippe Schnoebelen. The ordinal recursive complex-
ity of lossy channel systems. In Twenty-Third Annual IEEE Symposium on
Logic in Computer Science, LICS 2008. IEEE Computer Society, 2008.

DFP13. Stéphane Demri, Diego Figueira, and M. Praveen. Reasoning about data
repetitions with counter systems. In 28th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2013. IEEE Computer Society, 2013.

DHLT14. Normann Decker, Peter Habermehl, Martin Leucker, and Daniel Thoma.
Ordered navigation on multi-attributed data words. In Paolo Baldan and
Daniele Gorla, editors, CONCUR 2014 - Concurrency Theory - 25th Inter-
national Conference, volume 8704 of Lecture Notes in Computer Science.
Springer, 2014.

DL06. Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and reg-
ister automata. In 21th IEEE Symposium on Logic in Computer Science
(LICS 2006). IEEE Computer Society, 2006.

DL09. Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and reg-
ister automata. ACM Trans. Comput. Log., 10(3), 2009.

DLN05. Stéphane Demri, Ranko Lazic, and David Nowak. On the freeze quantifier
in constraint LTL: decidability and complexity. In 12th International Sym-
posium on Temporal Representation and Reasoning (TIME 2005). IEEE
Computer Society, 2005.

DLS08. Stéphane Demri, Ranko Lazic, and Arnaud Sangnier. Model checking freeze
LTL over one-counter automata. In Roberto M. Amadio, editor, Founda-
tions of Software Science and Computational Structures, 11th International
Conference, FOSSACS 2008, volume 4962 of Lecture Notes in Computer
Science. Springer, 2008.

Fig12. Diego Figueira. Alternating register automata on finite words and trees.
Logical Methods in Computer Science, 8(1), 2012.

Fit02. Melvin Fitting. Modal logics between propositional and first-order. J. Log.
Comput., 12(6), 2002.

Gor96. Valentin Goranko. Hierarchies of modal and temporal logics with reference
pointers. Journal of Logic, Language and Information, 5(1), 1996.

Hen90. Thomas A. Henzinger. Half-order modal logic: How to prove real-time prop-
erties. In Cynthia Dwork, editor, Ninth Annual ACM Symposium on Prin-
ciples of Distributed Computing. ACM, 1990.

HMU01. John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to automata theory, languages, and computation - (2. ed.). Addison-Wesley
series in computer science. Addison-Wesley-Longman, 2001.

13

HSS13. Christoph Haase, Sylvain Schmitz, and Philippe Schnoebelen. The power
of priority channel systems. In Pedro R. D’Argenio and Hernán C. Mel-
gratti, editors, CONCUR 2013 - Concurrency Theory - 24th International
Conference, volume 8052 of Lecture Notes in Computer Science. Springer,
2013.

HSS14. Christoph Haase, Sylvain Schmitz, and Philippe Schnoebelen. The power
of priority channel systems. Logical Methods in Computer Science, 10(4),
2014.

KSZ10. Ahmet Kara, Thomas Schwentick, and Thomas Zeume. Temporal logics on
words with multiple data values. In Kamal Lodaya and Meena Mahajan,
editors, IARCS Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science, FSTTCS 2010, volume 8 of LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

Laz06. Ranko Lazic. Safely freezing LTL. In S. Arun-Kumar and Naveen Garg,
editors, FSTTCS 2006: Foundations of Software Technology and Theoreti-
cal Computer Science, volume 4337 of Lecture Notes in Computer Science.
Springer, 2006.

LP05. Alexei Lisitsa and Igor Potapov. Temporal logic with predicate lambda-
abstraction. In 12th International Symposium on Temporal Representation
and Reasoning (TIME 2005). IEEE Computer Society, 2005.

LS99. Irina A. Lomazova and Philippe Schnoebelen. Some decidability results
for nested petri nets. In Dines Bjørner, Manfred Broy, and Alexandre V.
Zamulin, editors, Perspectives of System Informatics, Third International
Andrei Ershov Memorial Conference, PSI’99, volume 1755 of Lecture Notes
in Computer Science. Springer, 1999.

LS15. Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition sys-
tems demystified. CoRR, abs/1503.00745, 2015.

Sch13. Sylvain Schmitz. Complexity hierarchies beyond elementary. CoRR,
abs/1312.5686, 2013.

14

A Undecidability of LTL↓
qo

In this section we provide the technical details for establishing undecidability of
LTL↓

qo. Recall Theorem 3.

Theorem 3 (Undecidability). Let (A,⊑) be a quasi-ordered set of attributes

that is not a tree-quasi-ordering. Then the satisfiability problem of LTL↓
A[X,F]

is Σ0
1 -complete over A-attributed data words.

Semi-decidability is obvious when realising that the particular data values
in a data word are irrelevant. It suffices to enumerate representatives of the
equivalence classes modulo permutations on ∆.

We proceed by first establishing undecidability for a base case with three
attributes and generalise it then to an arbitrary number of attributes.

A.1 Base Case

Lemma 3. For the quasi-ordered set (A,⊑) of attributes with A := {x, y, z}

where x ⊑ z ⊒ y and x, y are incomparable the satisfiability problem of LTL↓
A[X,F]

is undecidable.

Proof (Lemma 3). Post’s correspondence problem (PCP) is undecidable (see,
e.g., [HMU01]) and we use an encoding of it proposed in [BDM+11]. An instance
of PCP is given by a set T ⊆ Σ∗ ×Σ∗ of tiles of the form t = (u, v), u, v ∈ Σ∗,
over some finite alphabet Σ. The problem is to decide whether there exists a
finite sequence t1t2. . . tn = (u1, v1)(u2, v2). . . (un, vn) such that the “u-part“ and
the “v-part” coincide, i.e. u1u2. . . un = v1v2. . . vn.

The idea in [BDM+11] is to encode a sequence of tiles in a word over the
alphabet Σ∪̇Σ, where we use a distinct copy Σ := {a | a ∈ Σ} to encode the
v-part and letters from Σ to encode the u-part. For v = a1a2. . . ∈ Σ∗, ai ∈ Σ,
we let v = a1a2. . . . A sequence of tiles (u1, v1)(u2, v2). . . is then encoded as
v1u1v2u2. . . . The switched order of encoding a tile (ui, vi) avoids some edge-
cases later.

To show undecidability of the logic it now suffices to construct from an ar-
bitrary instance of PCP T a formula that expresses sufficient and necessary
conditions for a data word (a1,d1)(a2,d2). . . ∈ ((Σ∪̇Σ) × ∆A)+ to encode a
solution to the PCP instance in terms of its string projection a1a2. . . ∈ (Σ∪̇Σ)+.

The conditions proposed in [BDM+11], however, would require to use past
operators. To avoid these we use two ideas from [DFP13]. Let, for a sequence of
tiles (u1, v1)(u2, v2). . . (un, vn) ∈ T ∗ denote u := u1u2. . . un and v := v1v2. . . vn.

First, the encoding (and the alphabet) is extended such that even and odd
positions in u and v are marked by additional propositions e and o, respectively.
Second, we use a variant of PCP which is used in [DFP13]. It imposes additional
restrictions on a valid solution t1t2. . . tn ∈ T ∗:

– t1 = t̂ for a fixed given initial tile t̂ = (û, v̂) ∈ T ,

15

– for every strict prefix t1t2. . . ti, i < n, the u-part must be strictly shorter
than the v part and

– |u| (i.e., the length of the solution) is odd.

The first condition turns the problem into what is called a modified PCP in
[HMU01] and shown undecidable there by a reduction from the halting problem
of Turing machines. It was observed in [DFP13] that this encoding of Turing
machines actually guarantees that the length of the u-part is always shorter. As
pointed out in [BDM+11], the last condition is not an actual restriction because
adding a tile ($x, $y) for every tile (x, y) ∈ T yields a PCP instance that has an
odd solution if and only if the original instance had any.

We can now adjust the set of conditions from [BDM+11] such that they can

be formulated in LTL↓
A and impose the additional restrictions on a solution.

1. Global structure
(a) The string projection (stripped off additional even-odd markings) be-

longs to v1u1{vu | (u, v) ∈ T }∗ where (u1, v1) = t̂. Assuming that the
end of each tile is marked uniquely to avoid overlapping ambiguity we
can use the formula

v1u1 ∧G




∧

(u,v)∈T

vu→
∨

(u′,v′)∈T

X
|uv|

v′u′





where a word a1a2. . . an ∈ (Σ∪̇Σ)∗ stands for the formula a1 ∧ X(a2 ∧
X(. . . ∧ X(an). . .)).

(b) The substrings u and v are marked correctly with e and o:

G(e↔ ¬o) ∧ o ∧ X|v1| o

encodes exclusiveness of markings e and o and specifies the first v-position
and the first u-position in the encoding to be odd. Then we specify the
alternation of markings in the subsequence encoding u by

G((Σ ∧ o) → X(¬Σ U≤k(Σ ∧ e) ∨G(¬Σ)))

∧G((Σ ∧ e) → X(¬Σ U≤k(Σ ∧ o) ∨G(¬Σ)))

and the alternation of markings in the subsequence encoding v by

G((Σ ∧ o) → X(¬Σ U≤k(Σ ∧ e) ∨G(¬Σ)))

∧G((Σ ∧ e) → X(¬Σ U≤k(Σ ∧ o) ∨G(¬Σ)))

We use a bounded version of the U operator because we can encode its finite
unfolding with only using nested X operators. The relevant range can be
bound by the length of the tiles in T as

k ≥ 2 ·max{|r| | ∃s(r, s) ∈ T ∨ (s, r) ∈ T }.

16

Thus, we take k to be at least as large as the longest consecutive pair viui
or uivi+1 in the encoding of a solution could possibly be. This is a bound on
the distance between two position in the encoding that are consecutive in u
or v.

2. The values in the subword encoding u are such that
– each data value occurs at most twice and not in both attributes x and
y:

G(Σ → ↓x((¬F ↑y) ∧ ¬XF(Σ∧ ↑x ∧XF(Σ∧ ↑x))) (1)

∧G(Σ → ↓y((¬F ↑x) ∧ ¬XF(Σ∧ ↑y ∧XF(Σ∧ ↑y))) (2)

– at any odd position (except for the last) the data value for attribute x
occurs again in x at an even future position and vice versa for attribute
y:

G((Σ ∧ (XFΣ) ∧ o) → ↓x(F(↑x ∧Σ ∧ e)) (3)

∧G((Σ ∧ e) → ↓y(F(↑y ∧Σ ∧ o)) (4)

3. The same restrictions can be formulated analogously for the subword that
encodes v.

4. Each set of values occurring at some Σ-position occurs once again at a Σ-
position:

G(Σ → ↓z(XF(Σ∧ ↑z) ∧ ¬XF(↑z ∧XF ↑z)))

Together with the other constraints this implies already that each tuple oc-
curs exactly once again in the subword for u. On the other hand this also
implies the other direction namely that each tuple in the subword for u
occurs in the subword for v. This can be seen by the following argument.
Assume that there were a position (a,d) in the encoding of u that has no
matching position (a,d) in the encoding of v. The data value d(x) can not
occur in the subword encoding v because then this value occurred at least
three times in the whole word. The same applies for d(y). By the conditions
of items 2. and 3. the data values are chained to each other so the neigh-
bouring tuples of (a,d) in u must share at least one value and hence cannot
occur in v either. By induction this would mean that none of the position in
u have a match in v which contradicts that v is at least of length 1. ⊓⊔

A.2 General Case

We can now complete the proof of Theorem 3.

Proof (Theorem 3). Lemma 3 established undecidability for the essential case
of a non-tree-quasi-ordering. It remains to conclude that this results generalises
to arbitrary non-tree-quasi-orderings.

Let (A,⊑) be the quasi-ordered defined in Lemma 3. First of all, (A,⊑)
is not a tree-quasi-ordering since the downward-closure cl(z) of z is not quasi-
linear (total). Moreover, every non-tree-quasi-ordering (A′,⊑′) has a subset that

17

is isomorphic to A: By definition A′ must contain an element z′ of which the
downward-closure is not quasi-linear and must hence contain two incomparable
elements x′ ⊑ z′ and y′ ⊑ z′. Hence from now on we assume w.l.o.g. that A ⊆ A′

by identifying x, y, z with x′, y′, z′, respectively.
We now show that the formula ϕ constructed to prove Lemma 3 is satisfiable

overA-attributed data words if and only if it is satisfiable when being interpreted
over A′-attributed data words.

(⇒) Consider an A-attributed data word w satisfying ϕ. Choose a data value
e ∈ ∆ that does not occur in w and extend w to an A′-attributed data word
w′ by assigning e to every attribute p ∈ A′ \ A at every position in w′. This
does not change the satisfaction relation because ϕ still only uses attributes
from A and the evaluation of formulae ↑r for r ∈ A is not affected: For w =
(a1,d1). . . (an,dn), w

′ = (a1,d
′
1). . . (an,d

′
n), 0 < i ≤ j ≤ n, r′ ∈ A we have

(w, j,di|cl(r)) |=↑r
′

⇔ (w′, j,d′
i|cl(r)) |=↑r

′

.

i) Let r = r′ ∈ {x, y}. Notice that (w, j,di|cl(r)) |=↑r iff di(r) = dj(r). Then
di(r) = dj(r) implies that ∃p∈A′ : d′

i|cl(r)|cl(p) ≃ d′
j |cl(r) since for p = r the

restrictions are isomorphic as all other attributes in cl(r) are always mapped
to e. Conversely, if ∃p∈A′ : d′

i|cl(r)|cl(p) ≃ d′
j |cl(r) then it can only be the case

for some p such that cl(p) = cl(r). Since dj(q) = di(q) = e 6= di(r) for all
q ∈ cl(r) \ {r} the valuations can only be isomorphic if dj(r) = di(r).

ii) Let r = r′ = z. We have that (w, j,di|cl(z)) |=↑z iff di(z) = dj(z) and
{di(x),di(y)} = {dj(x),dj(y)}. In our case, the models of ϕ only admit
disjoint values for attributes x and y (cf. items no. 2 and 3 in the proof
of Lemma 3). Thus, di(x) = dj(x) and di(y) = dj(y). This er implies
∃p∈A′ : d′

i|cl(z)|cl(p) ≃ d′
j |cl(z) witnessed by choosing p = z since all other

attributes are evaluated to e by d′
i and d′

j . Moreover, the opposite direction
holds for the same reason.

iii) Let r′ = x and r = y or vice versa. Again (w, j,di|cl(r)) |=↑r
′

iff di(r) =
dj(r

′), which however, cannot be true due to x and y being assigned disjoint
sets of values in every model. On the other hand, assume there is p ∈ A′

s.t. d′
i|cl(r)|cl(p) ≃ d′

j |cl(r′). Clearly the witnessing isomorphism must map r
to r′ since they are not assigned the value e. The, however, di(r) = dj(r

′)
which violates ϕ.

The remaining cases do not occur in ϕ (and would evaluate to false anyway). We
conclude that if w is a model for ϕ then w′ is as well.

(⇐) Consider an A′-attributed data word w′ satisfying ϕ and let ∆w′ ⊆ ∆ be
an enumerable set of data values not occurring in w′. Let f : ∆A′

⊥/≃ →֒ ∆w′

be an injection from the ≃-equivalence classes of data valuations to data values
uniquely representing it. We can then construct an A-attributed model w for ϕ
from w′ by erasing all attributes except for x, y, z and let di(p) := f([di|cl(p)]≃)
for p ∈ A where [d]≃ denotes the ≃-equivalence class of a data valuation d.
Intuitively, at any position in w′, we just collapse the structure of data values

18

to a single one representing its equivalence class. By similar arguments as above,
we can again show that

(w, j,di|cl(r)) |=↑r
′

⇔ (w′, j,d′
i|cl(r)) |=↑r

′

.

i) For r = r′ we have that ∃p∈A′ : d′
i|cl(r)|cl(p) ≃ d′

j |cl(r) iff d′
i|cl(r) ≃ d′

j |cl(r′) iff
[d′

i|cl(r)]≃ = [d′
j |cl(r)]≃ iff di(r) = dj(r).

ii) For r = x and r′ = y or vice versa ∃p∈A′ : d′
i|cl(r)|cl(p) ≃ d′

j |cl(r) cannot be
true in a model for ϕ and this being false implies equally di(r) 6= dj(r

′).

Again, other cases do not apply. ⊓⊔

19

B Lower Bound for NCS Coverability

In this section we give the detailed constructions proving Theorem 4. As we have
discussed above, we need a construction fulfilling Lemma 1 and Lemma 2.

To this end, we extend the NCS with two auxiliary operations cp and min.
The semantics of the operation (q1, . . . , ql)cp(q

′
1, . . . , q

′
l) can be given by the

rewriting rule (q1, X1 + (q2, X2 + . . . (ql, Xl)) + (q′2, X
′
2 + . . . (q′l−1, X

′
l−1))) →

(q′1, X1+(q2, X2+ . . . (ql, Xl))+(q′2, X
′
2+ . . . (q

′
l−1, X

′
l−1+(q′l, X

′)))) where X ′ �
Xl. The operation copies the multiset marked by q2, . . . , ql “lossily” to a multiset
marked by q′2, . . . , q

′
l.

The operation (q1, . . . , ql)min(q′1, . . . , q
′
l) can be seen as the inverse opera-

tion. Its semantics can be given by (q1, X1 + (q2, X2 + . . . (ql, Xl)) + (q′2, X
′
2 +

. . . (q′l, X
′
l))) → (q′1, X1 + (q2, X2 + . . . (ql−1, Xl−1)) + (q′2, X

′
2 + . . . (q′l−1, X

′
l−1 +

(q′l, X
′)))) where X ′ � Xl and X ′ � X ′

l . It deletes the multiset marked by
q2, . . . , ql and replaces the multiset marked by q′2, . . . , q

′
l with the minimum of

both (or a smaller multiset).
Both operations can be implemented using standard NCS transition rules

and do thus not extend the computational power of NCS.
A copy rule t = (q1, . . . , ql)cp(q

′
1, . . . , q

′
l) can be implemented as follows:

(q1, . . . , ql)δ(cpit,ql , q2, . . . , ql−1, i)

(cpit,q, q2, . . . , ql−1)δ(cpi
′
t,q, q2, . . . , ql−1, o1)

(cpi′t,q, q
′
2, . . . , q

′
l−1)δ(cpt,q, q

′
2, . . . , q

′
l−1, o2)

(cpt,q, q2, . . . , ql−1, r1, . . . , rm, o1)δ(cpdt,q, q2, . . . , ql−1, r1, . . . , rm, q, o1)

(cpdt,q, q
′
2, . . . , q

′
l−1, r1, . . . , rm, o2)δ(cpd

′
t,q, q

′
2, . . . , q

′
l−1, r1, . . . , rm, q, o2)

(cpd′
t,q, q2, . . . , ql−1, r1, . . . , rm, i, rm+1)δ(cpt,rm+1

, q2, . . . , ql−1, r1, . . . , rm, q, i)

(cpt,q, q2, . . . , ql−1, r1, . . . , rm, rm+1, o1)δ(cput,q, q2, . . . , ql−1, r1, . . . , rm, o1, q)

(cput,q, q
′
2, . . . , q

′
l−1, r1, . . . , rm, rm+1, o2)δ(cpu

′
t,q, q

′
2, . . . , q

′
l−1, r1, . . . , rm, o2, q)

(cpu′t,q, q2, . . . , ql−1, r1, . . . , rm, rm+1, i)δ(cpt,rm+1
, q2, . . . , ql−1, r1, . . . , rm, i)

(cpt,q, q2, . . . , ql−1, i)δ(cpft, q2, . . . , ql−1)

(cpf t, q2, . . . , ql−1, o1)δ(cpf
′
t, q2, . . . , ql)

(cpf ′t, q
′
2, . . . , q

′
l−1, o2)δ(q

′
1, . . . , q

′
l)

The construction works in a depth-first-search fashion using a symbol i to mark
the set, that is currently copied (and subsequently deleted), and two symbols o1
and o2 to mark the two copies, that are currently created. First (the control states
named cpi) the markings are placed. Then either a new element of the multiset
marked by i is selected, corresponding, new multisets are created under o1 and o2
and all markings are moved inwards (cpd-states) or copying of multiset marked
by i has been completed, the multiset is deleted, and the markings are moved
back outwards (cpd-states). When the markings are back on the outermost level,
the copy process has been completed and the markings can be replaced (cpf-
states).

20

A minimum rule t = (q1, . . . , ql)min(q′1, . . . , q
′
l) can be implemented in a

similar fashion:

(q1, . . . , ql)δ(minit,ql , q2, . . . , ql−1, i1)

(minit,q, q
′
2, . . . , q

′
l)δ(mini′t,q, q

′
2, . . . , q

′
l−1, i2)

(mini′t,q, q
′
2, . . . , q

′
l−1)δ(mint,q, q

′
2, . . . , q

′
l−1, o)

(mint,q, q
′
2, . . . , q

′
l−1, r1, . . . , rm, o)δ(mindt,q, q

′
2, . . . , q

′
l−1, r1, . . . , rm, q, o)

(mindt,q, q2, . . . , ql−1, r1, . . . , rm, i1, rm+1)δ(mind′
t,rm+1

, q2, . . . , ql−1, r1, . . . , rm, q, i1)

(mind′t,q, q
′
2, . . . , q

′
l−1, r1, . . . , rm, i2, q)δ(mint,q, q

′
2, . . . , q

′
l−1, r1, . . . , rm, q, i2)

(mint,q, q
′
2, . . . , q

′
l−1, r1, . . . , rm, rm+1, o)δ(minut,q, q

′
2, . . . , q

′
l−1, r1, . . . , rm, o, q)

(minut,q, q2, . . . , ql−1, r1, . . . , rm, rm+1, i1)δ(minu′
t,rm+1

, q2, . . . , ql−1, r1, . . . , rm, i1)

(minu′t,q, q
′
2, . . . , q

′
l−1, r1, . . . , rm, q, i2)δ(mint,q, q

′
2, . . . , q

′
l−1, r1, . . . , rm, i2)

(mint,q, q2, . . . , ql−1, i1)δ(minf t, q2, . . . , ql−1)

(minft, q
′
2, . . . , q

′
l−1, i2)δ(minf ′t, q

′
2, . . . , q

′
l−1)

(minf ′t, q
′
2, . . . , q

′
l−1, o)δ(q

′
1, . . . , q

′
l)

It follows exactly the same idea, but deletes elements from two marked multisets
(i1 and i2) and only creates elements in one marked multiset (o).

Having these auxiliary operations at our disposal, we can now give the exact
transition rules to implement Hardy computations. The encoding of the ordinal
parameter α and the natural attribute n of a Hardy function Hα(n) is encoded
into transitions as defined above. We have to come up with transition rules that
allow four kinds of runs

1. Cα+1,n →∗ Cα,n+1,
2. Cα,n+1 →∗ Cα+1,n,
3. Cα+λ,n →∗ Cα+n·λn,n and
4. Cα+λn,n →∗ Cα+λ,n

in order to satisfy Lemma 1 without violating Lemma 2.
Case (1) is straightforward, we only have to remove some element from the

multiset encoding the ordinal and move it to the multiset encoding the argument:

(main, s, ω)δ(R1, s)

(R1, c)δ(main, c, ω)

Case (2) works just the other way around:

(main, c, ω)δ(R2, c)

(R2, s)δ(main, s, ω)

Case (3) requires to replace the smallest addend ωβ of a limit ordinal α+ωβ

with the nth element of its fundamental sequence (ωβ)n. If β is a limit ordinal,
it has to be replaced by βn, i.e. the same process has to be applied recursively.

21

Otherwise, the immediate predecessor of β′+1 = β has to be copied n times. The
states in the following constructions are parametrised by the recursion depth l.

(main, s, ω)δ(R30, s, a1)

(R3l,

l
︷ ︸︸ ︷

s′, . . . , s′)δ(R3sl,

l
︷ ︸︸ ︷

s′, . . . , s′, s′)

(R3sl, s,

l
︷ ︸︸ ︷
s, . . . , s, ω)δ(R3s′l, s,

l
︷ ︸︸ ︷
s, . . . , s, a2)

(R3s′l, s,

l
︷ ︸︸ ︷
s, . . . , s, a1)cp(R3s

′′
l , s

′,

l
︷ ︸︸ ︷

s′, . . . , s′, ω)

(R3s′′l , s,

l
︷ ︸︸ ︷
s, . . . , s, a2)min(R3sl, s,

l
︷ ︸︸ ︷
s, . . . , s, a1)

(R3sl, s, a1, ω)δ(R3l+1, s, s, a1)

(R3sl, s,

l
︷ ︸︸ ︷
s, . . . , s, a1, ω)δ(R3cl, s,

l
︷ ︸︸ ︷
s, . . . , s, a1)

(R3cl, s,

l
︷ ︸︸ ︷
s, . . . , s, a1)cp(R3c

′
l, s

′,

l
︷ ︸︸ ︷

s′, . . . , s′, ω)

(R3c′l, c, ω)δ(R3c
′′
l , c)

(R3c′′l , c
′)δ(R3cl, c, ω)

(R3cl, c)δ(R3ql)

(R3ql, c
′)δ(R3q′l, c)

(R3q′l, s)δ(R3q
′′
l)

(R3q′′l , s
′,

l
︷ ︸︸ ︷

s′, . . . , s′)δ(main, s,

l
︷ ︸︸ ︷
ω, . . . , ω)

The construction starts selecting the smallest addend, by copying the multiset
marked by s to the multiset marked by s′ in descending order. The descending
order is ensured using the min operation introduced above. a1 and a2 are used to
mark the currently largest and second largest addend. Once the copying process
is stopped, a1 marks the supposedly smallest addend, the construction moves
down one level, and repeats this process. This part is implemented using the
R3s-states. Once, a level is reached where the exponent is no longer a limit
ordinal, one element is removed from the respective multiset (transition from
R3s to R3c). Than, the copy operation is used to copy that exponent n times.
This part is implemented by the R3c-states. Finally the multiset from the old
ordinal is deleted and replaced by the newly computed ordinal (R3q-states). This
construction might make several lossy errors in the sense that they result in a
smaller ordinal to be computed. E.g. it might not select the smallest addend
at the cost of losing all smaller addends or it might stop at a level, where the
exponent is still a limit ordinal. In this case instead of decreasing it by only one,
a larger addend will be removed.

22

Case (4) can be handled similarly to (3). The construction recursively guesses
the smallest addend (R4s-states) as before. Then n copies of an addend ωβ have
to be replaced by ωβ+1 (R4m-states). This is realised by deleting at most n
elements in descending order and maintaining their minimum using the minimum
operation. The construction counts the number of elements actually deleted and
uses it as the new value for n, ensuring that a lossy error occurs in case less than
n elements are removed. The exponent is then increased by one and the addend
is moved to the newly created ordinal.

(main, s, ω)δ(R40, s, a1)

(R4l,

l
︷ ︸︸ ︷

s′, . . . , s′)δ(R4s0,

l
︷ ︸︸ ︷

s′, . . . , s′, s′)

(R4sl, s,

l
︷ ︸︸ ︷
s, . . . , s, ω)δ(R4s′l, s,

l
︷ ︸︸ ︷
s, . . . , s, a2)

(R4s′l, s,

l
︷ ︸︸ ︷
s, . . . , s, a1)cp(R4s

′′
l , s

′,

l
︷ ︸︸ ︷

s′, . . . , s′, ω)

(R4s′′l , s,

l
︷ ︸︸ ︷
s, . . . , s, a2)min(R4sl, s,

l
︷ ︸︸ ︷
s, . . . , s, a1)

(R4sl, s, a1, ω)δ(R4l+1, s, s, a1)

(R4sl, s,

l
︷ ︸︸ ︷
s, . . . , s, ω)δ(R4ml, s,

l
︷ ︸︸ ︷
s, . . . , s, a2)

(R4ml, s,

l
︷ ︸︸ ︷
s, . . . , s, a2)min(R4m′

l, s,

l
︷ ︸︸ ︷
s, . . . , s, a1)

(R4m′
l, c, ω)δ(R4m

′′
l , c)

(R4m′′
l , c

′)δ(R4ml, c, ω)

(R4ml, s,

l
︷ ︸︸ ︷
s, . . . , s, a1)δ(R4ql, s,

l
︷ ︸︸ ︷
s, . . . , s, a1, ω)

(R4ql, s,

l
︷ ︸︸ ︷
s, . . . , s, a1)cp(R4q

′
l, s

′,

l
︷ ︸︸ ︷

s′, . . . , s′, ω)

(R4q′l, c)δ(R4q
′′
l)

(R4q′′l , c
′)δ(R4q′′′l , c)

(R4q′′′l , s)δ(R4q
′′′′
l)

(R4q′′′′l , s′,

l
︷ ︸︸ ︷

s′, . . . , s′)δ(main, s,

l
︷ ︸︸ ︷
ω, . . . , ω)

23

C Upper Bound for NCS Coverability

Recall Proposition 1.

Proposition 1. Coverability in k-NCS is in FΩ2k
.

The statement can be proven by a direct reduction to coverability (equiv-
alently, control-state reachability) in priority channel systems (PCS) that we
briefly recall from [HSS14] in the following.

Priority Channel Systems. PCS can be defined over so called generalised pri-
ority alphabets. Given a priority level d ∈ N and a well-quasi-ordering (Γ,≤Γ)
a generalised priority alphabet is a set Σd,Γ := {(a, w) | 0 ≤ w ≤ d, w ∈ Γ}.
Then, a PCS is a tuple S = (Σd,Γ ,Ch, Q,∆), where Ch is a finite set of channel
names, Q is a finite set of control states and ∆ ⊆ Q × Ch × {!, ?} × Σd,Γ × Q
is a set of transition rules. The semantics of PCS is defined as a transition sys-
tem over configurations ConfS := Q × (Σ∗

d,Γ)
Ch consisting of a control state

and a function assigning to every channel a sequence of messages (letters from
the generalised priority alphabet) it contains. A PCS can either execute one of
its transition rules or an internal “lossy” operation called a superseding step. A
(reading) transition rule of the form (q, c, !, (a, w), q′) is performed by changing
the current control state q to q′ and appending the letter (a, w) to the content of
channel c. A (writing) transition rule of the form (q, c, ?, (a, w), q′) is performed
by changing the current control state q to q′ and removing the letter (a, w) from
the first position of channel c. An internal superseding step is performed by
overriding a letter by a subsequent letter with higher or equal priority, i.e. the
channel content (a1, w1). . . (ai, wi)(ai+1, wi+1). . . (ak, wk) with wi ≤ wi+1 can
be replaced by (a1, w1). . . (ai−1, wi−1)(ai+1, wi+1). . . (ak, wk).

Encoding. The semantics of NCS is defined in terms of rewriting rules on con-
figurations represented as terms. A PCS can simulate this semantics by keeping
the top-level state in its finite control and storing the term representation of the
nested multiset in a single channel. The rewriting rules of the semantics can be
applied by alternately reading from and writing to that channel. As PCS are lossy
the only objective is to ensure that lossiness with respect to the PCS semantics
corresponds to descending with respect to � for the encoded NCS configurations.
This can be easily ensured by encoding the nesting structure of an NCS configura-
tion using priorities where the highest priority corresponds to the outermost nest-
ing level. E.g., the 3-NCS configuration (q0, q1+q1(q2+q2)+q1(q2+q2+q3(q4)))
can be encoded as (2, q1)(2, q1)(1, q2)(1, q2)(2, q1)(1, q2)(1, q2)(1, q3)(0, q4) while
q0 is encoded using the control state. A superseding step then always corresponds
to removing an element from an innermost multiset.

24

D From LTL
↓
tqo to Nested Counter Systems

In this section we provide the technical details of the reduction from the satis-
fiability problem for LTL↓

A formulae over tree-quasi-ordered attributes A to the
coverability problem in NCS.

D.1 Linearisation

We recall and prove Proposition 2.

Proposition 2 (Linearisation). If A is a tree-quasi-ordered set of attributes

of depth k then every LTL↓
A formula can be translated into an equisatisfiable

LTL↓
[k] formula.

Proof. Let Φ be an LTL↓
A formula. To translate Φ into an equisatisfiable LTL↓

[k]

formula for some k ∈ N we first turn A into a tree-partial-order A′ by collapsing
maximal strongly connected components (SCC) and adjust Φ to obtain an equi-

satisfiable formula Φ′ over LTL↓
A′ . Second, we show how to encode A′-attributed

data words into [k]-attributed data words and translate Φ′ to operate on this
encoding.

Collapsing SCC. Let C2,1, . . . , C2,n2 , C3,1, . . . , C3,n3 , . . . , Cm,nm
⊆ A be all maxi-

mal strongly connected components in the graph of the tree-quasi-ordering (A,⊑)
of size larger than 1 such that |Ci,j | = i. I.e., Ci,j is the j-th distinct such com-
ponent of size i. Notice that all Ci,j are disjoint since they are maximal. Choose
some arbitrary xi,j ∈ Ci,j from each component and remove all components from
A but for those elements xi,j . Thus we collapse all SCC in A and obtain a tree-
partial-ordering A′. In the formula Φ we syntactically replace every attribute
x ∈ Ci,j by the corresponding representative xi,j and obtain an LTL↓

A′ formula.
Due to the semantics of the logic being defined in terms of downward clo-

sures the only significant change upon collapsing SCC is their size. While the
downward-closures of two SCCs that have different sizes cannot be isomorphic
replacing them with a single attribute can make valuations for them equal wrt.
≃. We therefore add the following constraint to Φ disallowing a collapsed model
to assign the same data value to representatives of SCCs that had different size.

∧

xi,j ,xi′,j′∈A′|i6=i′

G(↓xi,j¬F ↑xi′,j′)

Compared to the original models of Φ this is not a restriction and thus every
model of Φ still induces a model of Φ′ and vice versa.

Frame encoding. In the following we assume that A is a tree(-partial)-ordering,
i.e., it does not contain non-trivial SCCs. Let k be the depth of A, i.e., the
length of the longest simple path starting at some root (minimal element). We
can pad A, by additional attributes s.t. every maximal path in A has length k.

25

The additional attributes added to A this way are not smaller than the original
ones and hence do not affect the semantics of formulae over A except that the
new attributes need to be assigned an arbitrary value. Thus, regarding A as a
forest, we can assume that every leaf is at level k (roots are at level 1).

Let ℓ1, . . . , ℓn ∈ A be the leafs in A (enumerated in an in-order fashion).
We use the ideas from [KSZ10,DHLT14] to encode an A-attributed data word
w = w1w2. . . into a [k]-attributed data word u = u1u2. . . where a single position
in w is represented by a frame of n positions in u. Then, each position wi =
(ai,di) in w corresponds to the frame u(i−1)n+1. . . u(in) in u. In the i-th such
frame, each position u(i−1)n+j = (ai,gi,j) carries the same letter ai as wi. The

data valuation g(i,j) ∈ ∆k at the j-th position in the frame shall represents
the j-th “branch” di|cl(ℓj) of the valuation di. Thus, let for a leaf ℓj in A be
xj,1 ⊑ xj,2 ⊑ . . . ⊑ xj,k = ℓj the attributes in cl(ℓj), representing the branch in
A from a root to ℓj. Now for r ∈ [k] we let g(i,j)(r) = di(xj,r)

Translation. Based on this encoding we can translate any LTL↓
A formula Φ to

an LTL↓
[k] formula Φ̂ that specifies precisely the encodings of models of Φ. In

particular, Φ̂ is satisfiable iff Φ is.

Given the (in-order) enumeration ℓ1, . . . , ℓn ∈ A of leafs in A and an attribute
x ∈ A we let sb(x) = min{r ∈ [n] | x ⊑ ℓr} denote the smallest index r of a
branch containing x and lb(x) = max{r ∈ [n] | x ⊑ ℓr} the largest such branch
index. Further, we denote by lvl(x) = |{x′ ⊑ x′ | x′ ∈ A}| its level in A.

We can assume Φ to be in a normal form where every freeze quantifier ↓x is
followed immediately by either an X, X or ↑y operator for attributes x, y ∈ A.
This is due to the following equivalences for arbitrary formulae ψ, ξ, letters a ∈ Σ
and attributes x, y ∈ A.

↓xa ≡ a ↓x Fψ ≡ (↓xψ) ∨ ↓x XFψ

↓x↓yψ ≡ ↓yψ ↓xGψ ≡ (↓xψ) ∧ ↓x XGψ
↓x¬ψ ≡ ¬↓xψ ↓x(ψU ξ) ≡ (↓xξ) ∨ ((↓xψ) ∧ ↓xX(ψU ξ))

↓x(ψ ∧ ξ) ≡ (↓xψ) ∧ (↓xξ) ↓x(ψR ξ) ≡ (↓xξ) ∧ ((↓xψ) ∨ ↓xX(ψR ξ))
↓x(ψ ∨ ξ) ≡ (↓xψ) ∨ (↓xξ)

We can further assume that for every formula ↓x ↑y we have sb(x) ≤ sb(y):
if x ⊏ y or x ⊒ y we can completely remove the formula, replacing it with a
contradiction or a tautology, respectively. Otherwise x and y are incomparable.
Then, if lvl(x) < lvl(y) the formula is again false and we can remove it. For
lvl(x) = lvl(y) we have ↓x ↑y≡ ↓y ↑x and can swap them if necessary. Finally, if
lvl(x) > lvl(y) there is a unique attribute p ⊏ x with lvl(p) = lvl(y) and by the
definition of the semantics we have ↓x ↑y≡ ↓p ↑y. We can thus replace x by p
and swap the attributes if necessary.

Next we extend the alphabet to Σ′ = Σ × [n]. The attached number is
supposed indicate the relative position in every frame. This is enforced by a

26

formula

β1 := Σi ∧G




∧

i∈[n]

Σi →



(XΣ(i mod n)+1) ∧
∧

j∈[n]\{i}

¬Σj









where Σi for i ∈ [n] stands for the formula
∨

a∈Σ(a, i). Further, we impose that
models actually have the correct structure and thereby encode an A-attributed
data word. The formula

β2 :=
∧

(a,i)∈Σ×[n−1]

G((a, i) → X(a, i+ 1))

expresses that the letter from Σ is constant throughout a frame and

β3 :=
∧

x∈A

G
(

Σ1 → Xsb(x)−1 ↓lvl(x)
(

↑lvl(x) U(Σlb(x)∧ ↑lvl(x))
))

ensures that the frame consistently encodes a valuation from ∆A. Finally, we
define the translation t(Φ) inductively for subformulae ψ, ξ of Φ, x ∈ A and
a ∈ Σ as follows.

t(↓xψ) := Xsb(x)−1 ↓lvl(x)t(ψ) t(a) := a

t(Xψ) :=
∧n

j=1Σj → Xn−j+1 t(ψ) t(¬ψ) := ¬t(ψ)
t(ψU ξ) := ((Σ1 → t(ψ))U(Σ1 ∧ t(ξ))) t(ψ ∧ ξ) := t(ψ) ∧ t(ξ)

t(↑x) :=
∧n

j=1Σj → Xsb(x)−j ↑lvl(x)

We omit the remaining operators since they can be expressed in terms of the
ones considered above.

To see that Φ̂ := t(Φ) ∧ β1 ∧ β2 ∧ β3 exactly characterises the encodings
of models of Φ consider the underlying invariant that all subformulae of Φ are
always evaluated on the first position of a frame except those preceded by a freeze
quantifier. Those that directly follow a freeze quantifier have the form Xψ or ↑x

and are relocated to the first position of the successive frame or to the position
encoding the branch of data values that needs to be checked, respectively. ⊓⊔

27

D.2 From LTL↓

[k] to NCS

Recall Theorem 5.

Theorem 5. For tree-quasi-ordered attribute sets A with depth k satisfiability
of LTL↓

A can be reduced in exponential space to coverability in (k + 1)-NCS.

By Proposition 2 it suffices to show that given an LTL↓
[k] formula Φ we can

construct a (k + 1)-NCS N and two configurations Cinit, Cfinal ∈ CN s.t. Φ is
satisfiable if and only if Cfinal can be covered from Cinit.

The idea is to construct from the LTL↓
[k] formula Φ a (k + 1)-NCS N that

guesses an (abstraction of a) data word w ∈ (Σ ×∆k)+ position-wise starting
with the last position and prepending new ones. Simultaneously, N maintains a
set of guarantees for the so far constructed suffix of w. These guarantees are sub-
formulae ϕ of Φ together with an (abstraction of a) data valuation representing
the register value under that ϕ is satisfied by the current suffix of w. Guaran-
tees can be assembled to larger formulae in a way that maintains satisfaction by
the current suffix of w. Then Φ is satisfiable if and only if there is a reachable
configuration of N that contains Φ as one of possibly many guarantees.

Normal form. We fix for the rest of this section k ∈ N and an LTL↓
[k][X,X,U,R

] formula Φ over the finite alphabet Σ and the data domain ∆. W.l.o.g. we
restrict to the reduced set of temporal operators and expect Φ to be in negation
normal form, i.e., negation appears only in front of letters a ∈ Σ and check
operators ↑i for i ∈ [k]. Further, we assume that every check operator ↑i occurs
within the scope of the freeze quantifier ↓j of level j ≥ i since otherwise the
check necessarily fails and the formula can easily be simplified syntactically. Let
sub(Φ) denote the set of syntactical subformulae as well as the unfoldings of U
and R formulae.

State space. For the LTL↓
[k][X,X,U,R] formula Φ we construct a (k + 1)-NCS

NΦ = (Q, δ) as follows. The state space is defined as Q = Qctrl ∪Qcell where

Qctrl = Qadd ∪Qnext ∪Qsetup ∪Qstor,

Qadd = {add} × (Σ ∪ (Σ × sub(Φ)),

Qnext = {next1, next2, copy, copybt} ∪ ({copy} × 2sub(Φ)),

Qsetup = {setup},

Qstor = {stor, stor✓, aux, aux✓} and

Qcell = {✓,✗} × 2sub(Φ).

The two outer-most levels (level 0 and 1) of configurations will only use states
from Qctrl and control the management of the configurations of level 2 to k below.
These configurations only use states from Qcell and implement a storage for a
tree structure (more precisely, a forest) of depth k represented by a multiset of

28

configuaritons of level 2. Every node in that forest, a cell, stores a set of formulae
and is checked (✓) or unchecked (✗).

Next we define the transition rules δ ⊆
⋃

i,j∈[k+1](Q
i ×Qj).

Setup phase. The storage of the initial configuration

Cinit = setup(stor(q1(. . . qk−1(qk). . .)))

with q1 = . . . = qk = (✓, ∅) is empty except for a single checked branch of
length k. We allow the NCS to arbitrarily add new (unchecked) branches and
then populate the branches with guarantees of the form Xϕ ∈ sub(Φ). Thus, let

(setup, stor, q1, . . . , qi)δ(setup, stor, q1, . . . , qi, q
′
i+1, . . . , q

′
k)

(setup, stor, q1, . . . , qi, (m,F))δ(setup, stor, q1, . . . , qi, (m,F ∪ {Xϕ}))

for all 0 ≤ i < k, q1, . . . , qi ∈ Qcell, q
′
i+1 = . . . = q′k = (✗, ∅), m ∈ {✓,✗},

F ⊆ sub(Φ) and Xϕ ∈ sub(Φ).

Construction phase. After the initial setup the NCS guesses a letter a ∈ Σ
by applying

(setup)δ((add, a)).

New atomic formulae can be added by the rules

((add, a), stor, q1, . . . , qi, (m,F))δ((add, a), stor, q1, . . . , qi, (m,F ∪ {a}))

((add, a), stor, q1, . . . , qi, (m,F))δ((add, a), stor, q1, . . . , qi, (m,F ∪ {¬b}))

((add, a), stor, q1, . . . , q
✓
i+1, . . . , qj)δ((add, a), stor, q1, . . . , q

✓
i+1, . . . , q̂

ℓ
j)

((add, a), stor, q1, . . . , qi, (✗, F))δ((add, a), stor, q1, . . . , qi, (✗, F ∪ {¬ ↑ℓ
′

}))

and existing formulae can be combined by rules

((add, a), stor, q1, . . . , qi, (m,F ∪ {ϕ}))δ((add, a), stor, q1, . . . , qi, (m,F ∪ {ϕ, ϕ ∨ ψ}))

((add, a), stor, q1, . . . , qi, (m,F ∪ {ϕ}))δ((add, a), stor, q1, . . . , qi, (m,F ∪ {ϕ, ψ ∨ ϕ}))

((add, a), stor, q1, . . . , qi, (m,F ∪ {ϕ, ψ}))δ((add, a), stor, q1, . . . , qi, (m,F ∪ {ϕ, ψ, ϕ ∧ ψ}))

((add, a), stor, q1, . . . , qi, (m,F ∪ {ϕ, ψ}))δ((add, a), stor, q1, . . . , qi, (m,F ∪ {ϕ, ψ, ψ ∧ ϕ}))

((add, a), stor, q1, . . . , qi, (✓, F ∪ {ϕ}))δ((add, a, ↓i+1ϕ), stor, q1, . . . , qi, (✓, F ∪ {ϕ}))

((add, a, ↓i+1ϕ), stor, q1, . . . , qj , (m,F))δ((add, a), stor, q1, . . . , qj , (m,F ∪ {↓i+1ϕ}))

((add, a), stor, q1, . . . , qi, (m,F ∪ {ψ ∨ (ϕ ∧ X(ϕUψ))}))

δ((add, a), stor, q1, . . . , qi, (m,F ∪ {ϕUψ}))

((add, a), stor, q1, . . . , qi, (m,F ∪ {ψ ∧ (ϕ ∨ X(ϕRψ))}))

δ((add, a), stor, q1, . . . , qi, (m,F ∪ {ϕRψ}))

29

for, respectively, F ⊆ sub(Φ), m ∈ {✓,✗}, 0 ≤ i, j < k, ℓ ∈ [i + 1], i < ℓ′ ≤ k,
q1, . . . , qk ∈ Qcell, qj = (mj , Fj) ∈ Qcell, q

✓
i+1 = (✓, F), q̂ℓj = (mj , Fj ∪ {↑ℓ}), b ∈

Σ \{a} and ϕ, ψ, ϕ∨ψ, ψ∨ϕ, ϕ∧ψ, ψ ∧ϕ, ↓i+1ϕ, ↑ℓ, a,¬b, ϕUψ, ϕRψ ∈ sub(Φ).

Advancing phase. To ensure consistency, prepending of X and X operators
can only be done for all stored formulae at once. This corresponds to guessing a
new position in a data word, prepending it to the current one and computing a
set of guarantees for that preceeding position from the guarantees of the current
position.

The NCS can enter the advancing by the rules

((add, a))δ(next1, aux
✓)

for a ∈ Σ. This also creates an auxiliary storage. Next, the original storage is
copied cell by cell to the auxiliary storage. Upon copying a cell the formulae
stored within are preceeded by next-time operators. To this end, for F ⊆ sub(Φ)
we denote by FX = {Xϕ,Xϕ ∈ sub(Φ) | ϕ ∈ F}.

The markings are now utilised as pointers to the cell currently being copied.
The rules

(next1, stor, q
✓
1 , . . . , q

✓
k)δ(copy, stor

✓, q✗
1 , . . . , q

✗
k)

for q✓
1 = (✓, F1), . . . , q

✓
k = (✓, Fk), q

✗
1 = (✗, F1), . . . , q

✗
k = (✗, Fk), where F1, . . . , Fk ⊆

sub(Φ), set these pointers to the root of the storage
To allow the NCS to copy the cells over in a depth-first, lossy manner let

(copy, stor✓, (✗, F))δ((copy, F), stor, (✓, F))

((copy, F), aux✓)δ(copy, aux, (✓, FX))

(copy, stor, q1, . . . , qi, (✓, F
′), (✗, F))δ((copy, F), stor, q1, . . . , qi, (✗, F

′), (✓, F))

((copy, F), aux, q1, . . . , qi, (✓, F
′))δ(copy, aux, q1, . . . , qi, (✗, F

′), (✓, FX))

for, respectively, F, F ′ ⊆ sub(Φ), 0 ≤ i < k and q1. . . , qi ∈ Qcell. To allow for
backtracking we let

(copy, stor, q1, . . . , qi, (✗, F), (✓, F
′))δ(copybt, stor, q1, . . . , qi, (✓, F)

(copybt, aux, q1, . . . , qi, (✗, F), (✓, F
′))δ(copy, aux, q1, . . . , qi, (✓, F), (✗, F

′))

(copy, stor, (✓, F))δ(copybt, stor
✓)

(copybt, aux, (✓, F))δ(copy, aux
✓, (✗, F))

for 0 ≤ i < k, F, F ′ ⊆ sub(Φ) and q1, . . . , qi ∈ Qcell.
Finally the original storage can be replaced by the auxiliary one by

(copy, stor✓)δ(copybt)

(copybt, aux
✓)δ(next2, stor)

The storage is now (partially) copied to the auxiliary storage. To enter the
construction phase and thereby complete the transition from the old position in

30

stor

{ϕ3, ↑
1} ✓

{ϕ2}

{ϕ1, ϕ3}

{↑1, ↑2} ✓

{ϕ2} {} ✓

{↓1ϕ3}

{ϕ1, ϕ2}

{ϕ3}

Fig. 2. Example of a forest of guarantees of depth 3 as maintained by the constructed
NCS. Notice that formulae ↑i can only occur in checked nodes at or below level i.
The state stor is used to maintain the forest. In the nesting structure of the NCS
configuration it appear as the root in a tree of depth k + 1. Above it there is only the
outer-most control state (not depicted here).

the imaginary data word to the preceeding position a new checked branch and
a new letter from Σ is guessed by

(next2, stor, (✗, F1), . . . , (✗, Fi))δ((add, a), stor, (✓, F1). . . , (✓, Fk))

for any a ∈ Σ, 0 ≤ i ≤ k, F1, . . . , Fi ⊆ sub(Φ) and Fi+1 = . . . = Fk = ∅.

D.3 Correctness

The NCS N = (Q, δ) that construct above maintains a forest of depth k where
every node is labelled by a set of subformulae of Φ. Configurations reachable
form the initial configuration

Cinit = setup(stor(q1(. . . qk−1(qk). . .)))

with q1 = . . . = qk = (✓, ∅) always have the form qctrl(qstor(X) + X ′) or
copybt(aux

✓(X)) where X is a multiset of configurations of level 2 that repre-
sents a forest TC of depth k as depicted in Figure 2. Let VC be the set of nodes
and F : VC → 2sub(Φ) their labelling by sets of formulae. For a node v ∈ VC at
level i (roots have level 1) in TC we denote by ρ(v) = v1. . . vi the unique path
from a root to vi = v.

The structure of the forest represents the context in which the individual
formulae are assumed to be evaluated. To formalise this let con : VC → ∆ be a
labelling of TC by data values called concretisation. Such a labelling induces a
set Gcon(TC) ⊆ sub(Φ)×∆k with (ϕ,d) ∈ Gcon(TC) iff

– ϕ ∈ F (v) for some node v ∈ VC with ρ(v) = v1. . . vj and
– d ∈ ∆j with d(i) = con(vi) for i ∈ [j].

Now, let w = (a,d)u ∈ (Σ × ∆k)+ be a data word. We say that w and a
configuration C = (q0,M) are compatible if and only if there is a concretisation
con : V → ∆ such that

31

– for all (ϕ,d′) ∈ Gcon(TC) we have (w, 1,d′) |= ϕ (guarantees are satisfied),
– q0 6∈ {(add, b), (add, b, ϕ) | b ∈ Σ \{a}, ϕ ∈ sub(Φ)} (letter is compatible) and
– if q0 6∈ Qnext and v1. . . vk is the unique path in TC corresponding to the

checked cells in C then (con(v1), . . . , con(vk)) = (d(1), . . . ,d(k)) (valuation
is compatible).

Lemma 4 (Invariant). Let C → C′ be two configurations reachable from Cinit

and w ∈ (Σ×∆k)+ a [k]-attributed data word such that TC and w are compatible.
Then there is a [k]-attributed data word w′ ∈ (Σ ×∆k)+ such that TC′ and w′

are compatible.

Proof. The initial configuration Cinit does not contain any guarantees and hence
every data word is compatible with TCinit

. The only formulae added during the
setup phase are of the form Xϕ. Thus, every configuration reachable during this
phase is compatible at least with every data word of length 1.

Consider a configuration C in the construction phase being compatible with
a data word w ∈ (Σ × ∆k)+ due to a concretisation con. It is easy to see
that the atomic formulae that can be added are satisfied on w under the same
concretisation con. Also, the Boolean combinations of satisfied formulae that
can be added remain satisfied and the folding of temporal operators respects the
corresponding equivalences.

A rule adding a formula ↓iϕ can obviously only be executed if ϕ is present
in the marked cell at level i. Since in particular the valuation d of the first
position of w is compatible with the marking there is (ϕ,d|[i]) ∈ Gcon(TC) and

(w, 1,d|[i]) |= ϕ. Hence (w, 1,d′) |= ↓iϕ for any valuation d′ and ↓iϕ can be put
into any cell in TC without breaking compatibility with w under con.

Consider a configuration C in the advancing phase. The transition rules stay-
ing in the phase do not add any new formula to any cell in the storage of the
configuration and hence any word compatible with C remains compatible.

Finally, assume that w is compatible with a configuration C due to a con-
cretisation con : VC → ∆ and that a transition rule of the form

(next2, stor, (✗, F1), . . . , (✗, Fi))δ((add, a), stor, (✓, F1). . . , (✓, Fk)),

for a ∈ Σ, 0 ≤ i ≤ k, F1, . . . , Fi ⊆ sub(Φ) and Fi+1 = . . . = Fk = ∅, is applied
to obtain a configuration C′.

Let (a′,d′) be the first position of w and di+1, . . . , dk ∈ ∆ \ img(con) data
values that are not assigned to any node in TC by con. We define a new valuation
d ∈ ∆k such that d|[i] = d′|[i] and d(j) = dj for i < j ≤ k. Then the word
(a,d)w is compatible with C′ witnessed by the concretisation con′ : VC′ → ∆
with con′(v) = con(v) for nodes v ∈ VC that were already present in TC and
con′(v′j) = dj for the new nodes vj (i < j ≤ k) created by the rule. ⊓⊔

As a consequence of the previous lemma we conclude that if a configuration
C containing Φ as guarantee is reachable from the initial configuration Cinit then
it is satisfiable. We allow the NCS to enter a specific target state qfinal once the
formula Φ is encountered somewhere in the current tree. Thus, a path covering

32

Cfinal = qfinal proves Φ satisfiable. Conversely, if Φ has some model w than the
NCS N as constructed above can guess according to the letters and valuations
along the word and assemble Φ from its subformulae.

33

E From NCS to LTL
↓
tqo

We provide the detailed construction to prove Theorem 6.

Theorem 6. The coverability problem of k-NCS can be reduced in exponential
space to LTL↓

[k] satisfiability.

Let N = (Q, δ) be a k-NCS. We are interested in describing witnesses for
coverability. It hence suffices to construct a formula ΦN that characterises pre-
cisely those words that encode a lossy run from some configuration Cstart to
some configuration Cend. A sequence C0C1. . . Cn of configurations Cj ∈ CN is
a lossy run if there is a run C′

0 → C′
1 → . . . → C′

n of N with C′
j � Cj for

0 ≤ j ≤ n. A lossy run form Cstart to Cend exists if and only if Cend is coverable
from Cstart.

For N we construct a formula

ΦN = Φconf ∧ Φflow ∧ Φrn ∧ Φinc ∧ Φdec ∧ Φstart,Φend.

where

– Φconf describes the shape of a word to encode a sequence of configurations,
– Φflow enforces that in addition to the plain sequence of encoded configura-

tions there are annotations that indicate which transition rule is applied and
which part of configuration is affected by the rule,

– Φrn, Φinc, Φdec, encode the correct effect of transition of the respective type
(see below),

– Φstart, Φend encode the exact shape of the first and last configuration.

We omit to construct Φstart and Φend since it is straightforward given the con-
siderations below. For easier reading we use an alphabet of the form Σ = 2AP

where AP is a set of atomic propositions. Formally, every proposition p ∈ AP
used in a formula below could be replaced by

∨

a∈Σ|p∈a

a

to adhere to the syntax defined in Section 1.

E.1 Configurations

A configurationC = (q0,M1) ∈ CN of some k-NCSN = (Q, δ) can be interpreted
as a tree T = T0 of depth at most k + 1 where the root carries q0 as label.
The children of the root are the subtrees T(1,1), . . . , T(1,n) represented by the
configurations of level 1 contained in the multiset M .

Similar to the approach of Proposition 2 we encode such a tree as [k]-attributed
data word. We use an alphabet Σ where every letter a ∈ Σ encodes a (k + 1)-
tuple of states from Q, i.e., a possible branch in the tree. Then a sequence

34

of such letters represents a set of branches that form a tree. The data valua-
tions represent the information which of the branches share a common prefix,
i.e., the actual structure of the tree. Two branches represented by positions
(a,d), (a′,d′) ∈ Σ ×∆k are considered to be identical up to level 0 ≤ i ≤ k if
and only if (d(1), . . . ,d(i)) = (d′(1), . . . ,d′(i)). Notice that the tuples of states
represented by a and a′ must also coincide on their i-th prefix if (but not only
if) d and d′ do.

For technical reasons we require that positions are arranged such that in
between two positions representing branches with a common prefix of length i
there is no position representing a branch that has a different prefix of length
i. Further, this representation is interlaced: it refers only to odd positions. The
even position in between are used to represent an exact copy of the structure
but uses different data values. An example is shown in Figure 1.

We specify the shape of data words that encode (sequences of) configurations
by the following formulae. For convenience we assume w.l.o.g. that the NCS uses
a distinct set of states Qi ⊆ Q for each level 0 ≤ i ≤ k that includes an additional
state −i ∈ Qi not occurring in any transition rule from δ.

– Positions are marked by even/odd.

(odd→ X(¬odd ∧ X odd)) ∧ (even↔ ¬odd)

– Data values are arranged in blocks. Once a block ends, the respective value
(valuation prefix) will never occur again.

∧

i∈[k]

↓k((XX¬ ↑i) ∧ odd) → ¬XF(odd ∧ ↑i) (5)

– Positions in the same block on level i carry the same states up to level i.

∧

i∈[k]

∧

q∈Qi

(q ∧ ↓k XX ↑i) → XX q

– Even positions mimic precisely the odd positions but use different data val-
ues.

odd→ ((
∧

q∈Q

q ↔ X q) ∧ (↓1 X¬ ↑1) ∧
∧

i∈[k]

↓k XX ↑i↔ X(↓k XX ↑i)) (6)

– State propositions are obligatory and mutually exclusive on every level.

∧

0≤i≤k

∨

q∈Qi

q

∧
∧

0≤i≤k

∧

q,q′∈Qi|q 6=q′

q → ¬q′

35

– Branches shorter than k + 1 are padded by states −i ∈ Q.
(∧

i∈[k−1]

−i → −i+1

)

∧
∧

i∈[k−1]

(↓k XX ↑i) → ¬−i+1 ∧XX¬−i+1

(7)

– The proposition $ is used to mark the first position of every configuration
and can thus only occur on odd positions and the beginning of a new block.

($ → odd) ∧ ((↓1 XX ↑1) → XX¬$)

– Freshness propositions in mark only positions carrying a valuations of which
the prefix of length i has not occurred before.

∧

i∈[k]

↓i¬XF(↑i ∧ freshi)

Let ϕ be the conjunction of these constraints and Φconf := $ ∧Gϕ.

E.2 Control Flow

To be able to formulate the effect of transition rules without using past-time op-
erators we encode the runs reversed. Given that a data word encodes a sequence
C0C1. . . Cn of configurations as above we model the (reversed) control flow of
the NCS N = (Q, δ) by requiring that every configuration but for the last be
annotated by some transition rule tj ∈ δ for 0 ≤ j < n.

G(($ ∧ XF$) ↔
∨

t∈δ

t) (8)

Now, the following constraints impose that this labelling by transitions ac-
tually represents the reversal of a lossy run. That is, for every configuration
Cj in the sequence (for 0 ≤ j < n) with annotated transition rule tj there is

a configuration C′ (not necessarily in the sequence) such that C′ t
→ Cj and

C′ � Cj+1.

Marking rule matches. Consider a position Cj in the encoded sequence that
is annotated by a transition tj = ((q0, . . . , qi), (q

′
0, . . . , q

′
j)) ∈ δ. In order for Cj , tj

and Cj+1 to encode a correct (lossy) transition first of all there must be a branch
in Cj that matches (q′0, . . . , q

′
j). We require that one such branch is marked by

propositions ✓1. . .✓j

∧

t=((q0,. . . ,qi),(q′0,. . . ,q
′

j
))∈δ

G
(

t→ ((X¬$)U(even ∧
∧

ℓ∈[j]

✓ℓ ∧ q
′
ℓ))

∧ (q′0 ∧ ¬✓j+1 ∧ . . . ∧ ¬✓k)U $
)

36

This selects a branch of length j in every configuration. An operation that affects
this branch may also affect other branches sharing a prefix. Thus, they are
supposed to be marked accordingly. Since a node at some level i ∈ [k] in the
configuration tree is encoded by a block of equal data valuations on level i, blocks
are marked entirely or not at all.

∧

i∈[k]

G(↓k XX ↑i→ (✓i ↔ XX✓i))

Moreover, at most one block is marked in every configuration frame.

∧

i∈[k]

G
(
(✓i ∧ ↓k XX¬ ↑i) → X((¬✓i)U $)

)

Now the markers indicate which positions in the word are affected by their
respective transition rule. Notice, that the even positions are supposed to carry
the marking. Let Φflow be the conjunction of the three formulae above and that
in Equation 8.

E.3 Transition Effects

It remains to assert the correct effect of each transition rule to the marked
branches. We distinguish three rule types. Let

δrn = {((q0, . . . , qi), (q
′
0, . . . , q

′
i)) ∈ δ | 0 ≤ i ≤ k}

be the set of renaming transition rules,

δdec = {((q0, . . . , qi, qi+1, . . . , qj), (q
′
0, . . . , q

′
i)) ∈ δ | 0 ≤ i < j ≤ k}

be the set of decrementing transition rules and

δinc = {((q0, . . . , qi), (q
′
0, . . . , q

′
i, q

′
i+1, . . . , q

′
j)) ∈ δ | 0 ≤ i < j ≤ k}

be the set of incrementing transition rules. Then δ = δrn ∪ δdec ∪ δinc.

Renaming rules. Let

Φrn =
∧

t=((q0,. . . ,qi),(q′0,. . . ,q
′

i
))∈δ

G(t→ copy(q0, . . . , qi)) . (9)

The formula specifies that whenever a configuration Cn is supposed to be ob-
tained from a configuration Cn+1 using a renaming transition rule t ∈ δrn then
every branch in Cn is also present in Cn+1. Moreover the states q′0, . . . , q

′
i in the

marked branch should be replaced by q0, . . . , qi.
The idea to realise this is to use the interlaced encoding of configurations

to link (identify) branches from a configuration Cn with the configuration Cn+1

in the sequence represented by a potential model. We consider a branch in Cn

37

linked (on level i ∈ [k]) to a branch in Cn+1 if the corresponding even position
in Cn and the corresponding odd position in Cn+1 carry the same valuation (up
to level i). Since valuations uniquely identify a particular block (Equation 5) the
following formula enforces for a position that there is a corresponding position
in a unique block at level i of the next configuration where additionally ϕ is
satisfied.

linki(ϕ) = ↓k((¬$)U
(

$ ∧
(
(X¬$)U(↑i ∧ odd ∧ ϕ)

))

).

For i = k a block represents an individual branch in a configuration and the
formula linkk(ϕ) enforces that there is a unique corresponding branch in the
consecutive configuration.

The even positions in turn mimic the odd ones using different data values
(Equation 6). Thereby we can create a chain of branches that are linked and
thus identified. We use this to enforce that for renaming transition rules, each
branch present in a configuration Cn will again occur in Cn+1 ensuring that the
sequence is at “gainy” wrt. the branches—and hence lossy when being reversed.

Using this we define the copy formula in Equation 9 as

copy(q0, . . . , qi) =







even →








linkk(q0) ∧
(∧

ℓ∈[i]

(✓ℓ → linkk(qℓ))
)

∧
∧

ℓ∈[k],q∈Qℓ

(¬✓ℓ ∧ q) → linkk(q)















U$

Decrementing rules. We address this case by the formula

Φdec =
∧

t=((q0,. . . ,qj),(q′0,. . . ,q
′

i
))∈δdec

G

(

t →

(

copy(q0, . . . , qi)

∧ newi(q0, . . . , qj)

))

(10)

where i < j and

newi(q0, . . . , qj) = (¬X$)U(✓i ∧ linki(freshi+1 ∧ q0 ∧ . . . ∧ qj))

ensures that a configuration Cn+1 actually contains a branch that can be re-
moved by a decrementing rule t ∈ δdec rule to obtain Cn.

Incrementing rules. For the remaining case let

Φinc =
∧

t=((q0,. . . ,qi),(q′0,. . . ,q
′

j
))∈δinc

G
(
t→ copyButj(q0, . . . , qi) ∧ zeroi

)
(11)

where i < j,

zeroj = (X¬$)U(✓j ∧
∧

j<ℓ≤k

−ℓ)

38

asserts that the new branch that is created by an incrementing rule t ∈ δinc does
not contain more states than explicitly specified in t. Recall that Equation 7
ensures that the propositions −ℓ for ℓ ∈ [k] can only appear if there are no actual
states below level ℓ− 1 in the tree structure of the corresponding configuration.

Finally, the formula

copyButj(q0, . . . , qi) =






(even ∧ ¬✓j) →








linkk(q0) ∧
(∧

ℓ∈[i]

(✓ℓ → linkk(qℓ))
)

∧
∧

ℓ∈[k],q∈Qℓ

(¬✓ℓ ∧ q) → linkk(q)















U$.

is similar to the copy formula above but omits to copy the particular branch that
was created by the incrementing rule.

39

	On Freeze LTL with Ordered Attributes

