Z_{3}-connectivity with independent number 2

Fan Yang ${ }^{*}$ Xiangwen Li ${ }^{\dagger}$ Liangchen Li ${ }^{\ddagger}$

Abstract

Let G be a 3 -edge-connected graph on n vertices. It is proved in this paper that if $\alpha(G) \leq 2$, then either G can be Z_{3}-contracted to one of graphs $\left\{K_{1}, K_{4}\right\}$ or G is one of the graphs in Fig. 1.

1 Introduction

Graphs considered here are undirected, finite and may have multiple edges without loops [1]. Let G be a graph. Set $D=D(G)$ be an orientation of G. If an edge $e=u v \in E(G)$ is directed from a vertex u to a vertex v, then u is a tail of e, v is a head of e. For a vertex $v \in V(G)$, let $E^{+}(v)\left(E^{-}(v)\right)$ denote the set of all edges with v as a tail(a head). Let A be an abelian group with the additive identity 0 , and let $A^{*}=A-\{0\}$.

For every mapping $f: E(G) \rightarrow A$, the boundary of f is a function $\partial f: V(G) \rightarrow A$ defined by

$$
\partial f(v)=\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e),
$$

where " \sum " refers to the addition in A. If $\partial f(v)=0$ for each vertex $v \in V(G)$, then f is called an A-flow of G. Moreover, if $f(e) \neq 0$ for every $e \in E(G)$, then f is a nowhere-zero A-flow of G.

A graph G is A-connected if for any mapping $b: V(G) \rightarrow A$ with $\sum_{v \in V(G)} b(v)=0$, there exists an orientation of G and a mapping $f: E(G) \rightarrow A^{*}$ such that $\partial f(v)=b(v)(\bmod 3)$ for each $v \in V(G)$. The concept of A-connectivity was firstly introduced by Jaeger et al in [7 as a generalization of nowhere-zero flows. Obviously, if G is A-connected, then G admits a nowhere-zero A-flow.

For $X \subseteq E(G)$, the contraction G / X is obtained from G by contracting each edge of X and deleting the resulting loops. If $H \subseteq G$, we write G / H for $G / E(H)$. Let A be an abelian group with $|A| \geq 3$. Denote by G^{\prime} the graph obtained by repeatedly contracting A-connected subgraphs

[^0]of G until no such subgraph left. We say G can be A-contracted to G^{\prime}. Clearly, if a graph G can be A-contracted to K_{1}, then G is A-connected.

In this paper, we focus on Z_{3}-connectivity. The following conjecture is due to Jaeger et al.
Conjecture 1.1 [7] Every 5-edge-connected graph is Z_{3}-connected.
It is still open. However, many authors are devoted to approach this conjecture. Chvátal and Erdős [3 proved a classical result: a graph G with at least 3 vertices is hamiltonian if its independence number is less than or equal to its connectivity (this condition is known as ChvátalErdős Condition). Therefore Chvátal-Erdős Condition guarantees the existence of nowhere-zero 4-flows. Recently, Luo, Miao, Xu [10] characterized the graphs satisfying Chvátal-Erdős Condition that admit a nowhere-zero 3 -flow.

Fig. 1: 18 specified graphs which is Z_{3}-connected

Theorem 1.2 (Luo et al. [10]) Let G be a bridgeless graph with independence number $\alpha(G) \leq 2$. Then G admits a nowhere-zero 3-flow if and only if G can not be contracted to a K_{4} and G is not one of G^{3}, G^{5}, G^{18} in Fig. 1 or $G \notin G^{3^{\prime}}$.

Motivated by this, we consider the Z_{3}-connectivity of graphs satisfying the weaker ChvátalErdős Condition. In this paper, we extend Luo et al.'s result to group connectivity. The main theorem is as follows.

Theorem 1.3 Let G be a 3-edge-connected simple graph and $\alpha(G) \leq 2 . G$ is not one of the 18 special graphs shown in Fig. 1 if and only if G can be Z_{3}-contracted to one of the graphs $\left\{K_{1}, K_{4}\right\}$.

From Theorem 1.3, we obtain the following corollary immediately.
Corollary 1.4 Let G be a 3-edge-connected graph and $\alpha(G) \leq 2$. Then one of the following holds:
(i) G can be Z_{3}-contracted to one of the graphs $\left\{K_{1}, K_{4}\right\}$, or
(ii) G is one of the 18 special graphs shown in Fig. 1, or
(ii) G is one of the graphs $\left\{G^{3^{\prime}}, G^{4^{\prime}}, G^{10^{\prime}}, G^{11^{\prime}}\right\}$ shown in Fig. 2, where u, v are adjacent by m edges, $m \geq 2$ for $i=3,4,10$ and $m \geq 3$ for $i=11$.

Fig. 2: Construction of graph of $G^{3^{\prime}}, G^{4^{\prime}}, G^{10^{\prime}}, G^{11^{\prime}}$

We end this section with some terminology and notation not define in [1]. For $V_{1}, V_{2} \subseteq V(G)$ and $V_{1} \cap V_{2}=\emptyset$, denote by $e\left(V_{1}, V_{2}\right)$ the number of edges with one endpoint in V_{1} and the other endpoint in V_{2}. For $S \subseteq V(G), G[S]$ denotes an induced subgraph of G with vertex-set S. Let $N_{G}(v)$ denote the set of all vertices adjacent to vertex v; set $N_{G}[v]=N_{G}(v) \cup\{v\}$. We usually use $N(v)$ and $N[v]$ for $N_{G}(v)$ and $N_{G}[v]$ if there is no confusion. A k-vertex denotes a vertex of degree k. Let K_{n} denote a complete graph with n vertices, where $n \geq 3$. Moreover, K_{3} denotes a 3 -cycle. A k-cycle is a cycle of length k; a 3-cycle is also called a triangle. The wheel W_{k} is the graph obtained from a k-cycle by adding a new vertex and joining it to every vertex of the k-cycle. When k is odd (even), we say W_{k} is an odd (even) wheel. For convenience, we define W_{1} as a triangle.

2 Preliminary

Here we state some lemmas which are essential to the proof of our result.

Lemma 2.1 Let A be an abelian group with $|A| \geq 3$. The following results are known:
(1) (Proposition 3.2 of [8]) K_{1} is A-connected;
(2) (Corollary 3.5 of [8]) K_{n} and K_{n}^{-}are A-connected if $n \geq 5$;
(3) (77] and Lemma 3.3 of [8]) C_{n} is A-connected if and only if $|A| \geq n+1$;
(4) (Theorem 4.6 of [2]) $K_{m, n}$ is A-connected if $m \geq n \geq 4$; neither $K_{2, t}(t \geq 2)$ nor $K_{3, s}$ $(s \geq 3)$ is Z_{3}-connected;
(5) (Lemma 2.8 of [2] and Proposition 2.4 of [4] and Lemma 2.6 of [5]) Each even wheel is Z_{3}-connected and each odd wheel is not;
(6) (Proposition 3.2 of [8]) Let $H \subseteq G$ and H be A-connected. G is A-connected if and only if G / H is A-connected;
(7) (Lemma 2.3 of [6]) Let v be not a vertex of G. If G is A-connected and $e(v, G) \geq 2$, then $G \cup\{v\}$ is A-connected.

Let G be a graph and u, v, w be three vertices of G with $u v, u w \in E(G)$, and $d_{G}(u) \geq 4$. Let $G_{[u v, u w]}$ be the graph $G \cup\{v w\}-\{u v, u w\}$.

Lemma 2.2 (Theorem 3.1 of [2]) Let A be an abelian group with $|A| \geq 3$. If $G_{[u v, u w]}$ is A connected, then so is G.

Let H_{1} and H_{2} be two disjoint graphs. The 2-sum of H_{1} and H_{2}, denoted by $H_{1} \oplus H_{2}$, is the grpah obtained from $H_{1} \cup H_{2}$ by identifying exactly one edge. A graph G is triangularly connected if for any two distinct edges e, e^{\prime}, there is a sequence of distinct cycles of length at most $3, C_{1}, C_{2}, \ldots, C_{m}$ in G such that $e \in E\left(C_{1}\right), e^{\prime} \in E\left(C_{m}\right)$ and $\left|E\left(C_{i}\right) \cap E\left(C_{i+1}\right)\right|=1$ for $1 \leq i \leq m-1$.

Lemma 2.3 (Fan et al. [5]) Let G be a triangularly connected graph. Then G is A-connected for all abelian group A with $|A| \geq 3$ if and only if $G \neq H_{1} \oplus H_{2} \oplus \ldots \oplus H_{k}$, where H_{i} is an odd wheel (including a triangle) for $1 \leq i \leq k$.

Fig. 3: 12 specified graphs

There are lots of results about Degree condition and Z_{3}-connectivity. We say G satisfies Orecondition, if for each $u v \notin E(G), d(u)+d(v) \geq|V(G)|$. We will discuss our result via the following Theorem.

Theorem 2.4 (Luo et al. [9]) A simple graph G satisfying the Ore-condition with at least 3 vertices is not Z_{3}-connected if and only if G is one of the 12 graphs in Fig. 3.

Lemma 2.5 Let G be a graph. If for some mapping $b: V(G) \rightarrow Z_{3}$ with $\sum_{v \in V(G)} b(v)=0$, there exists no orientation such that $\left|E^{+}(v)\right|-\left|E^{-}(v)\right|=b(v)$ (mod 3) for each $v \in V(G)$, then G is not Z_{3}-connected.

Proof. By the definition of Z_{3}-connectivity, we know that G is Z_{3}-connected if and only if for any $b: V(G) \rightarrow Z_{3}$ with $\sum_{v \in V(G)} b(v)=0$, there exists an orientation and function $f: E(G) \rightarrow Z_{3}^{*}$
such that $\partial f(v)=b(v)(\bmod 3)$ for each $v \in V(G)$. We know that Z_{3}-connectivity is independent on the orientation of graph. For above b and f, We only need to focus on edges of $f(e)=2$. If $f(e)=2$, then we can invert the orientation of e and let $f(e)=1$, the others maintain. In this way we can get a new orientation of G and a new function f^{\prime} on $E(G)$, such that $\partial f^{\prime}(v)=b(v)$ for each $v \in V(G)$. Follow this way, finally we can get a new orientation and a new function $f^{\prime \prime}: E(G) \rightarrow Z_{3}$ such that $f^{\prime \prime}(e)=1$ and $\partial f^{\prime \prime}(v)=b(v)$ for each $e \in E(G)$ and each $v \in V(G)$. Thus we can deduce that G is Z_{3}-connected if and only if for any $b: V(G) \rightarrow Z_{3}$ with $\sum_{v \in V(G)} b(v)=0$, there exists an orientation and function $f: E(G) \rightarrow Z_{3}^{*}$ such that $f(e)=1$ and $\partial f(v)=b(v)$ for each $e \in E(G)$ and each $v \in V(G)$. In this case, $\partial f(v)=\left|E^{+}(v)\right|-\left|E^{-}(v)\right|$ since $f(e)=1$. That is, G is Z_{3}-connected if and only if for any $b: V(G) \rightarrow Z_{3}$ with $\sum_{v \in V(G)} b(v)=0$, there exists an orientation such that $\left|E^{+}(v)\right|-\left|E^{-}(v)\right|=b(v)$ for each $v \in V(G)$. We are done.

Lemma 2.6 If G is one of graphs in Fig. 1, then G is not Z_{3}-connected.
Proof. By Theorem [2.4, each graph in $\left\{G^{1}, G^{2}, G^{3}, G^{4}, G^{5}\right\}$ is not Z_{3}-connected.
If $G \cong G^{9}$, then let $b(v)=0$ for each 3 -vertex and 5 -vertex in G and $b(v)=1$ for each 4 vertex in G. By Lemma [2.5, we only need to proof that there exists no orientation such that $\left|E^{+}(v)\right|-\left|E^{-}(v)\right|=b(v)(\bmod 3)$ for each $v \in V(G)$. Since $b\left(v_{5}\right)=b\left(v_{6}\right)=0$, we can orient edges such that $E^{+}\left(v_{5}\right)=0$ and $E^{+}\left(v_{6}\right)=3$ or $E^{+}\left(v_{5}\right)=3$ and $E^{+}\left(v_{6}\right)=0$. In the former case, we can orient edges $v_{3} v_{1}, v_{3} v_{2}, v_{3} v_{4}$ all with v_{3} as a tail (or all with v_{3} as a head) by $b\left(v_{3}\right)=0$. WLOG, we assume edges $v_{3} v_{1}, v_{3} v_{2}, v_{3} v_{4}$ all with v_{3} as a tail. Then $E^{+}\left(v_{1}\right)=0$ by $b\left(v_{1}\right)=0$. In this case, we must orient edges $v_{2} v_{4}, v_{4} v_{7}$ both with v_{4} as a head. But we cannot orient $v_{2} v_{7}$, such that $\left|E^{+}\left(v_{7}\right)\right|-\left|E^{-}\left(v_{7}\right)\right|=1(\bmod 3)$. The proof of the latter case is similar as above. Thus G^{9} is not Z_{3}-connected by Lemma 2.5. Since G^{8} is a spanning subgraph of G^{9}, G^{8} is not Z_{3}-connected by Lemma 2.1 (1) (6).

By Lemma 2.3, each graph of $\left\{G^{10}, G^{16}, G^{18}\right\}$ is not Z_{3}-connected.
Since $G \in\left\{G^{7}, G^{11}, G^{12}\right\}$ is a spanning subgraph of G^{10}, each graph of $\left\{G^{7}, G^{11}, G^{12}\right\}$ is not Z_{3}-connected by Lemma 2.1 (1) (6).

If $G \cong G^{13}$, then let $b(v)=0$ for each 3-vertex in G and $b(v)=1$ for each 4 -vertex in G. That is $b\left(v_{1}\right)=b\left(v_{3}\right)=b\left(v_{5}\right)=b\left(v_{6}\right)=0, b\left(v_{2}\right)=b\left(v_{4}\right)=b\left(v_{7}\right)=1$. We first orient edges adjacent to vertices with $b(v)=0$. Then in either case, we can orient edges $\left\{v_{4} v_{2}, v_{4} v_{7}\right\}$ both with v_{4} as a head by $b\left(v_{4}\right)=1$ and orient edges $\left\{v_{4} v_{7}, v_{2} v_{7}\right\}$ both with v_{7} as a head by $b\left(v_{7}\right)=1$. That is edge $v_{4} v_{7}$ has two orientations, a contradiction. By Lemma 2.5, G^{13} is not Z_{3}-connected.

If $G \cong G^{14}$, then let $b(v)=0$ for each 3 -vertex in G and $b(v)=1$ for each 4 -vertex in G. We first orient edges adjacent to vertices with $b(v)=0$. WLOG, we assume $E^{+}\left(v_{7}\right)=3$ and $E^{+}\left(v_{8}\right)=0$. Then we can orient edges $\left\{v_{1} v_{5}, v_{3} v_{5}\right\}$ both with v_{5} as a head by $b\left(v_{5}\right)=1$ and orient edges $\left\{v_{2} v_{6}, v_{4} v_{6}\right\}$ both with v_{6} as a head by $b\left(v_{6}\right)=1$. Then we can orient edges $\left\{v_{1} v_{3}, v_{2} v_{3}, v_{4} v_{3}\right\}$ all with v_{3} as a head (a tail) by $b\left(v_{3}\right)=1$ and orient edges $\left\{v_{1} v_{4}, v_{2} v_{4}, v_{4} v_{3}\right\}$ all with v_{4} as a tail (a head) by $b\left(v_{4}\right)=1$. In either case, we cannot orient edge $v_{1} v_{2}$, such that $\left|E^{+}\left(v_{1}\right)\right|-\left|E^{-}\left(v_{1}\right)\right|=0$ $(\bmod 3)$. By Lemma 2.5, G^{14} is not Z_{3}-connected.

If $G \cong G^{15}$, then let $b\left(v_{1}\right)=b\left(v_{2}\right)=b\left(v_{3}\right)=b\left(v_{7}\right)=0$ and $b\left(v_{5}\right)=b\left(v_{6}\right)=1, b\left(v_{4}\right)=b\left(v_{8}\right)=2$. We first orient edges adjacent to vertices v_{1} and v_{2}. Then in either case, we can orient edges $\left\{v_{4} v_{3}, v_{4} v_{8}\right\}$ both with v_{4} as a tail by $b\left(v_{4}\right)=2$. Then we orient edges $v_{3} v_{6}, v_{3} v_{5}$ both as v_{3} as a head by $b\left(v_{3}\right)=0$. Since $b\left(v_{5}\right)=b\left(v_{6}\right)=1$, edges $\left\{v_{5} v_{6}, v_{5} v_{8}, v_{5} v_{7}\right\}$ with v_{5} as a head (or a tail) and $\left\{v_{5} v_{6}, v_{7} v_{6}, v_{8} v_{6}\right\}$ all with v_{6} as a tail (or a head). In either case, we cannot orient edges $v_{7} v_{8}$, such that $\left|E^{+}\left(v_{7}\right)\right|-\left|E^{-}\left(v_{7}\right)\right|=0(\bmod 3)$. By Lemma 2.5, G^{15} is not Z_{3}-connected.

If $G \cong G^{17}$, then let $b(v)=0$ for each 3 -vertex in G and $b(v)=1$ for each 4 -vertex in G. By the similar discussion, we can not find an orientation such that $\left|E^{+}(v)\right|-\left|E^{-}(v)\right|=0(\bmod 3)$ for each $v \in V(G)$. Thus G^{17} is not Z_{3}-connected by Lmmma 2.5. G^{6} is a subgraph of G^{17}. If G^{6} is Z_{3}-connected, then G^{17} is Z_{3}-connected by Lemma 2.1(6) (7), a contradiction. Thus G^{6} is not Z_{3}-connected.

3 The case when $\delta(G) \geq 4$

Lemma 3.1 Suppose G is a 3-edge-connected graph with $\delta(G) \geq 4$. If $\alpha(G) \leq 2$, then G is Z_{3}-connected.

Proof. Clearly, we can assume G is simple; otherwise, we can contracted G into G^{\prime} by contracting 2-cycles. By Lemma 2.1(3) (6), G^{\prime} is Z_{3}-connected if and only if G is Z_{3}-connected. Since $\delta(G) \geq 4$, $n \geq 5$. When $n=5, G \cong K_{5}$, by Lemma 2.1 (2), G is Z_{3}-connected. Then we assume $n \geq 6$. By Lemma 2.1 (2), We only need to discuss the case $\alpha(G)=2$.

If $d(u)+d(v) \geq n$ for each $u v \notin E(G)$, then G satisfies the Ore-condition. By Theorem 2.4 and since $\delta(G) \geq 4, G$ is Z_{3}-connected.

Thus there exists two non-adjacent vertices u, v such that $d(u)+d(v) \leq n-1$.
Set x, y be such vertices of G, that is $d(x)+d(y) \leq n-1$ and $x y \notin E(G)$. Since $\alpha(G)=2$, $e(v,\{x, y\}) \geq 1$ for each $v \in V(G)-\{x, y\}$. Then $|N(x) \cap N(y)| \leq 1$ by $d(x)+d(y) \leq n-1$.

Case 1. $|N(x) \cap N(y)|=0$.
In this case, $G[N[x]]$ and $G[N[y]]$ is a complete graph $K_{m_{1}}, K_{m_{2}}\left(m_{1}, m_{2} \geq 5\right)$ since $\alpha(G)=2$ and $\delta(G) \geq 4$. By Lemma $2.1(2), G[N[x]]$ and $G[N[y]]$ is Z_{3}-connected. Since G is 3 -edge connected, G is Z_{3}-connected by Lemma 2.1 (2) (3) (6).

Case 2. $|N(x) \cap N(y)|=1$.
Suppose $u \in N(x) \cap N(y)$. Similarly, we know that $G[N[x]-\{u\}]$ and $G[N[y]-\{u\}]$ is a complete graph. Suppose $G[N[x]-\{u\}] \cong K_{m_{1}}, G[N[y]-\{u\}] \cong K_{m_{2}}$. Clearly, $m_{i} \geq 4$ for each $i \in\{1,2\}$.

If $m_{i}=4$ for each $i \in\{1,2\}$, then $G[N[x]-\{u\}] \cong K_{4}, G[N[y]-\{u\}] \cong K_{4}$. Suppose $N(x)=\left\{x_{1}, x_{2}, x_{3}, u\right\}$ and $N(y)=\left\{y_{1}, y_{2}, y_{3}, u\right\}$. If $e(u, N[x]) \geq 3$, then $N[x]$ contains a K_{5}^{-}as a subgraph, by Lemma 2.1 (2), $G[N[x]]$ is Z_{3}-connected. Since G is 3-edge-connected, $e(N[x], N[y]-$ $\{u\}) \geq 3$, by Lemma 2.1 (2) (6), G is Z_{3}-connected. WLOG, we assume $1 \leq e(u, N[x]) \leq 2$ and $1 \leq e(u, N[y]) \leq 2$. Then there are at least two vertices in $\left\{x_{1}, x_{2}, x_{3}\right\}$ which is not adjacent to u and at least two vertices in $\left\{y_{1}, y_{2}, y_{3}\right\}$ which is not adjacent to u. WLOG, we assume
$x_{1}, x_{2}, y_{1}, y_{2} \notin N(u)$. In this case, $x_{i} y_{j} \in E(G)$ for each $i, j \in\{1,2\}$ since $\alpha(G)=2$. Then we can get a trivial graph K_{1} by contracting 2-cycles from $G_{\left[y y_{1}, y y_{2}\right]}$. By Lemma [2.1 (3) (6), $G_{\left[y y_{1}, y y_{2}\right]}$ is Z_{3}-connected. By Lemma 2.2, G is Z_{3}-connected.

If $m_{1}=4$ and $m_{2} \geq 5$, then $G[N[x]-\{u\}] \cong K_{4}$ and $G[N[y]-\{u\}]$ is Z_{3}-connected by Lemma 2.1 (2). If $e(u, N[y]-\{u\}) \geq 2$, then $G[N[y]]$ is Z_{3}-connected by Lemma 2.1 (7). Since G is 3-edge-connected, $e(N[x]-\{u\}, N[y]) \geq 3$, by Lemma 2.1 (2) (6), G is Z_{3}-connected. Suppose $e(u, N[y]-\{u\})=1$. If there exist $v \in N(x)$ such that $v u \notin E(G)$, then $e(v, N(y))=m_{2}-1 \geq 4$. Thus $G[N[y] \cup\{v\}-\{u\}]$ is Z_{3}-connected by Lemma 2.1 (7). Since G is 3-edge connected, G is Z_{3}-connected by Lemma 2.1 (2) (6). Thus $e(u, N[x]-\{u\})=4$, this means $G[N[x]]$ is K_{5}, by Lemma 2.1 (2), $G[N[x]]$ is Z_{3}-connected. Since G is 3 -edge connected, G is Z_{3}-connected by Lemma 2.1 (6) (7).

If $m_{i} \geq 5$ for each $i \in\{1,2\}$, then $G[N[x]-\{u\}]$ and $G[N[y]-\{u\}]$ is Z_{3}-connected by Lemma.1 (2). Since G is 3 -edge connected, G is Z_{3}-connected by Lemma 2.1 (6) (7).

4 Proof of Theorem 1.3

In this section, we define \mathcal{F} be a family of 3-edge connected simple graphs G which satisfies $\alpha(G)=2$ and $\delta(G)=3$.

Lemma 4.1 Suppose $G \in \mathcal{F}$. If there exists two non-adjacent vertices u, v such that $d(u)+d(v)=$ $n-2$, then either G is one of the graphs $\left\{G^{15}, G^{16}, G^{17}, G^{18}\right\}$ shown in Fig. 1 or G can be Z_{3} contracted in to $\left\{K_{1}, K_{4}\right\}$.

Proof. Set x, y be such vertices of G, that is $d(x)+d(y)=n-2$ and $x y \notin E(G)$. Since $\alpha(G)=2$, $e(v,\{x, y\}) \geq 1$ for each $v \in V(G)-\{x, y\}$. Since $d(x)+d(y)=n-2,|N(x) \cap N(y)|=0$.

In this case, $G[N[x]]$ and $G[N[y]]$ is a complete graph $K_{m_{1}}, K_{m_{2}}\left(m_{1}, m_{2} \geq 4\right)$ by $\alpha(G)=2$ and $\delta(G)=3$. If $m_{i} \geq 5$ for each $i \in\{1,2\}$, then $\delta(G) \geq 4$, contrary to $\delta(G)=3$. Thus we need to discuss cases of $m_{i}=4$ for some $i \in\{1,2\}$. Assume $m_{1}=4$. Let $N(x)=\left\{x_{1}, x_{2}, x_{3}\right\}$.

Case 1. $m_{2}=4$.
Let $N(y)=\left\{y_{1}, y_{2}, y_{3}\right\}$. Since G is 3-edge connected, $e(N(x), N(y)) \geq 3$. If there exists one vertex, say x_{1}, such that $e\left(x_{1}, N(y)\right) \geq 3$, then $G\left[N[y] \cup x_{1}\right]$ is Z_{3}-connected by Lemma 2.1 (2). In this case, if $e\left(v, N[y] \cup\left\{x_{1}\right\}\right)=1$ for each $v \in N[x]-\left\{x_{1}\right\}$, then G can be contracted into K_{4}; otherwise, G is Z_{3}-connected. Thus we assume $e(u, N[y]) \leq 2$ and $e(v, N[x]) \leq 2$ for each $u \in N(x)$ and $v \in N(y)$.

When $e(N(x), N(y))=3$. Then G is one of graphs $\left\{G^{15}, G^{16}, G^{17}\right\}$ in Fig. 1 .
When $e(N(x), N(y))=4$. Then either $G \cong G^{18}$ in Fig. 1 or G contains a 4-vertex. In the latter case, we assume $d\left(x_{1}\right)=4$ and $N\left(x_{1}\right)=\left\{x, x_{2}, x_{3}, y_{1}\right\}$. Then $e\left(\left\{x, x_{2}, x_{3}\right\}, N(y)\right)=3$. Considering graph $G_{\left[x_{1} x, x_{1} x_{2}\right]}$. Clearly, $\left\{x, x_{2}, x_{3}\right\}$ can be contracted into one vertex v^{*} by contracting two 2-cycles and we called this new graph G^{*}. Since $e\left(\left\{x, x_{2}, x_{3}\right\}, N(y)\right)=3, d_{G^{*}}\left(v^{*}\right)=3+1=4$. That is G^{*} contains a K_{5}^{-}or C_{2} as a subgraph. In either case, by Lemma 2.1 (2) (3) (6) (7), G^{*}
is Z_{3}-connected. By Lemma 2.1 (3) (6), $G_{\left[x_{1} x, x_{1} x_{2}\right]}$ is Z_{3}-connected. Thus G is Z_{3}-connected by Lemma 2.2.

When $e(N(x), N(y)) \geq 5$. We only need to prove the case $e(N(x), N(y))=5$. In this case, we may assume $e\left(x_{i}, N(y)\right)=2$ for each $i=1,2$ and $e\left(x_{3}, N(y)\right)=1$. WLOG, we assume $x_{1} y_{1}, x_{1} y_{2} \in E(G)$. We can get a trivial graph K_{1} by contracting 2-cycles from graph $G_{\left[x_{1} y_{1}, x_{1} y_{2}\right]}$. By Lemma 2.1 (1) (3) (6), $G_{\left[x_{1} y_{1}, x_{1} y_{2}\right]}$ is Z_{3}-connected. Thus G is Z_{3}-connected by Lemma 2.2,

Case 2. $m_{2} \geq 5$.
By Lemma $2.1(2), G[N[y]]$ is Z_{3}-connected. Since G is 3-edge connected, $e(N(x), N(y)) \geq 3$. We can deduce that G can be contracted to K_{4} or G is Z_{3}-connected by Lemma 2.1 (2) (6).

Lemma 4.2 Suppose $G \in \mathcal{F}$ and $d(u)+d(v) \geq n-1$ for each uv $\notin E(G)$. If there exists two non-adjacent vertices u, v such that $d(u)+d(v)=n-1$, then either G is one of the graphs $\left\{G^{6}, G^{7}, \ldots, G^{14}\right\}$ shown in Fig. 1 or G can be Z_{3}-contracted in to $\left\{K_{1}, K_{4}\right\}$.

Proof. Set x, y be such vertices of G, that is $d(x)+d(y)=n-1$ and $x y \notin E(G)$. Since $\alpha(G)=2$, $e(v,\{x, y\}) \geq 1$ for each $v \in V(G)-\{x, y\}$. Since $d(x)+d(y)=n-1,|N(x) \cap N(y)|=1$.

Suppose $u \in N(x) \cap N(y)$. Similarly, we know that $G[N[x]-\{u\}]$ and $G[N[y]-\{u\}]$ is a complete graph. Suppose $G[N[x]-\{u\}] \cong K_{m_{1}}, G[N[y]-\{u\}] \cong K_{m_{2}}$. Clearly, $m_{i} \geq 3$ for each $i \in\{1,2\}$.

Case 1. Suppose $m_{i}=3$ for each $i=1,2$.
Let $N(x)=\left\{x_{1}, x_{2}, u\right\}, N(y)=\left\{y_{1}, y_{2}, u\right\}$. Since $\delta(G)=3, d(u) \geq 3$.
If $d(u)=3$, then WLOG, we assume $N(u)=\left\{x, x_{1}, y\right\}$. Since $\alpha(G)=2, x_{2} y_{i} \in E(G)$ for each $i \in\{1,2\}$. Then either G is one of graphs $\left\{G^{12}, G^{13}\right\}$ in Fig. 1 or $x_{1} y_{i} \in E(G)$ for each $i \in\{1,2\}$. In the latter case, we can get a trivial graph K_{1} by contracting 2-cycles till no 2-cycles exist from graph $G_{\left[x_{2} y_{1}, x_{2} y_{2}\right]}$. By Lemma 2.1 (1) (3) (6), $G_{\left[x_{2} y_{1}, x_{2} y_{2}\right]}$ is Z_{3}-connected. By Lemma 2.2. G is Z_{3}-connected.

If $d(u)=4$, then $e(u, N[x])=2$ or $e(u, N[x])=3$ by symmetry. Suppose $e(u, N[x])=2$. WLOG, we assume $N(u)=\left\{x, x_{1}, y, y_{1}\right\}$. Since $\alpha(G)=2, x_{2} y_{2} \in E(G)$. If $e\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}\right)=1$, then $G \cong G^{12}$. If $e\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}\right)=2$, then $G \in\left\{G^{8}, G^{13}\right\}$. If $e\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}\right) \geq 3$, then we can get a trivial graph K_{1} by contracting 2-cycles till no such subgraph exists from $G_{\left[u x, u x_{1}\right]}$. By Lemma 2.1 (1) (3) (6), $G_{\left[u x, u x_{1}\right]}$ is Z_{3}-connected. By Lemma 2.2, G is Z_{3}-connected. Suppose $e(u, N[x])=3$. Then $N(u)=\left\{x, x_{1}, x_{2}, y\right\}$. Since G is 3-edge connected, $e\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}\right) \geq 2$. If $e\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}\right)=2$, then G is one of graphs $\left\{G^{6}, G^{7}\right\}$. If $e\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}\right) \geq 3$, then we can get a trivial graph K_{1} by contracting 2-cycles till no such subgraph exists from $G_{\left[u x, u x_{1}\right]}$. By Lemma 2.1 (1) (3) (6), $G_{\left[u x, u x_{1}\right]}$ is Z_{3}-connected. By Lemma 2.2, G is Z_{3}-connected.

If $d(u)=5$, then WLOG, we assume $N(u)=\left\{x, x_{1}, x_{2}, y, y_{1}\right\}$. If $e\left(x_{i},\left\{y_{1}, y_{2}\right\}\right)=2$, then G contains a 4 -wheel with y_{1} as a hub. Then we can deduce that G is Z_{3}-connected by Lemma 2.1 (5) (6) (7). Thus we assume $e\left(x_{i},\left\{y_{1}, y_{2}\right\}\right) \leq 1$ for each $i \in\{1,2\}$. If $e\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}\right)=1$, then $G \cong G^{7}$. If $e\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}\right)=2$, then either $G \cong G^{9}$ or we can get a trivial graph K_{1} by
contracting 2-cycles till no such subgraph exists from $G_{\left[x_{i} x, x_{i} x_{j}\right]}$, where $x_{i} y_{1} \notin E(G)$ and $i \neq j$. By Lemma 2.1 (1) (3) (6), $G_{\left[x_{i} x, x_{i} x_{j}\right]}$ is Z_{3}-connected. By Lemma [2.2, G is Z_{3}-connected..

If $d(u)=6$, then $N(u)=\left\{x, x_{1}, x_{2}, y, y_{1}, y_{2}\right\}$. If $e\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}\right)=0$, then $G \cong G^{11}$. If $e\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}\right)=1$, then $G \cong G^{10}$. Thus we assume $e\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}\right) \geq 2$. If there exists i, say x_{1}, such that $e\left(\left\{x_{1}\right\},\left\{y_{1}, y_{2}\right\}\right)=2$, then $G\left[N[y] \cup x_{1}\right]$ is a K_{5}^{-}. By Lemma 2.1 (2) (6), we can deduce that G is Z_{3}-connected. Thus WLOG, we assume $x_{1} y_{1}, x_{2} y_{2} \in E(G)$. Considering graph $G_{\left[x_{1} y_{1}, x_{1} x_{2}\right]}$. $G_{\left[x_{1} y_{1}, x_{1} x_{2}\right]}$ contains a 4 -wheel with y_{1} as a hub. We can get a new graph with 3 vertices and 4 edges by contracting this 4 -wheel from $G_{\left[x_{1} y_{1}, x_{1} x_{2}\right]}$, which is Z_{3}-connected by Lemma 2.1 (5) (6). By Lemma 2.2, G is Z_{3}-connected.

Case 2. Suppose $m_{i}=4$ for each $i=1,2$.
Suppose $N(x)=\left\{x_{1}, x_{2}, x_{3}, u\right\}, N(y)=\left\{y_{1}, y_{2}, y_{3}, u\right\}$. If $e(u, N[x]) \geq 3$, then $G[N[x]]$ contains a K_{5}^{-}as a subgraph. By Lemma [2.1 (2), $G[N[x]]$ is Z_{3}-connected. Since G is 3-edge connected, $e(N[x], N[y]-\{u\}) \geq 3$. Then $G / G[N[x]]$ contains a K_{5}^{-}as a subgraph. By Lemma 2.1 (2), $G / G[N[x]]$ is Z_{3}-connected. By Lemma 2.1 (6), G is Z_{3}-connected. Thus we may assume $1 \leq$ $e(u, N[x]) \leq 2$ and $1 \leq e(u, N[y]) \leq 2$. Since G is 3 -edge connected, $d(u) \geq 3$.

If $e(u, N[x])=2$ and $e(u, N[y])=2$, then we assume, WLOG, we assume $N(u)=\left\{x, x_{1}, y, y_{1}\right\}$. Since $\alpha(G)=2, x_{2} y_{i}, x_{3} y_{i} \in E(G)$ for each $i=2$, 3. In this case, $\delta(G) \geq 4$, contrary to $\delta(G)=3$.

If $e(u, N[x])=2$ and $e(u, N[y])=1$, then we assume, WLOG, we assume $N(u)=\left\{x, x_{1}, y\right\}$. Since $\alpha(G)=2, x_{2} y_{i}, x_{3} y_{i} \in E(G)$ for each $i=1,2,3$. In this case, $G\left[N[y] \cup\left\{x_{2}, x_{3}\right\}-\{u\}\right]$ is Z_{3}-connected by Lemma 2.1 (2) (7). By Lemma 2.1 (7), G is Z_{3}-connected.

Case 3. Suppose $m_{i} \geq 5$ for each $i=1,2$. Clearly, $G[N[x]-\{u\}]$ and $G[N[y]-\{u\}]$ is $Z_{3}{ }^{-}$ connected by Lemma 2.1 (2). Since $\delta(G)=3$, WLOG, we assume $e(u, N[x]-\{u\})=2$. Thus $G[N[x]]$ is Z_{3}-connected by Lemma 2.1 (7). Since G is 3-edge connected, $e(N[x], N[y]-\{u\}) \geq 3$, G is Z_{3}-connected by Lemma 2.1 (2) (6).

Case 4. Suppose $m_{1}=3$ and $m_{2}=4$.
Suppose $N(x)=\left\{x_{1}, x_{2}, u\right\}, N(y)=\left\{y_{1}, y_{2}, y_{3}, u\right\}$. If $e(u, N[y]-\{u\}) \geq 3$, then $G[N[y]]$ contains a K_{5}^{-}as a subgraph. By Lemma 2.1 (2), $G[N[y]]$ is Z_{3}-connected. Since G is 3-edge connected, $e(N[x]-\{u\}, N[y]) \geq 3$. Then either G can be contracted to K_{4} or G is Z_{3}-connected. Thus we assume $1 \leq e(u, N[y]-\{u\}) \leq 2$ and $d(u) \geq 3$.

If $d(u)=3$, then $e(u, N[x]-\{u\})=1$ and $e(u, N[y]-\{u\})=2$ or $e(u, N[x]-\{u\})=2$ and $e(u, N[y]-\{u\})=1$. In the former case, we assume, WLOG, $N(u)=\left\{x, y, y_{1}\right\}$. Since $\alpha(G)=2$, $x_{1} y_{i}, x_{2} y_{i} \in E(G)$ for each $i=2,3$. In this case, we can get a trivial graph K_{1} by contracting
 G is Z_{3}-connected. In the latter case, we assume, WLOG, $N(u)=\left\{x_{1}, x, y\right\}$. Since $\alpha(G)=2$, $x_{2} y_{i} \in E(G)$ for each $i=1,2,3$. In this case, $G\left[N[y] \cup\left\{x_{2}\right\}-\{u\}\right]$ is Z_{3}-connected by Lemma 2.1] (2). Then either G is Z_{3}-connected or G can contracted into K_{4}.

If $d(u)=4$, then $e(u, N[x]-\{u\})=2$ and $e(u, N[y]-\{u\})=2$ or $e(u, N[x]-\{u\})=3$ and $e(u, N[y]-\{u\})=1$. Suppose $e(u, N[x]-\{u\})=2$ and $e(u, N[y]-\{u\})=2$. We assume, WLOG, $N(u)=\left\{x, x_{1}, y, y_{1}\right\}$. Since $\alpha(G)=2, x_{2} y_{i} \in E(G)$ for each $i=2,3$. If no
other edge, then $G \cong G^{14}$; otherwise, either we can get a trivial graph K_{1} by contracting 2cycles from $G_{\left[u y, u y_{1}\right]}$ or $G[N[y]] \cup\left\{x_{2}\right\}-\{u\}$ contains a K_{5}^{-}as a subgraph. In the former case, by Lemma 2.1 (1) (3) (6), $G_{\left[u y, u y_{1}\right]}$ is Z_{3}-connected. By Lemma [2.2, G is Z_{3}-connected; in the latter case, $G[N[y]] \cup\left\{x_{2}\right\}-\{u\}$ is Z_{3}-connected by Lemma 2.1 (2). By Lemma 2.1 (7), G is also $Z_{3^{-}}$ connected. Then suppose $e(u, N[x]-\{u\})=3$ and $e(u, N[y]-\{u\})=1$. Then $N(u)=\left\{x_{1}, x_{2}, x, y\right\}$. Since G is 3 -edge connected, $e\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}, y_{3}\right\}\right) \geq 2$. Since $d(u)+d(v) \geq n-1=7$ for each $u v \notin E(G), d\left(y_{i}\right) \geq 4$ for each $i=1,2,3$. In this case, $e\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}, y_{3}\right\}\right) \geq 3$. Then either we can get a trivial graph K_{1} by contracting 2-cycles from $G_{\left[y y_{1}, y y_{2}\right]}$ or $G\left[N[y] \cup\left\{x_{i}\right\}-\{u\}\right]$ contains K_{5}^{-}as spanning subgraph for some $i \in\{1,2\}$. In the former case, $G_{\left[y y_{1}, y y_{2}\right]}$ is Z_{3}-connected by Lemma 2.1 (1) (3) (6). By Lemma 2.2, G is Z_{3}-connected; in the latter case, we can deduce G is Z_{3}-connected by Lemma 2.1 (2) (7).

If $d(u)=5$, then $e(u, N[x]-\{u\})=3$ and $e(u, N[y]-\{u\})=2$. WLOG, we assume $N(u)=$ $\left\{x_{1}, x_{2}, x, y, y_{1}\right\}$. Since $d(u)+d(v) \geq n-1=7$ for each $u v \notin E(G), d\left(y_{i}\right) \geq 4$ for each $i=1,2,3$. Then $e\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}, y_{3}\right\}\right) \geq 2$. In this case, we can get a trivial graph K_{1} by contracting 2 -cycles and K_{5}^{-}from graph $G_{\left[y y_{1}, y y_{2}\right]}$. By Lemma [2.1 (1) (6), $G_{\left[y y_{1}, y y_{2}\right]}$ is Z_{3}-connected. By Lemma [2.2, G is Z_{3}-connected.

Case 5. Suppose $m_{1}=3$ and $m_{2} \geq 5$.
Clearly, $G[N[y]-\{u\}]$ is Z_{3}-connected by Lemma 2.1(2). Since $\delta(G) \geq 3, e(u, N[x]-\{u\}) \geq 2$ or $e(u, N[y]-\{u\}) \geq 2$. If $e(u, N[y]-\{u\}) \geq 2$, then $G[N[y]]$ is Z_{3}-connected by Lemma 2.1 (7). Since G is 3 -edge connected, $e(N[x]-\{u\}, N[y]) \geq 3$. Thus either G is Z_{3}-connected or G can be contracted into K_{4}. Thus we assume $e(u, N[y]-\{u\})=1$ and $e(u, N[x]-\{u\}) \geq 2$. Set $N(x)=\left\{x_{1}, x_{2}, u\right\}$. WLOG, we assume $x_{1} u \in E(G)$. If $x_{2} u \in E(G)$, then $G[N[x]]$ is K_{4}. Since G is 3-edge connected, $e(N[x], N[y]-\{u\}) \geq 3$. Thus $G / G[N[y]-\{u\}]$ contains K_{5}^{-}or C_{2}. In either case, G is Z_{3}-connected by Lemma 2.1 (2) (3) (6). If $x_{2} u \notin E(G)$, then $x_{2} v \in E(G)$ for each $v \in N(y)-\{u\}$ by $\alpha(G)=2$. Thus $G\left[N[y] \cup\left\{x_{2}\right\}-\{u\}\right]$ is Z_{3}-connected by Lemma 2.1(7). Thus either G is Z_{3}-connected or G can be contracted into K_{4}.

Case 6. Suppose $m_{1}=4$ and $m_{2} \geq 5$.
Clearly, $G[N[y]-\{u\}]$ is Z_{3}-connected by Lemma 2.1(2). Since $\delta(G) \geq 3, e(u, N[x]-\{u\}) \geq 2$ or $e(u, N[y]-\{u\}) \geq 2$. If $e(u, N[y]-\{u\}) \geq 2$, then $G[N[y]]$ is Z_{3}-connected by Lemma 2.1 (7). Since G is 3 -edge connected, $e(N[x]-\{u\}, N[y]) \geq 3$. Thus $G / G[N[y]]$ contains K_{5}^{-}or C_{2}. In either case, G is Z_{3}-connected by Lemma 2.1 (1) (2) (3) (6). Thus $e(u, N[y]-\{u\})=1$ and $e(u, N[x]-\{u\}) \geq 2$. Set $N(x)=\left\{x_{1}, x_{2}, x_{3}, u\right\}$. WLOG, we assume $x_{1} u \in E(G)$. If $x_{i} u \in E(G)$ for some $i \in\{2,3\}$, then $G[N[x]]$ contains K_{5}^{-}as a subgraph, is Z_{3}-connected. Since G is 3 -edge connected, $e(N[x], N[y]-\{u\}) \geq 3$. Thus $G / G[N[x]]$ contains K_{5}^{-}or C_{2}. By Lemma 2.1 (2) (3) (6), G is Z_{3}-connected. If $x_{i} u \notin E(G)$ for each $i \in\{2,3\}$, then $x_{i} v \in E(G)$ for each $v \in N(y)-\{u\}$ and $i \in\{2,3\}$ by $\alpha(G)=2$. Thus $G\left[N[y] \cup\left\{x_{2}, x_{3}\right\}-\{u\}\right]$ is Z_{3}-connected by Lemma [2.1 (7). By Lemma 2.1 (7), G is Z_{3}-connected.

Proof of Theorem 1.3 Since G a is 3 -edge connected simple graph, $n \geq 4$. When $n=4, G \cong K_{4}$, that is G^{1}. When $n=5, G$ contains W_{4} as a subgraph, by Lemma 2.1(1) (5) (6), G is Z_{3}-connected.

By Lemma 4.1 and 4.2, we only need prove the case of G which satisfies the Ore-condition. By Theorem 2.4 and since G is 3-edge-connected, either G is Z_{3}-connected or G is one of graphs $\left\{G^{2}, G^{3}, G^{4}, G^{5}\right\}$ shown in Fig. 1. Thus we prove that G is not one of the 18 special graphs shown in Fig. 1 if and only if G can be Z_{3}-contracted to one of the graphs $\left\{K_{1}, K_{4}\right\}$.

References

[1] J. A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
[2] J. J. Chen. E. Eschen, H.J. Lai, Group connectivity of certain graphs, Ars Combin., 89 (2008) 141-158.
[3] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111-113.
[4] M.DeVos, R.Xu, G.Yu, Nowhere-zero Z_{3}-flows through Z_{3}-connectivity, Discrete Math., 306 (2006) 26-30.
[5] G. Fan, H.J. Lai, R. Xu, C.Q. Zhang, C. Zhou, Nowhere-zero 3-flows in triangularly connected graphs, J. of Combin. Theory, Ser. B 98 (2008) 1325-1336.
[6] X. Hou, H. J. Lai, P. Li, and C-Q Zhang, Group Connectiving of Complementrary Graphs, J. Graph Theory, 69 (4) (2012) 464-470.
[7] F. Jaeger, N. Linial, C. Payan, N. Tarsi, Group connectivity of graphs-a nonhomogeneous analogue of nowhere zero flow properties, J.Combin. Theory, Ser. B 56 (1992) 165-182.
[8] H. J. Lai, Group connectivity of 3-edge-connected chordal graphs, Graphs Combin., 16 (2000) 165-176.
[9] R. Luo, Rui Xu, J. Yin, G. Yu, Ore-condition and Z_{3}-connectivity, European J. of Combin., 29 (2008) 1587-1595.
[10] Rong Luo, Zhengke Miao, Rui Xu, Nowhere-zero 3-flows of graphs with independence number two, Graphs and Combin., 29 (2010) 1899-1907.
[11] R. Steinberg and D. H. Younger, Grötzch's theorem for the projectice plane, Ars Combin. 15-31.

[^0]: *School of Mathematics and Physics, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China. E-mail: fanyang_just@163.com. Research is partially supported by NSF-China Grant: NSFC 11326215. and is partially supported by NSF-China Grant: NSFC 11371009.
 ${ }^{\dagger}$ Department of Mathematics Huazhong Normal University, Wuhan 430079, China, Research is partially supported by NSF-China Grant: NSFC: 11171129.
 ${ }^{\ddagger}$ School of Mathematical Sciences, Luoyang Normal University, Luoyang 471022, China, Research is partially supported by NSF-China Grant: NSFC: 11301254.

