It is the cache of ${baseHref}. It is a snapshot of the page. The current page could have changed in the meantime.
Tip: To quickly find your search term on this page, press Ctrl+F or ⌘-F (Mac) and use the find bar.

Extraction of Unique Independent Components for Nonlinear Mixture of Sources | Gao | Journal of Computers
Journal of Computers, Vol 2, No 6 (2007), 9-16, Aug 2007
doi:10.4304/jcp.2.6.9-16

Extraction of Unique Independent Components for Nonlinear Mixture of Sources

Pei Gao, Li Chin Khor, Wai Lok Woo, Satnam Singh Dlay

Abstract


In this paper, a neural network solution to extract independent components from nonlinearly mixed signals is proposed. Firstly, a structurally constrained mixing model is introduced to extend the recently proposed mono-nonlinearity mixing model, allowing that different nonlinear distortion are applied to each source signal. Based on this nonlinear mixing model, a novel demixing system characterized by polynomial neural network is then proposed for recovering the original sources. The parameter learning algorithm is derived mathematically based on the minimum mutual information principle. It is shown that unique extraction of independent components can be achieved by optimizing the mutual information cost function under both model structure and signal constraints. In this framework, the theory of series reversion is developed with the aim to perform dual optimization on the polynomials of the proposed demixing system. Finally, simulation results are presented to verify the efficacy of the proposed approach.



Keywords


Nonlinear independent component analysis; Nonlinear blind source separation; polynomial neural network; unsupervised learning

References



Full Text: PDF


Journal of Computers (JCP, ISSN 1796-203X)

Copyright @ 2006-2014 by ACADEMY PUBLISHER – All rights reserved.