Z_3 -connectivity with independent number 2

Fan Yang ^{*}, Xiangwen Li[†], Liangchen Li[‡]

Abstract

Let G be a 3-edge-connected graph on n vertices. It is proved in this paper that if $\alpha(G) \leq 2$, then either G can be Z₃-contracted to one of graphs $\{K_1, K_4\}$ or G is one of the graphs in Fig. 1.

1 Introduction

Graphs considered here are undirected, finite and may have multiple edges without loops[1]. Let G be a graph. Set D = D(G) be an orientation of G. If an edge $e = uv \in E(G)$ is directed from a vertex u to a vertex v, then u is a tail of e, v is a head of e. For a vertex $v \in V(G)$, let $E^+(v)(E^-(v))$ denote the set of all edges with v as a tail(a head). Let A be an abelian group with the additive identity 0, and let $A^* = A - \{0\}$.

For every mapping $f: E(G) \to A$, the boundary of f is a function $\partial f: V(G) \to A$ defined by

$$\partial f(v) = \sum_{e \in E^+(v)} f(e) - \sum_{e \in E^-(v)} f(e),$$

where " \sum " refers to the addition in A. If $\partial f(v) = 0$ for each vertex $v \in V(G)$, then f is called an A-flow of G. Moreover, if $f(e) \neq 0$ for every $e \in E(G)$, then f is a nowhere-zero A-flow of G.

A graph G is A-connected if for any mapping $b: V(G) \to A$ with $\sum_{v \in V(G)} b(v) = 0$, there exists an orientation of G and a mapping $f: E(G) \to A^*$ such that $\partial f(v) = b(v) \pmod{3}$ for each $v \in V(G)$. The concept of A-connectivity was firstly introduced by Jaeger et al in [7] as a generalization of nowhere-zero flows. Obviously, if G is A-connected, then G admits a nowhere-zero A-flow.

For $X \subseteq E(G)$, the contraction G/X is obtained from G by contracting each edge of X and deleting the resulting loops. If $H \subseteq G$, we write G/H for G/E(H). Let A be an abelian group with $|A| \geq 3$. Denote by G' the graph obtained by repeatedly contracting A-connected subgraphs

^{*}School of Mathematics and Physics, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China. E-mail: fanyang_just@163.com. Research is partially supported by NSF-China Grant: NSFC 11326215. and is partially supported by NSF-China Grant: NSFC 11371009.

[†]Department of Mathematics Huazhong Normal University, Wuhan 430079, China, Research is partially supported by NSF-China Grant: NSFC: 11171129.

[‡]School of Mathematical Sciences, Luoyang Normal University, Luoyang 471022, China, Research is partially supported by NSF-China Grant: NSFC: 11301254.

of G until no such subgraph left. We say G can be A-contracted to G'. Clearly, if a graph G can be A-contracted to K_1 , then G is A-connected.

In this paper, we focus on Z_3 -connectivity. The following conjecture is due to Jaeger *et al.*

Conjecture 1.1 [7] Every 5-edge-connected graph is Z_3 -connected.

It is still open. However, many authors are devoted to approach this conjecture. Chvátal and Erdős [3] proved a classical result: a graph G with at least 3 vertices is hamiltonian if its independence number is less than or equal to its connectivity (this condition is known as Chvátal-Erdős Condition). Therefore Chvátal-Erdős Condition guarantees the existence of nowhere-zero 4-flows. Recently, Luo, Miao, Xu [10] characterized the graphs satisfying Chvátal-Erdős Condition that admit a nowhere-zero 3-flow.

Fig. 1: 18 specified graphs which is Z_3 -connected

Theorem 1.2 (Luo et al. [10]) Let G be a bridgeless graph with independence number $\alpha(G) \leq 2$. Then G admits a nowhere-zero 3-flow if and only if G can not be contracted to a K_4 and G is not one of G^3, G^5, G^{18} in Fig. 1 or $G \notin G^{3'}$.

Motivated by this, we consider the Z_3 -connectivity of graphs satisfying the weaker Chvátal-Erdős Condition. In this paper, we extend Luo *et al.*'s result to group connectivity. The main theorem is as follows.

Theorem 1.3 Let G be a 3-edge-connected simple graph and $\alpha(G) \leq 2$. G is not one of the 18 special graphs shown in Fig. 1 if and only if G can be Z₃-contracted to one of the graphs $\{K_1, K_4\}$.

From Theorem 1.3, we obtain the following corollary immediately.

Corollary 1.4 Let G be a 3-edge-connected graph and $\alpha(G) \leq 2$. Then one of the following holds: (i) G can be Z₃-contracted to one of the graphs {K₁, K₄}, or (ii) G is one of the 18 special graphs shown in Fig. 1, or

(ii) G is one of the graphs $\{G^{3'}, G^{4'}, G^{10'}, G^{11'}\}$ shown in Fig. 2, where u, v are adjacent by m edges, $m \ge 2$ for i = 3, 4, 10 and $m \ge 3$ for i = 11.

Fig. 2: Construction of graph of $G^{3'}$, $G^{4'}$, $G^{10'}$, $G^{11'}$

We end this section with some terminology and notation not define in [1]. For $V_1, V_2 \subseteq V(G)$ and $V_1 \cap V_2 = \emptyset$, denote by $e(V_1, V_2)$ the number of edges with one endpoint in V_1 and the other endpoint in V_2 . For $S \subseteq V(G)$, G[S] denotes an induced subgraph of G with vertex-set S. Let $N_G(v)$ denote the set of all vertices adjacent to vertex v; set $N_G[v] = N_G(v) \cup \{v\}$. We usually use N(v) and N[v] for $N_G(v)$ and $N_G[v]$ if there is no confusion. A k-vertex denotes a vertex of degree k. Let K_n denote a complete graph with n vertices, where $n \geq 3$. Moreover, K_3 denotes a 3-cycle. A k-cycle is a cycle of length k; a 3-cycle is also called a triangle. The wheel W_k is the graph obtained from a k-cycle by adding a new vertex and joining it to every vertex of the k-cycle. When k is odd (even), we say W_k is an odd (even) wheel. For convenience, we define W_1 as a triangle.

2 Preliminary

Here we state some lemmas which are essential to the proof of our result.

Lemma 2.1 Let A be an abelian group with $|A| \ge 3$. The following results are known:

(1) (Proposition 3.2 of [8]) K_1 is A-connected;

- (2)(Corollary 3.5 of [8]) K_n and K_n^- are A-connected if $n \ge 5$;
- (3) ([7] and Lemma 3.3 of [8]) C_n is A-connected if and only if $|A| \ge n+1$;

(4) (Theorem 4.6 of [2]) $K_{m,n}$ is A-connected if $m \ge n \ge 4$; neither $K_{2,t}$ $(t \ge 2)$ nor $K_{3,s}$ $(s \ge 3)$ is Z₃-connected;

(5) (Lemma 2.8 of [2] and Proposition 2.4 of [4] and Lemma 2.6 of [5]) Each even wheel is Z_3 -connected and each odd wheel is not;

(6) (Proposition 3.2 of [8]) Let $H \subseteq G$ and H be A-connected. G is A-connected if and only if G/H is A-connected;

(7) (Lemma 2.3 of [6]) Let v be not a vertex of G. If G is A-connected and $e(v,G) \ge 2$, then $G \cup \{v\}$ is A-connected.

Let G be a graph and u, v, w be three vertices of G with $uv, uw \in E(G)$, and $d_G(u) \ge 4$. Let $G_{[uv,uw]}$ be the graph $G \cup \{vw\} - \{uv, uw\}$.

Lemma 2.2 (Theorem 3.1 of [2]) Let A be an abelian group with $|A| \ge 3$. If $G_{[uv,uw]}$ is A-connected, then so is G.

Let H_1 and H_2 be two disjoint graphs. The 2-sum of H_1 and H_2 , denoted by $H_1 \oplus H_2$, is the graph obtained from $H_1 \cup H_2$ by identifying exactly one edge. A graph G is triangularly connected if for any two distinct edges e, e', there is a sequence of distinct cycles of length at most 3, C_1, C_2, \ldots, C_m in G such that $e \in E(C_1), e' \in E(C_m)$ and $|E(C_i) \cap E(C_{i+1})| = 1$ for $1 \le i \le m - 1$.

Lemma 2.3 (Fan et al.[5]) Let G be a triangularly connected graph. Then G is A-connected for all abelian group A with $|A| \ge 3$ if and only if $G \ne H_1 \oplus H_2 \oplus \ldots \oplus H_k$, where H_i is an odd wheel (including a triangle) for $1 \le i \le k$.

Fig. 3: 12 specified graphs

There are lots of results about Degree condition and Z_3 -connectivity. We say G satisfies Orecondition, if for each $uv \notin E(G)$, $d(u) + d(v) \ge |V(G)|$. We will discuss our result via the following Theorem.

Theorem 2.4 (Luo et al. [9]) A simple graph G satisfying the Ore-condition with at least 3 vertices is not Z_3 -connected if and only if G is one of the 12 graphs in Fig. 3.

Lemma 2.5 Let G be a graph. If for some mapping $b: V(G) \to Z_3$ with $\sum_{v \in V(G)} b(v) = 0$, there exists no orientation such that $|E^+(v)| - |E^-(v)| = b(v) \pmod{3}$ for each $v \in V(G)$, then G is not Z_3 -connected.

Proof. By the definition of Z_3 -connectivity, we know that G is Z_3 -connected if and only if for any $b: V(G) \to Z_3$ with $\sum_{v \in V(G)} b(v) = 0$, there exists an orientation and function $f: E(G) \to Z_3^*$

such that $\partial f(v) = b(v) \pmod{3}$ for each $v \in V(G)$. We know that Z_3 -connectivity is independent on the orientation of graph. For above b and f, We only need to focus on edges of f(e) = 2. If f(e) = 2, then we can invert the orientation of e and let f(e) = 1, the others maintain. In this way we can get a new orientation of G and a new function f' on E(G), such that $\partial f'(v) = b(v)$ for each $v \in V(G)$. Follow this way, finally we can get a new orientation and a new function $f'': E(G) \to Z_3$ such that f''(e) = 1 and $\partial f''(v) = b(v)$ for each $e \in E(G)$ and each $v \in V(G)$. Thus we can deduce that G is Z_3 -connected if and only if for any $b: V(G) \to Z_3$ with $\sum_{v \in V(G)} b(v) = 0$, there exists an orientation and function $f: E(G) \to Z_3^*$ such that f(e) = 1 and $\partial f(v) = b(v)$ for each $e \in E(G)$ and each $v \in V(G)$. In this case, $\partial f(v) = |E^+(v)| - |E^-(v)|$ since f(e) = 1. That is, G is Z_3 -connected if and only if for any $b: V(G) \to Z_3$ with $\sum_{v \in V(G)} b(v) = 0$, there exists an orientation such that $|E^+(v)| - |E^-(v)| = b(v)$ for each $v \in V(G)$. We are done.

Lemma 2.6 If G is one of graphs in Fig. 1, then G is not Z_3 -connected.

Proof. By Theorem 2.4, each graph in $\{G^1, G^2, G^3, G^4, G^5\}$ is not Z_3 -connected.

If $G \cong G^9$, then let b(v) = 0 for each 3-vertex and 5-vertex in G and b(v) = 1 for each 4-vertex in G. By Lemma 2.5, we only need to proof that there exists no orientation such that $|E^+(v)| - |E^-(v)| = b(v) \pmod{3}$ for each $v \in V(G)$. Since $b(v_5) = b(v_6) = 0$, we can orient edges such that $E^+(v_5) = 0$ and $E^+(v_6) = 3$ or $E^+(v_5) = 3$ and $E^+(v_6) = 0$. In the former case, we can orient edges v_3v_1, v_3v_2, v_3v_4 all with v_3 as a tail (or all with v_3 as a head) by $b(v_3) = 0$. WLOG, we assume edges v_3v_1, v_3v_2, v_3v_4 all with v_3 as a tail. Then $E^+(v_1) = 0$ by $b(v_1) = 0$. In this case, we must orient edges v_2v_4, v_4v_7 both with v_4 as a head. But we cannot orient v_2v_7 , such that $|E^+(v_7)| - |E^-(v_7)| = 1 \pmod{3}$. The proof of the latter case is similar as above. Thus G^9 is not Z_3 -connected by Lemma 2.5. Since G^8 is a spanning subgraph of G^9 , G^8 is not Z_3 -connected by Lemma 2.1 (1) (6).

By Lemma 2.3, each graph of $\{G^{10}, G^{16}, G^{18}\}$ is not Z_3 -connected.

Since $G \in \{G^7, G^{11}, G^{12}\}$ is a spanning subgraph of G^{10} , each graph of $\{G^7, G^{11}, G^{12}\}$ is not Z_3 -connected by Lemma 2.1 (1) (6).

If $G \cong G^{13}$, then let b(v) = 0 for each 3-vertex in G and b(v) = 1 for each 4-vertex in G. That is $b(v_1) = b(v_3) = b(v_5) = b(v_6) = 0$, $b(v_2) = b(v_4) = b(v_7) = 1$. We first orient edges adjacent to vertices with b(v) = 0. Then in either case, we can orient edges $\{v_4v_2, v_4v_7\}$ both with v_4 as a head by $b(v_4) = 1$ and orient edges $\{v_4v_7, v_2v_7\}$ both with v_7 as a head by $b(v_7) = 1$. That is edge v_4v_7 has two orientations, a contradiction. By Lemma 2.5, G^{13} is not Z_3 -connected.

If $G \cong G^{14}$, then let b(v) = 0 for each 3-vertex in G and b(v) = 1 for each 4-vertex in G. We first orient edges adjacent to vertices with b(v) = 0. WLOG, we assume $E^+(v_7) = 3$ and $E^+(v_8) = 0$. Then we can orient edges $\{v_1v_5, v_3v_5\}$ both with v_5 as a head by $b(v_5) = 1$ and orient edges $\{v_2v_6, v_4v_6\}$ both with v_6 as a head by $b(v_6) = 1$. Then we can orient edges $\{v_1v_3, v_2v_3, v_4v_3\}$ all with v_3 as a head (a tail) by $b(v_3) = 1$ and orient edges $\{v_1v_4, v_2v_4, v_4v_3\}$ all with v_4 as a tail (a head) by $b(v_4) = 1$. In either case, we cannot orient edge v_1v_2 , such that $|E^+(v_1)| - |E^-(v_1)| = 0$ (mod 3). By Lemma 2.5, G^{14} is not Z_3 -connected. If $G \cong G^{15}$, then let $b(v_1) = b(v_2) = b(v_3) = b(v_7) = 0$ and $b(v_5) = b(v_6) = 1$, $b(v_4) = b(v_8) = 2$. We first orient edges adjacent to vertices v_1 and v_2 . Then in either case, we can orient edges $\{v_4v_3, v_4v_8\}$ both with v_4 as a tail by $b(v_4) = 2$. Then we orient edges v_3v_6, v_3v_5 both as v_3 as a head by $b(v_3) = 0$. Since $b(v_5) = b(v_6) = 1$, edges $\{v_5v_6, v_5v_8, v_5v_7\}$ with v_5 as a head (or a tail) and $\{v_5v_6, v_7v_6, v_8v_6\}$ all with v_6 as a tail (or a head). In either case, we cannot orient edges v_7v_8 , such that $|E^+(v_7)| - |E^-(v_7)| = 0 \pmod{3}$. By Lemma 2.5, G^{15} is not Z_3 -connected.

If $G \cong G^{17}$, then let b(v) = 0 for each 3-vertex in G and b(v) = 1 for each 4-vertex in G. By the similar discussion, we can not find an orientation such that $|E^+(v)| - |E^-(v)| = 0 \pmod{3}$ for each $v \in V(G)$. Thus G^{17} is not Z_3 -connected by Lmmma 2.5 . G^6 is a subgraph of G^{17} . If G^6 is Z_3 -connected, then G^{17} is Z_3 -connected by Lemma 2.1 (6) (7), a contradiction. Thus G^6 is not Z_3 -connected.

3 The case when $\delta(G) \ge 4$

Lemma 3.1 Suppose G is a 3-edge-connected graph with $\delta(G) \ge 4$. If $\alpha(G) \le 2$, then G is Z_3 -connected.

Proof. Clearly, we can assume G is simple; otherwise, we can contracted G into G' by contracting 2-cycles. By Lemma 2.1 (3) (6), G' is Z_3 -connected if and only if G is Z_3 -connected. Since $\delta(G) \ge 4$, $n \ge 5$. When n = 5, $G \cong K_5$, by Lemma 2.1 (2), G is Z_3 -connected. Then we assume $n \ge 6$. By Lemma 2.1 (2), We only need to discuss the case $\alpha(G) = 2$.

If $d(u) + d(v) \ge n$ for each $uv \notin E(G)$, then G satisfies the Ore-condition. By Theorem 2.4 and since $\delta(G) \ge 4$, G is Z₃-connected.

Thus there exists two non-adjacent vertices u, v such that $d(u) + d(v) \le n - 1$.

Set x, y be such vertices of G, that is $d(x) + d(y) \le n - 1$ and $xy \notin E(G)$. Since $\alpha(G) = 2$, $e(v, \{x, y\}) \ge 1$ for each $v \in V(G) - \{x, y\}$. Then $|N(x) \cap N(y)| \le 1$ by $d(x) + d(y) \le n - 1$.

Case 1. $|N(x) \cap N(y)| = 0.$

In this case, G[N[x]] and G[N[y]] is a complete graph K_{m_1} , K_{m_2} $(m_1, m_2 \ge 5)$ since $\alpha(G) = 2$ and $\delta(G) \ge 4$. By Lemma 2.1 (2), G[N[x]] and G[N[y]] is Z₃-connected. Since G is 3-edge connected, G is Z₃-connected by Lemma 2.1 (2) (3) (6).

Case 2. $|N(x) \cap N(y)| = 1$.

Suppose $u \in N(x) \cap N(y)$. Similarly, we know that $G[N[x] - \{u\}]$ and $G[N[y] - \{u\}]$ is a complete graph. Suppose $G[N[x] - \{u\}] \cong K_{m_1}$, $G[N[y] - \{u\}] \cong K_{m_2}$. Clearly, $m_i \ge 4$ for each $i \in \{1, 2\}$.

If $m_i = 4$ for each $i \in \{1, 2\}$, then $G[N[x] - \{u\}] \cong K_4$, $G[N[y] - \{u\}] \cong K_4$. Suppose $N(x) = \{x_1, x_2, x_3, u\}$ and $N(y) = \{y_1, y_2, y_3, u\}$. If $e(u, N[x]) \ge 3$, then N[x] contains a K_5^- as a subgraph, by Lemma 2.1 (2), G[N[x]] is Z_3 -connected. Since G is 3-edge-connected, $e(N[x], N[y] - \{u\}) \ge 3$, by Lemma 2.1 (2) (6), G is Z_3 -connected. WLOG, we assume $1 \le e(u, N[x]) \le 2$ and $1 \le e(u, N[y]) \le 2$. Then there are at least two vertices in $\{x_1, x_2, x_3\}$ which is not adjacent to u and at least two vertices in $\{y_1, y_2, y_3\}$ which is not adjacent to u. WLOG, we assume

 $x_1, x_2, y_1, y_2 \notin N(u)$. In this case, $x_i y_j \in E(G)$ for each $i, j \in \{1, 2\}$ since $\alpha(G) = 2$. Then we can get a trivial graph K_1 by contracting 2-cycles from $G_{[yy_1, yy_2]}$. By Lemma 2.1 (3) (6), $G_{[yy_1, yy_2]}$ is Z_3 -connected. By Lemma 2.2, G is Z_3 -connected.

If $m_1 = 4$ and $m_2 \ge 5$, then $G[N[x] - \{u\}] \cong K_4$ and $G[N[y] - \{u\}]$ is Z₃-connected by Lemma 2.1 (2). If $e(u, N[y] - \{u\}) \ge 2$, then G[N[y]] is Z₃-connected by Lemma 2.1 (7). Since G is 3-edge-connected, $e(N[x] - \{u\}, N[y]) \ge 3$, by Lemma 2.1 (2) (6), G is Z₃-connected. Suppose $e(u, N[y] - \{u\}) = 1$. If there exist $v \in N(x)$ such that $vu \notin E(G)$, then $e(v, N(y)) = m_2 - 1 \ge 4$. Thus $G[N[y] \cup \{v\} - \{u\}]$ is Z₃-connected by Lemma 2.1 (7). Since G is 3-edge connected, G is Z₃-connected by Lemma 2.1 (2) (6). Thus $e(u, N[x] - \{u\}) = 4$, this means G[N[x]] is K₅, by Lemma 2.1 (2), G[N[x]] is Z₃-connected. Since G is 3-edge connected, G is Z₃-connected by Lemma 2.1 (6) (7).

If $m_i \ge 5$ for each $i \in \{1, 2\}$, then $G[N[x] - \{u\}]$ and $G[N[y] - \{u\}]$ is Z₃-connected by Lemma 2.1 (2). Since G is 3-edge connected, G is Z₃-connected by Lemma 2.1 (6) (7).

4 Proof of Theorem 1.3

In this section, we define \mathcal{F} be a family of 3-edge connected simple graphs G which satisfies $\alpha(G) = 2$ and $\delta(G) = 3$.

Lemma 4.1 Suppose $G \in \mathcal{F}$. If there exists two non-adjacent vertices u, v such that d(u) + d(v) = n - 2, then either G is one of the graphs $\{G^{15}, G^{16}, G^{17}, G^{18}\}$ shown in Fig. 1 or G can be Z₃-contracted in to $\{K_1, K_4\}$.

Proof. Set x, y be such vertices of G, that is d(x) + d(y) = n - 2 and $xy \notin E(G)$. Since $\alpha(G) = 2$, $e(v, \{x, y\}) \ge 1$ for each $v \in V(G) - \{x, y\}$. Since d(x) + d(y) = n - 2, $|N(x) \cap N(y)| = 0$.

In this case, G[N[x]] and G[N[y]] is a complete graph K_{m_1} , K_{m_2} $(m_1, m_2 \ge 4)$ by $\alpha(G) = 2$ and $\delta(G) = 3$. If $m_i \ge 5$ for each $i \in \{1, 2\}$, then $\delta(G) \ge 4$, contrary to $\delta(G) = 3$. Thus we need to discuss cases of $m_i = 4$ for some $i \in \{1, 2\}$. Assume $m_1 = 4$. Let $N(x) = \{x_1, x_2, x_3\}$.

Case 1. $m_2 = 4$.

Let $N(y) = \{y_1, y_2, y_3\}$. Since G is 3-edge connected, $e(N(x), N(y)) \ge 3$. If there exists one vertex, say x_1 , such that $e(x_1, N(y)) \ge 3$, then $G[N[y] \cup x_1]$ is Z₃-connected by Lemma 2.1 (2). In this case, if $e(v, N[y] \cup \{x_1\}) = 1$ for each $v \in N[x] - \{x_1\}$, then G can be contracted into K_4 ; otherwise, G is Z₃-connected. Thus we assume $e(u, N[y]) \le 2$ and $e(v, N[x]) \le 2$ for each $u \in N(x)$ and $v \in N(y)$.

When e(N(x), N(y)) = 3. Then G is one of graphs $\{G^{15}, G^{16}, G^{17}\}$ in Fig. 1.

When e(N(x), N(y)) = 4. Then either $G \cong G^{18}$ in Fig. 1 or G contains a 4-vertex. In the latter case, we assume $d(x_1) = 4$ and $N(x_1) = \{x, x_2, x_3, y_1\}$. Then $e(\{x, x_2, x_3\}, N(y)) = 3$. Considering graph $G_{[x_1x, x_1x_2]}$. Clearly, $\{x, x_2, x_3\}$ can be contracted into one vertex v^* by contracting two 2-cycles and we called this new graph G^* . Since $e(\{x, x_2, x_3\}, N(y)) = 3$, $d_{G^*}(v^*) = 3 + 1 = 4$. That is G^* contains a K_5^- or C_2 as a subgraph. In either case, by Lemma 2.1 (2) (3) (6) (7), G^* is Z_3 -connected. By Lemma 2.1 (3) (6), $G_{[x_1x,x_1x_2]}$ is Z_3 -connected. Thus G is Z_3 -connected by Lemma 2.2.

When $e(N(x), N(y)) \ge 5$. We only need to prove the case e(N(x), N(y)) = 5. In this case, we may assume $e(x_i, N(y)) = 2$ for each i = 1, 2 and $e(x_3, N(y)) = 1$. WLOG, we assume $x_1y_1, x_1y_2 \in E(G)$. We can get a trivial graph K_1 by contracting 2-cycles from graph $G_{[x_1y_1, x_1y_2]}$. By Lemma 2.1 (1) (3) (6), $G_{[x_1y_1, x_1y_2]}$ is Z₃-connected. Thus G is Z₃-connected by Lemma 2.2.

Case 2. $m_2 \geq 5$.

By Lemma 2.1 (2), G[N[y]] is Z₃-connected. Since G is 3-edge connected, $e(N(x), N(y)) \ge 3$. We can deduce that G can be contracted to K_4 or G is Z₃-connected by Lemma 2.1 (2) (6).

Lemma 4.2 Suppose $G \in \mathcal{F}$ and $d(u) + d(v) \ge n - 1$ for each $uv \notin E(G)$. If there exists two non-adjacent vertices u, v such that d(u) + d(v) = n - 1, then either G is one of the graphs $\{G^6, G^7, \ldots, G^{14}\}$ shown in Fig. 1 or G can be Z₃-contracted in to $\{K_1, K_4\}$.

Proof. Set x, y be such vertices of G, that is d(x) + d(y) = n - 1 and $xy \notin E(G)$. Since $\alpha(G) = 2$, $e(v, \{x, y\}) \ge 1$ for each $v \in V(G) - \{x, y\}$. Since d(x) + d(y) = n - 1, $|N(x) \cap N(y)| = 1$.

Suppose $u \in N(x) \cap N(y)$. Similarly, we know that $G[N[x] - \{u\}]$ and $G[N[y] - \{u\}]$ is a complete graph. Suppose $G[N[x] - \{u\}] \cong K_{m_1}$, $G[N[y] - \{u\}] \cong K_{m_2}$. Clearly, $m_i \ge 3$ for each $i \in \{1, 2\}$.

Case 1. Suppose $m_i = 3$ for each i = 1, 2.

Let $N(x) = \{x_1, x_2, u\}, N(y) = \{y_1, y_2, u\}$. Since $\delta(G) = 3, d(u) \ge 3$.

If d(u) = 3, then WLOG, we assume $N(u) = \{x, x_1, y\}$. Since $\alpha(G) = 2, x_2y_i \in E(G)$ for each $i \in \{1, 2\}$. Then either G is one of graphs $\{G^{12}, G^{13}\}$ in Fig. 1 or $x_1y_i \in E(G)$ for each $i \in \{1, 2\}$. In the latter case, we can get a trivial graph K_1 by contracting 2-cycles till no 2-cycles exist from graph $G_{[x_2y_1, x_2y_2]}$. By Lemma 2.1 (1) (3) (6), $G_{[x_2y_1, x_2y_2]}$ is Z₃-connected. By Lemma 2.2, G is Z₃-connected.

If d(u) = 4, then e(u, N[x]) = 2 or e(u, N[x]) = 3 by symmetry. Suppose e(u, N[x]) = 2. WLOG, we assume $N(u) = \{x, x_1, y, y_1\}$. Since $\alpha(G) = 2, x_2y_2 \in E(G)$. If $e(\{x_1, x_2\}, \{y_1, y_2\}) = 1$, then $G \cong G^{12}$. If $e(\{x_1, x_2\}, \{y_1, y_2\}) = 2$, then $G \in \{G^8, G^{13}\}$. If $e(\{x_1, x_2\}, \{y_1, y_2\}) \ge 3$, then we can get a trivial graph K_1 by contracting 2-cycles till no such subgraph exists from $G_{[ux, ux_1]}$. By Lemma 2.1 (1) (3) (6), $G_{[ux, ux_1]}$ is Z₃-connected. By Lemma 2.2, G is Z₃-connected. Suppose e(u, N[x]) = 3. Then $N(u) = \{x, x_1, x_2, y\}$. Since G is 3-edge connected, $e(\{x_1, x_2\}, \{y_1, y_2\}) \ge 2$. If $e(\{x_1, x_2\}, \{y_1, y_2\}) = 2$, then G is one of graphs $\{G^6, G^7\}$. If $e(\{x_1, x_2\}, \{y_1, y_2\}) \ge 3$, then we can get a trivial graph K_1 by contracting 2-cycles till no such subgraph exists from $G_{[ux, ux_1]}$. By Lemma 2.1 (1) (3) (6), $G_{[ux, ux_1]}$ is Z₃-connected. By Lemma 2.2, G is Z₃-connected.

If d(u) = 5, then WLOG, we assume $N(u) = \{x, x_1, x_2, y, y_1\}$. If $e(x_i, \{y_1, y_2\}) = 2$, then G contains a 4-wheel with y_1 as a hub. Then we can deduce that G is Z₃-connected by Lemma 2.1 (5) (6) (7). Thus we assume $e(x_i, \{y_1, y_2\}) \leq 1$ for each $i \in \{1, 2\}$. If $e(\{x_1, x_2\}, \{y_1, y_2\}) = 1$, then $G \cong G^7$. If $e(\{x_1, x_2\}, \{y_1, y_2\}) = 2$, then either $G \cong G^9$ or we can get a trivial graph K_1 by

contracting 2-cycles till no such subgraph exists from $G_{[x_ix,x_ix_j]}$, where $x_iy_1 \notin E(G)$ and $i \neq j$. By Lemma 2.1 (1) (3) (6), $G_{[x_ix,x_ix_j]}$ is Z₃-connected. By Lemma 2.2, G is Z₃-connected..

If d(u) = 6, then $N(u) = \{x, x_1, x_2, y, y_1, y_2\}$. If $e(\{x_1, x_2\}, \{y_1, y_2\}) = 0$, then $G \cong G^{11}$. If $e(\{x_1, x_2\}, \{y_1, y_2\}) = 1$, then $G \cong G^{10}$. Thus we assume $e(\{x_1, x_2\}, \{y_1, y_2\}) \ge 2$. If there exists i, say x_1 , such that $e(\{x_1\}, \{y_1, y_2\}) = 2$, then $G[N[y] \cup x_1]$ is a K_5^- . By Lemma 2.1 (2) (6), we can deduce that G is Z_3 -connected. Thus WLOG, we assume $x_1y_1, x_2y_2 \in E(G)$. Considering graph $G_{[x_1y_1, x_1x_2]}$. $G_{[x_1y_1, x_1x_2]}$ contains a 4-wheel with y_1 as a hub. We can get a new graph with 3 vertices and 4 edges by contracting this 4-wheel from $G_{[x_1y_1, x_1x_2]}$, which is Z_3 -connected by Lemma 2.1 (5) (6). By Lemma 2.2, G is Z_3 -connected.

Case 2. Suppose $m_i = 4$ for each i = 1, 2.

Suppose $N(x) = \{x_1, x_2, x_3, u\}, N(y) = \{y_1, y_2, y_3, u\}$. If $e(u, N[x]) \ge 3$, then G[N[x]] contains a K_5^- as a subgraph. By Lemma 2.1 (2), G[N[x]] is Z_3 -connected. Since G is 3-edge connected, $e(N[x], N[y] - \{u\}) \ge 3$. Then G/G[N[x]] contains a K_5^- as a subgraph. By Lemma 2.1 (2), G/G[N[x]] is Z_3 -connected. By Lemma 2.1 (6), G is Z_3 -connected. Thus we may assume $1 \le e(u, N[x]) \le 2$ and $1 \le e(u, N[y]) \le 2$. Since G is 3-edge connected, $d(u) \ge 3$.

If e(u, N[x]) = 2 and e(u, N[y]) = 2, then we assume, WLOG, we assume $N(u) = \{x, x_1, y, y_1\}$. Since $\alpha(G) = 2$, $x_2y_i, x_3y_i \in E(G)$ for each i = 2, 3. In this case, $\delta(G) \ge 4$, contrary to $\delta(G) = 3$.

If e(u, N[x]) = 2 and e(u, N[y]) = 1, then we assume, WLOG, we assume $N(u) = \{x, x_1, y\}$. Since $\alpha(G) = 2, x_2y_i, x_3y_i \in E(G)$ for each i = 1, 2, 3. In this case, $G[N[y] \cup \{x_2, x_3\} - \{u\}]$ is Z_3 -connected by Lemma 2.1 (2) (7). By Lemma 2.1 (7), G is Z_3 -connected.

Case 3. Suppose $m_i \ge 5$ for each i = 1, 2. Clearly, $G[N[x] - \{u\}]$ and $G[N[y] - \{u\}]$ is Z_3 connected by Lemma 2.1 (2). Since $\delta(G) = 3$, WLOG, we assume $e(u, N[x] - \{u\}) = 2$. Thus G[N[x]] is Z_3 -connected by Lemma 2.1 (7). Since G is 3-edge connected, $e(N[x], N[y] - \{u\}) \ge 3$,
G is Z_3 -connected by Lemma 2.1 (2) (6).

Case 4. Suppose $m_1 = 3$ and $m_2 = 4$.

Suppose $N(x) = \{x_1, x_2, u\}$, $N(y) = \{y_1, y_2, y_3, u\}$. If $e(u, N[y] - \{u\}) \ge 3$, then G[N[y]] contains a K_5^- as a subgraph. By Lemma 2.1 (2), G[N[y]] is Z₃-connected. Since G is 3-edge connected, $e(N[x] - \{u\}, N[y]) \ge 3$. Then either G can be contracted to K_4 or G is Z₃-connected. Thus we assume $1 \le e(u, N[y] - \{u\}) \le 2$ and $d(u) \ge 3$.

If d(u) = 3, then $e(u, N[x] - \{u\}) = 1$ and $e(u, N[y] - \{u\}) = 2$ or $e(u, N[x] - \{u\}) = 2$ and $e(u, N[y] - \{u\}) = 1$. In the former case, we assume, WLOG, $N(u) = \{x, y, y_1\}$. Since $\alpha(G) = 2$, $x_1y_i, x_2y_i \in E(G)$ for each i = 2, 3. In this case, we can get a trivial graph K_1 by contracting 2-cycles from $G_{[x_1y_2,x_1y_3]}$. By Lemma 2.1 (1) (3) (6), $G_{[x_1y_2,x_1y_3]}$ is Z₃-connected. By Lemma 2.2, G is Z₃-connected. In the latter case, we assume, WLOG, $N(u) = \{x_1, x, y\}$. Since $\alpha(G) = 2$, $x_2y_i \in E(G)$ for each i = 1, 2, 3. In this case, $G[N[y] \cup \{x_2\} - \{u\}]$ is Z₃-connected by Lemma 2.1 (2). Then either G is Z₃-connected or G can contracted into K_4 .

If d(u) = 4, then $e(u, N[x] - \{u\}) = 2$ and $e(u, N[y] - \{u\}) = 2$ or $e(u, N[x] - \{u\}) = 3$ and $e(u, N[y] - \{u\}) = 1$. Suppose $e(u, N[x] - \{u\}) = 2$ and $e(u, N[y] - \{u\}) = 2$. We assume, WLOG, $N(u) = \{x, x_1, y, y_1\}$. Since $\alpha(G) = 2$, $x_2y_i \in E(G)$ for each i = 2, 3. If no other edge, then $G \cong G^{14}$; otherwise, either we can get a trivial graph K_1 by contracting 2-cycles from $G_{[uy,uy_1]}$ or $G[N[y]] \cup \{x_2\} - \{u\}$ contains a K_5^- as a subgraph. In the former case, by Lemma 2.1 (1) (3) (6), $G_{[uy,uy_1]}$ is Z_3 -connected. By Lemma 2.2, G is Z_3 -connected; in the latter case, $G[N[y]] \cup \{x_2\} - \{u\}$ is Z_3 -connected by Lemma 2.1 (2). By Lemma 2.1 (7), G is also Z_3 -connected. Then suppose $e(u, N[x] - \{u\}) = 3$ and $e(u, N[y] - \{u\}) = 1$. Then $N(u) = \{x_1, x_2, x, y\}$. Since G is 3-edge connected, $e(\{x_1, x_2\}, \{y_1, y_2, y_3\}) \ge 2$. Since $d(u) + d(v) \ge n - 1 = 7$ for each $uv \notin E(G), d(y_i) \ge 4$ for each i = 1, 2, 3. In this case, $e(\{x_1, x_2\}, \{y_1, y_2, y_3\}) \ge 3$. Then either we can get a trivial graph K_1 by contracting 2-cycles from $G_{[yy_1,yy_2]}$ or $G[N[y] \cup \{x_i\} - \{u\}]$ contains K_5^- as spanning subgraph for some $i \in \{1, 2\}$. In the former case, $G_{[yy_1,yy_2]}$ is Z_3 -connected by Lemma 2.1 (1) (3) (6). By Lemma 2.2, G is Z_3 -connected; in the latter case, we can deduce G is Z_3 -connected by Lemma 2.1 (2) (7).

If d(u) = 5, then $e(u, N[x] - \{u\}) = 3$ and $e(u, N[y] - \{u\}) = 2$. WLOG, we assume $N(u) = \{x_1, x_2, x, y, y_1\}$. Since $d(u) + d(v) \ge n - 1 = 7$ for each $uv \notin E(G)$, $d(y_i) \ge 4$ for each i = 1, 2, 3. Then $e(\{x_1, x_2\}, \{y_1, y_2, y_3\}) \ge 2$. In this case, we can get a trivial graph K_1 by contracting 2-cycles and K_5^- from graph $G_{[yy_1, yy_2]}$. By Lemma 2.1 (1) (6), $G_{[yy_1, yy_2]}$ is Z₃-connected. By Lemma 2.2, G is Z₃-connected.

Case 5. Suppose $m_1 = 3$ and $m_2 \ge 5$.

Clearly, $G[N[y] - \{u\}]$ is Z_3 -connected by Lemma 2.1 (2). Since $\delta(G) \geq 3$, $e(u, N[x] - \{u\}) \geq 2$ or $e(u, N[y] - \{u\}) \geq 2$. If $e(u, N[y] - \{u\}) \geq 2$, then G[N[y]] is Z_3 -connected by Lemma 2.1 (7). Since G is 3-edge connected, $e(N[x] - \{u\}, N[y]) \geq 3$. Thus either G is Z_3 -connected or G can be contracted into K_4 . Thus we assume $e(u, N[y] - \{u\}) = 1$ and $e(u, N[x] - \{u\}) \geq 2$. Set $N(x) = \{x_1, x_2, u\}$. WLOG, we assume $x_1u \in E(G)$. If $x_2u \in E(G)$, then G[N[x]] is K_4 . Since G is 3-edge connected, $e(N[x], N[y] - \{u\}) \geq 3$. Thus $G/G[N[y] - \{u\}]$ contains K_5^- or C_2 . In either case, G is Z_3 -connected by Lemma 2.1 (2) (3) (6). If $x_2u \notin E(G)$, then $x_2v \in E(G)$ for each $v \in N(y) - \{u\}$ by $\alpha(G) = 2$. Thus $G[N[y] \cup \{x_2\} - \{u\}]$ is Z_3 -connected by Lemma 2.1 (7). Thus either G is Z_3 -connected or G can be contracted into K_4 .

Case 6. Suppose $m_1 = 4$ and $m_2 \ge 5$.

Clearly, $G[N[y] - \{u\}]$ is Z_3 -connected by Lemma 2.1 (2). Since $\delta(G) \geq 3$, $e(u, N[x] - \{u\}) \geq 2$ or $e(u, N[y] - \{u\}) \geq 2$. If $e(u, N[y] - \{u\}) \geq 2$, then G[N[y]] is Z_3 -connected by Lemma 2.1 (7). Since G is 3-edge connected, $e(N[x] - \{u\}, N[y]) \geq 3$. Thus G/G[N[y]] contains K_5^- or C_2 . In either case, G is Z_3 -connected by Lemma 2.1 (1) (2) (3) (6). Thus $e(u, N[y] - \{u\}) = 1$ and $e(u, N[x] - \{u\}) \geq 2$. Set $N(x) = \{x_1, x_2, x_3, u\}$. WLOG, we assume $x_1u \in E(G)$. If $x_iu \in E(G)$ for some $i \in \{2, 3\}$, then G[N[x]] contains K_5^- as a subgraph, is Z_3 -connected. Since G is 3-edge connected, $e(N[x], N[y] - \{u\}) \geq 3$. Thus G/G[N[x]] contains K_5^- or C_2 . By Lemma 2.1 (2) (3) (6), G is Z_3 -connected. If $x_iu \notin E(G)$ for each $i \in \{2, 3\}$, then $x_iv \in E(G)$ for each $v \in N(y) - \{u\}$ and $i \in \{2, 3\}$ by $\alpha(G) = 2$. Thus $G[N[y] \cup \{x_2, x_3\} - \{u\}]$ is Z_3 -connected by Lemma 2.1 (7). By Lemma 2.1 (7), G is Z_3 -connected. **Proof of Theorem 1.3** Since G a is 3-edge connected simple graph, $n \ge 4$. When n = 4, $G \cong K_4$, that is G^1 . When n = 5, G contains W_4 as a subgraph, by Lemma 2.1 (1) (5) (6), G is Z_3-connected.

By Lemma 4.1 and 4.2, we only need prove the case of G which satisfies the Ore-condition. By Theorem 2.4 and since G is 3-edge-connected, either G is Z_3 -connected or G is one of graphs $\{G^2, G^3, G^4, G^5\}$ shown in Fig. 1. Thus we prove that G is not one of the 18 special graphs shown in Fig. 1 if and only if G can be Z_3 -contracted to one of the graphs $\{K_1, K_4\}$.

References

- [1] J. A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
- [2] J. J. Chen. E. Eschen, H.J. Lai, Group connectivity of certain graphs, Ars Combin., 89 (2008) 141–158.
- [3] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111-113.
- [4] M.DeVos, R.Xu, G.Yu, Nowhere-zero Z₃-flows through Z₃-connectivity, Discrete Math., 306 (2006) 26–30.
- [5] G. Fan, H.J. Lai, R. Xu, C.Q. Zhang, C. Zhou, Nowhere-zero 3-flows in triangularly connected graphs, J. of Combin. Theory, Ser. B 98 (2008) 1325–1336.
- [6] X. Hou, H. J. Lai, P. Li, and C-Q Zhang, Group Connectiving of Complementary Graphs, J. Graph Theory, 69 (4) (2012) 464-470.
- [7] F. Jaeger, N. Linial, C. Payan, N. Tarsi, Group connectivity of graphs-a nonhomogeneous analogue of nowhere zero flow properties, *J.Combin. Theory*, Ser. B 56 (1992) 165–182.
- [8] H. J. Lai, Group connectivity of 3-edge-connected chordal graphs, Graphs Combin., 16 (2000) 165-176.
- [9] R. Luo, Rui Xu, J. Yin, G. Yu, Ore-condition and Z₃-connectivity, European J. of Combin., 29 (2008) 1587–1595.
- [10] Rong Luo, Zhengke Miao, Rui Xu, Nowhere-zero 3-flows of graphs with independence number two, Graphs and Combin., 29 (2010) 1899-1907.
- [11] R. Steinberg and D. H. Younger, Grötzch's theorem for the projectice plane, Ars Combin. 15–31.