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Properly discontinuous actions on bounded domains

Bo-Yong Chen∗

February 14, 2008

Abstract

We give sufficient conditions for the quotient of a free, properly discontinuous

action on a bounded domain of holomorphy to be a Stein manifold in terms of

Poincaré series or limit sets for orbits. An immediate consequence is that the

quotient of any cyclic, free, properly discontinuous action on the unit ball or the

bidisc is Stein.
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1 Introduction

The uniformization theorem tells us that one can study algebraic properties of
compact Riemann surfaces with genus greater than one through the function theory
of the unit disc (e.g., the Poincaré series). Such an idea may be extended without any
difficulty to high dimensional compact complex manifolds covered by bounded domains
in Cn (cf. [13]). However, those non-compact complex manifolds uniformized by
bounded domains, which are much more than compact ones, are largely ignored, expect
the special case when they can be compactified. Function theory of such manifolds
should be of great interests. In this paper, we shall first prove some results along this
line.

Theorem 1. Let Γ be a free, properly discontinuous group of automorphisms of
the unit ball B ⊂ Cn. Suppose there exists a point a ∈ B such that

∑

γ∈Γ

(1 − |γ(a)|) <∞. (1)

Then B/Γ is a Stein manifold which possesses a negative and C∞ strictly plurisubhar-
monic function.

∗Address: Department of Mathematics, Tongji University, Shanghai 200092, P. R. China. E-mail:

boychen@mail.tongji.edu.cn
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A standard application of the L2−estimate for the ∂̄−operator on complete Kähler
manifolds (cf. [1], [3]) yields

Corollary 1. The Bergman metric exists on B/Γ.

Remark. One might expect that condition (1) is not necessary for the existence of
the Bergman metric on B/Γ. However, Mumford [9] has constructed a two-dimensional
compact ball quotient without non-zero holomorphic (2, 0)−forms.

In the classification of open Riemann surfaces, one calls an open Riemann surface
hyperbolic if the Green function exists. We have the following new characterization of
hyperbolic Riemann surfaces.

Corollary 2. An open Riemann surface is hyperbolic iff it carries a negative, C∞

strictly subharmonic function.

Proof. We only need to verify the ”only if” part. By the uniformization theorem
we can write a hyperbolic Riemann surface as ∆/Γ where Γ acts freely and properly
discontinuously on the unit disc ∆. According to a classical theorem of Myrberg (cf.
Theorem XI. 13. in [15]), Γ satisfies condition (1) and the assertion follows immediately
from Theorem 1.

In § 4 we will show that every cyclic, properly discontinuous action of the unit disc
∆ satisfies condition (1), while for the case of the unit ball B ⊂ Cn, n > 1 most cyclic,
properly discontinuous actions of B satisfies condition (1) except when generator is
certain parabolic elements.

The method for proving Theorem 1 also works for those bounded domains admitting
a negative Strictly plurisubharmonic exhaustion function whose modulus is asymptotic
to the boundary distance (e.g. strongly pseudoconvex domains), however it is not
sufficient for more general pseudoconvex domains (e.g., bounded symmetric domains).
Thus a variation of this approach is needed.

In order to present a general result, we need some preparation. Let M be a complex
manifold of dimension n. The pluricomplex Green function with pole w is defined by

gM(z, w) = sup{u(z)}

where the supremum is taken over all negative plurisubharmonic functions u on M
satisfying u(z) ≤ log |z − w| + O(1) in a suitable coordinate neighborhood around w.
If F : M → M ′ is a holomorphic map, then gM(z, w) ≥ gM ′(F (z), F (w)) and equality
holds when F is biholomorphic. We say that gM(·, w) exists if

|gM(z, w) − log |z − w|| = O(1)

holds in a coordinate neighborhood of w and −gM(z, w) is bounded outside this neigh-
borhood (i.e., gM(z, w) has no other pole than w). M is called pluricomplex hyperbolic
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if gM(·, w) exists for every w ∈ M . Typical examples involve bounded domains in Cn

and their biholomorphic images. It is also known that the Bergman metric exists on
pluricomplex hyperbolic Stein manifolds (cf. [2]).

Theorem 2. Let M be a pluricomplex hyperbolic Stein manifold. Suppose Γ is a
free, properly discontinuous group of automorphisms of M so that the inequality

∑

γ∈Γ,γ 6=I

gM(γ(z), z) > −∞ (2)

for all z ∈M . Then M/Γ is also a pluricomplex hyperbolic Stein manifold.

Theorem 3. The condition of Theorem 2 is satisfied in the following cases:
1) M : bounded convex domain in Cn, Γ : free, properly discontinuous group so that

the inequality
∑

γ∈Γ

δM(γ(a)) <∞

holds for some a ∈M . Here δM denotes the Euclidean boundary distance.
2) M : the Teichmüller space of Riemann surfaces with genus g and n−punctures,

Γ : free, properly discontinuous group so that the inequality

∑

γ∈Γ

e−2dT (γ(a),a) <∞

holds for some a ∈M . Here dT is the Teichmüller distance.

Next, we study how the limit set of a properly discontinuous action Γ on a bounded
domain Ω in Cn infects the geometry of Ω or Ω/Γ. A point w ∈ ∂Ω is called a limit
point of Γ if there exists a compact subset K, {zk} ⊂ Ω with zk → w and {γk} ⊂ Γ
such that γk(zk) ∈ K. Let LΓ be the set of all limit points of Γ. For a fundamental
domain D of Γ and a ∈ D, we define by Γa the orbit at a and call CΓa the set of cluster
points of Γa. It is obvious that ∪a∈DCΓa ⊂ LΓ. Let KΩ denote the Bergman kernel of
Ω. Define

ΛΩ = {w ∈ ∂Ω : lim supz→wKΩ(z) = ∞}
where ∂Ω is the boundary of Ω. We call Ω an L2

h−domain of holomorphy if there
are no domains Ω1,Ω2 in Cn with Ω2 ⊂ Ω ∩ Ω1, (Cn\Ω) ∩ Ω1 6= ∅ so that for any
L2−holomorphic function f in Ω there exists a holomorphic function F in Ω1 with F =
f in Ω2. Clearly, every L2

h−domain of holomorphy must be a domain of holomorphy.
It is also known that Ω is an L2

h−domain of holomorphy if and only if ΛΩ = ∂Ω (cf.
[10]).

Theorem 4. LΓ ⊂ ΛΩ. In particular, if LΓ is dense in ∂Ω (in the Euclidean
topology), then Ω is an L2

h−domain of holomorphy.

Clearly, if Γ has a compact fundamental domain, then LΓ = ∂Ω. Thus we get a
generalization of a well-known theorem of Siegel on Steinness of a bounded domain
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when Ω has a compact quotient (cf. [13]). It is expected that LΓ lies dense in ∂Ω when
the fundamental domain is non-compact but the part intersecting ∂Ω is sufficiently
”small” (eg., finite sets).

The case when the limit set is relatively ”small” is of independent interest, we have
the following

Theorem 5. Let Ω be a bounded Stein domain in Cn and Γ a free, properly dis-
continuous action on Ω. Suppose there exists a negative continuous plurisubharmonic
function ψ on Ω so that ψ > −∞ on Ω and ψ(z) → −∞ as z → ∪a∈DCΓa where D is
a fundamental domain of Γ. Then Ω/Γ is a Stein manifold which carries a negative,
C∞ strictly plurisubharmonic function. In particular, the Bergman metric exists on
Ω/Γ.

Clearly, the condition of Theorem 5 is satisfied when ∪a∈DCΓa is complete pluripo-
lar, i.e., it is precisely the set for certain plurisubharmonic function in Cn taking value
−∞ (e.g., finite sets). Based on the following results, it seems to be true that free,
properly discontinuous and cyclic actions of any bounded Stein domain Ω would satisfy
this condition.

Theorem 6. For every infinite, cyclic, free and properly discontinuous action Γ of
B, the set ∪a∈DCΓa has at most two elements. In particular, the quotient is a Stein
manifold.

Theorem 7. Every infinite, cyclic, free and properly discontinuous action of the
bidisc ∆2 satisfies the condition of theorem 5. In particular, the quotient is a Stein
manifold.

Acknowledgement. After the manuscript was completed, the author became
aware of the existence of [6] where the Steinness of quotients of the unit ball for cyclic,
free and properly discontinuous actions is proved (actually they are even biholomorphic
to bounded Stein domains!). He thanks Professor Takeo Ohsawa for pointing out this
reference and valuable suggestions.

2 Preliminaries

Let M be a complex manifold and Aut(M) the group of automorphisms of M .
A subgroup Γ of Aut(M) is called properly discontinuous if for any compact subsets
K1, K2 of M there are only a finite number of elements γ ∈ Γ such that γ(K1)∩K2 6= ∅.
Two points z, z′ in M are called equivalent if z′ = γ(z) for some γ ∈ Γ. A set D ⊂ M
is called a fundamental domain of M if any two points of D are not equivalent and
any point z ∈M has its equivalent in D. In case when M is a bounded domain in Cn,
Γ is properly discontinuous iff there exists one point a ∈M such that equivalents of a
have no cluster points in M (cf. Chapter 13 in [13]).
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Proposition 1. Let Ω be a bounded domain in Cn and Γ a countable subgroup of
Aut(Ω). Let τ be a positive continuous function on Ω. Suppose that there exists a ∈ Ω
such that

∑

γ∈Γ

τ(γ(a)) <∞, (3)

then Γ acts properly discontinuously on Ω.

Proof. Suppose Γ is not properly discontinuous, then the orbit Γa would have at
least one cluster point b. By the continuity of τ there are infinite γ ∈ Γ so that

τ(γ(a)) ≥ 1

2
τ(b) > 0,

contradicts with (3).

For a bounded domain Ω and a properly discontinuous action Γ on Ω, I do not known
whether the limit set LΓ coincides with ∪a∈DCΓa (D : a fundamental domain), except
for the following special case. For a point p ∈ ∂Ω, if there is a function ψ, continuous
on the closure of Ω, plurisubharmonic in Ω, such that ψ(p) = 0 and ψ(z) < 0 for every
z ∈ Ω\{p}, then we call ψ a barrier at p. A domain Ω is called B-regular if there exists
a barrier at every boundary point.

Proposition 2. Let Ω be a bounded B-regular domain in Cn and Γ a properly
discontinuous action on Ω. Then CΓa = LΓ for all a ∈ D.

Proof. Clearly, CΓa ⊂ LΓ for every a ∈ D. On the other hand, for every p ∈ LΓ

there is a compact subset K of Ω, {γk} ⊂ Γ and Ω ∋ pk → p satisfying γk(pk) ∈ K.
Since Ω is bounded, {γ−1

k } is equicontinuous on every compact subset of Ω so that
it has at least one limit point, say β. After taking a subsequence, we may assume
β(γk(pk)) → p as k → ∞.

Let ψ be a barrier at p and put ϕ = ψ ◦β. Then ϕ is plurisubharmonic in Ω, ϕ ≤ 0
on Ω and

max
K

ϕ = 0.

By the maximum principle, ϕ = 0 on Ω, this means γ−1
k (a) → p for every a ∈ D so

that p ∈ CΓa.

Proposition 3. Let Ω be a bounded domain which has a barrier at some p ∈ ∂Ω.
Let q ∈ Ω and {γk} ⊂ Aut(Ω) satisfying γk(q) → p as k → ∞. Then γk(z) → p
uniformly on compact subsets of Ω.

Proof. The argument is quite similar as above. Let γ be any limit point of {γk}
in the topology of uniform convergence on compact subsets of Ω. Then γ(q) = p. Put
ϕ = ψ ◦ γ (ψ : the barrier at p). Similarly, we have ϕ = 0 on Ω, i.e., γ(z) = p for all
z ∈ Ω. This means that the point p is the only limit of {γk(z)} for every z.
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3 Proof of Theorem 1

3.1. Fix a ∈ B. Let P0 = 0 and

Pa(z) =
〈z, a〉
|a|2 a if a 6= 0, Qa = I − Pa

where 〈z, w〉 =
∑n

j=1 zjw̄j. Put sa = (1 − |a|2)1/2 and define

ϕa(z) =
a− Pa(z) − saQa(z)

1 − 〈z, a〉 .

We have the following well-known properties: ϕa(0) = a, ϕa(a) = 0 and the identity

1 − |ϕa(z)|2 =
(1 − |a|2)(1 − |z|2)

|1 − 〈z, a〉|2 (4)

holds for every z ∈ B (cf. Chapter 2 of [12]). Let U(n) denote the group of the unitary
transformations in Cn. Then

Aut(B) = {Uϕa : a ∈ B, U ∈ U(n)}.

3.2. Let Γ be a properly discontinuous group of Aut(B) and let aγ = γ(a), zγ = γ(0).
Recall that the Bergman distance from 0 to a point z ∈ B is given by

dB(0, z) =

√
n+ 1

2
log

1 + |z|
1 − |z| .

Since dB(a, 0) = dB(aγ, zγ) = dB(aγ, ϕ
−1
zγ

(0)) = dB(ϕzγ
(aγ), 0), we infer from (4) that

1 − |a|2 = 1 − |ϕzγ
(aγ)|2 =

(1 − |zγ |2)(1 − |aγ|2)
|1 − 〈aγ, zγ〉|2

≤ 4 min

{

(1 − |aγ|)(1 − |zγ |)
(1 − |zγ|)2

,
(1 − |aγ |)(1 − |zγ|)

(1 − |aγ |)2

}

,

so that
(1 − |a|2)(1 − |zγ|)

4
≤ 1 − |aγ| ≤

4(1 − |zγ|)
1 − |a|2 .

From this we conclude that if condition (1) holds at one point in B then it holds for
every point in B.

3.3. Put
u(z) =

∑

γ∈Γ

(|γ−1(z)|2 − 1), z ∈ B.

Clearly, we have u(γ(z)) = u(z) for every γ ∈ Γ. Fix 0 < r < 1 and a point z ∈ B

with |z| ≤ r. Put zγ = γ(0). By 3.2, we may assume
∑

γ∈Γ

(1 − |zγ|) <∞.
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Similar as above, since dB(γ−1(z), 0) = dB(z, zγ) = dB(ϕzγ
(z), 0), we have

1 − |γ−1(z)|2 = 1 − |ϕzγ
(z)|2 =

(1 − |zγ |2)(1 − |z|2)
|1 − 〈z, zγ〉|2

≤ 4(1 − |zγ|)
1 − |z| ,

which implies the convergence of u. Consequently, u descends to a negative C∞ strictly
plurisubharmonic function on B/Γ.

3.4. Steiness. We need the following two important results:

Ellencwajg Theorem. (cf. [5]) If X is a complex manifold admitting a continuous
strictly plurisubharmonic function, then every locally Stein relatively compact open sets
Ω is Stein.

Docquier-Grauert Theorem. (cf. [4]) The union of an increasing 1-parameter
family of Stein manifolds is Stein.

Put Bt = {z ∈ Cn : |z| < t}, 0 < t < 1. Then B =
⋃

t∈(0,1) Bt. Let π : B →
B/Γ be the canonical projection and define Vt = π(Bt). Clearly, we have B/Γ =
⋃

t∈(0,1) Vt with Vt ⊂ Vt′ for arbitrary t < t′. Since π is an open mapping, Vt is

open and relatively compact in B/Γ. Note that Vt is locally Stein since π is locally
biholomorphic, hence is Stein according to the Ellencwajg Theorem since there is a C∞

strictly plurisubharmonic function on B/Γ. It follows immediately from the Docquier-
Grauert Theorem that B/Γ is Stein.

3.5. Finally, let us remark the following classical fact: every free, properly discon-
tinuous action Γ of B satisfies

∑

γ∈Γ

(1 − |γ(z)|)s <∞

for all s > n and z ∈ B; in case when B/Γ is compact or of finite volume w.r.t. the
Bergman metric, one has

∑

γ∈Γ

(1 − |γ(z)|)n = ∞, z ∈ B

(compare Theorem XI. 8, 10 in [15]). It would be interesting to know how the conver-
gence of the above Poincaré series infects the function theory of B/Γ for 1 < s < n.

4 Cyclic actions on B

In this section we will check condition (1) for a large class of cyclic, properly
discontinuous actions on the unit ball in Cn.

(i) n > 1. Consider the Cayley transform

Φ : B → H := {z ∈ Cn : Im z1 > |z′|2}
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z →
(

i
1 + z1

1 − z1
,

iz′

1 − z1

)

where z′ = (z2, · · · , zn) and |z′|2 = |z2|2 + · · ·+ |zn|2. Clearly, we have

Φ−1(z) =

(

z1 − i

z1 + i
,

2z′

z1 + i

)

.

Note that H has a transitive group of automorphisms generated by the following two
type of transforms:
1) z → (z1 + c + 2i〈z′, a′〉 + i|a′|2, z′ + a′), where c ∈ R and a′ ∈ Cn−1;
2) z → (r2z1, rz′U ′) where 0 < r <∞ and U ′ ∈ U(n− 1).
A general element can be written as

γ̃(z) = (r2z1 + c + 2i〈rz′U ′, a′〉 + i|a′|2, rz′U ′ + a′).

Consider the cyclic group Γ = {γk : k ∈ Z} where γ = Φ−1 ◦ γ̃ ◦ Φ.
(i)1: r 6= 1. In this case, we claim firstly that a′ = 0. Here we only deal with the

case r < 1 (the case r > 1 is similar). Simple computations show that

γ̃k(i, 0′) → ((1 − r2)−1[c+ i|a′|2 + 2i〈a′(I − rU ′)−1, a′〉], a′(I − rU ′)−1), (k → +∞).

If a′ 6= 0, we would have

Im

{

1

1 − r2
[c + i|a′|2 + 2i〈a′(I − rU ′)−1, a′〉]

}

− |a′(I − rU ′)−1|2

=
1

1 − r2
[|b′(I − rU ′)|2 + 2Re〈b′, b′(I − rU ′)〉 − (1 − r2)|b′|2] (b′ := a′(I − rU ′)−1)

=
1

1 − r2
[(2 + 2r2)|b′|2 − 4Re〈b′, b′rU ′〉]

≥ 2(1 − r)

1 + r
|b′|2 > 0,

thanks to Schwarz’s inequality. But this means that {γk(0)} has a cluster point in B,
absurd. Hence we are forced to have

γ̃(z) = (r2z1 + c, rz′U ′)

and γ̃k(i, 0′) = (r2ki+ c(1 − r2k)(1 − r2)−1, 0′). Hence

∑

k∈Z

(1 − |γk(0)|) ≤
∑

k∈Z

(1 − |γk(0)|2)

=
∑

k∈Z

(

1 −
∣

∣

∣

∣

(r2k − 1)i+ c(1 − r2k)(1 − r2)−1

(r2k + 1)i+ c(1 − r2k)(1 − r2)−1

∣

∣

∣

∣

2
)

=
∑

k∈Z

4r2k

|(r2k + 1)i+ c(1 − r2k)(1 − r2)−1|2 <∞.
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(i)2 : r = 1. In this case, we have

γ̃(z) = (z1 + c+ 2i〈z′U ′, a′〉 + i|a′|2, z′U ′ + a′).

A direct computation yields

γ̃k(i, 0′) = (i+ k(c+ i|a′|2) + 2i〈a′Tk, a
′〉, a′Sk)

where Sk = I ′ +U ′ + · · ·+U ′k−1 and Tk = (S1 + · · ·+Sk−1)U
′ (I ′ : the identity matrix

in Cn−1). Hence

γk(0) =

(

kc+ ik|a′|2 + 2i〈a′Tk, a
′〉

kc+ i[2 + k|a′|2] + 2i〈a′Tk, a′〉
,

2a′Sk

kc+ i[2 + k|a′|2] + 2i〈a′Tk, a′〉

)

(i)21 : a′ = 0′. As Γ acts properly discontinuously, we conclude that c 6= 0. There-
fore,

∑

k∈Z

(1 − |γk(0)|2) =
∑

k∈Z

(

1 − k2c2

|kc+ 2i|2
)

=
∑

k∈Z

4

k2c2 + 4
<∞.

(i)22 : a′ 6= 0′ and U ′ = I ′. Then we have

γk(0) =

(

kc+ ik2|a′|2
kc+ i[2 + k2|a′|2] ,

2ka′

kc+ i[2 + k2|a′|2]

)

.

It is easy to verify
∑

k∈Z

(1 − |γk(0)|2) <∞.

(i)23 : I ′−U ′ is invertible and 〈a′(I ′−U ′)−1U ′, a′〉 6= −|a′|2/2. Simple computations
show

Sk = (I ′ − U ′k)(I ′ − U ′)−1, Tk = (kI ′ − Sk)(I
′ − U ′)−1U ′.

Hence we may write

γk(0) =

(

kc+ λk + µk

kc+ 2i+ λk + µk
,

2a′Sk

kc+ 2i+ λk + µk

)

where λ ∈ C with Imλ > 0 and µk are uniformly bounded. Thus

∑

k∈Z

(1 − |γk(0)|2) =
∑

k∈Z

4kImλ+O(1)

k2|c+ λ|2 +O(k)
= ∞.

(i)24 : a′ 6= 0′, I ′ −U ′ is invertible and 〈a′(I ′ −U ′)−1U ′, a′〉 = −|a′|2/2. In this case,
the convergence property holds by a similar argument as (i)21.

Generally, one can choose suitable unitary matrix T ∈ U(n − 1) so that TU ′T−1

becomes a diagonal unitary matrix of form [Im−1, Un−m] where all diagonal elements of
Un−m are not 1. Replacing a′ by a′T , it suffices to consider the case U = [Im−1, Un−m].
Thus we can reduce the argument to the above cases.

9



Example. In case n = 2, Γ does not satisfy condition (1) when

γ̃(z1, z2) = (z1 + c+ 2ieiθz2ā, eiθz2 + a)

where c ∈ R, θ 6= π and a a non-zero complex number.

(ii) : n = 1. We have the following

Proposition 4. Every cyclic, properly discontinuous action on the unit disc ∆
satisfies condition (1).

Proof. Let us collect some basic facts about the Möbius group (see eg. § 3.1 in [16]).
First of all, we recall

Aut(∆) =

{

γ(z) =
p̄z + q̄

qz + p
: |p|2 − |q|2 = 1

}

.

If γ ∈ Aut(∆) is not the identity, then it is called elliptic, parabolic or hyperbolic
according as (p+ p̄)2 < 4, = 4, > 4, and the eigenvalues of the coefficient matrix

A =

(

p̄ q̄
q p

)

are two distinct conjugate complex numbers, two equal real numbers or two distinct
real numbers respectively. In the first case the fixed points are connected by a reflection
in the unit circle, and in the other two cases the fixed points lie on the unit circle. Since
Γ = {γk : k ∈ Z} acts properly discontinuously, we must rule out the elliptic case.

(ii)1 : Hyperbolic case. Let ρ1, ρ2 be the fixed points of γ and λ1, λ2 the (real)
eigenvalues of the associated coefficient matrix A. If we introduce the matrix

B =

(

1 −ρ1

1 −ρ2

)

,

then using an appropriate scalar factor α, we will obtain the relation

B−1

(

µ 0
0 1

)

B = αA

where µ = λ1/λ2 > 0. Simple computations show

αkAk = B−1

(

µk 0
0 1

)

B =
1

ρ1 − ρ2

(

−ρ2µ
k + ρ1 ρ1ρ2(µ

k − 1)
1 − µk ρ1µ

k − ρ2

)

,

so that

γk(0) =
ρ1ρ2(µ

k − 1)

ρ1µk − ρ2

.

Since ρ1, ρ2 lie on the unit circle, we have

∑

k∈Z

(1 − |γk(0)|2) =
∑

k∈Z

(

1 −
∣

∣

∣

∣

1 − µk

µk − ρ̄1ρ2

∣

∣

∣

∣

2
)

=
∑

k∈Z

2(1 − Re (ρ̄1ρ2))µ
k

|µk − ρ̄1ρ2|2
<∞
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because µ 6= 1.
(ii)2 : Parabolic case. Let λ be the real double eigenvalue of A. We may choose a

matrix

T =

(

a b
c d

)

(ad− bc = 1).

such that

λ−1A = T−1

(

1 ν
0 1

)

T

for certain ν 6= 0. By a direct computation, we obtain

λ−kAk = T−1

(

1 kν
0 1

)

T =

(

1 + cdνk d2νk
−c2νk 1 − cdνk

)

,

in particular,

λ−1

(

p̄ q̄
q p

)

=

(

1 + cdν d2ν
−c2ν 1 − cdν

)

so that
Re (cdν) = 0 and |c| = |d|.

Clearly, d 6= 0. Hence

∑

k∈Z

(1 − |γk(0)|2) =
∑

k∈Z

(

1 −
∣

∣

∣

∣

d2νk

1 − cdνk

∣

∣

∣

∣

2
)

=
∑

k∈Z

1

1 + |d|4|ν|2k2
<∞.

5 Proof of Theorem 2

5.1. First of all, we will derive a useful inequality. For two distinct points a, a′ in
M , we define

Ca,a′ =
sup{−gM(z, a) : z ∈ ∂Da,a′}
inf{−gM(z, a′) : z ∈ ∂Da,a′}

where Da,a′ is a relatively compact open subsets containing a, a′. Consider the plurisub-
harmonic function on M defined by gM(z, a) on Da,a′ and max{gM(z, a), Ca,a′gM(z, a′)}
otherwise. It follows immediately from the definition of gM that

gM(z, a) ≥ Ca,a′gM(z, a′) for z ∈M\Da,a′ . (5)

5.2. Let a ∈M . As Γ is discrete, we infer from (2), (5) that the inequality

∑

γ∈Γ

gM(γ(z), a) > −∞

holds for all z ∈ M\Γa. Put u(z) =
∑

γ∈Γ gM(γ(z), a). This Γ−invariant function
descends to a negative plurisubharmonic function on M/Γ with a logarithmic pole
b := π(a) where π is the natural projection, we claim that gM/Γ(·, b) exists. Since a is
arbitrary, we claim that M/Γ is pluricomplex hyperbolic.

11



5.3. Next, we are going to construct bounded plurisubharmonic functions on M/Γ
which is strictly plurisubharmonic at one point. For b ∈ M/Γ, we may choose a
coordinate ball B(b, 1) at b so that the inequalities

log |z − b| + C1 ≤ gM/Γ(z, b) ≤ log |z − b| + C2

hold in a open neighborhood of the closure of B(b, 1). Here C1 ≤ C2 are two constants
depending on b but not on z. Take 0 < r < 1 so small that log r ≤ 2(C1 − C2). Put

v(z) =







log |z − b| |z − b| < r
max{log |z − b|, 2(gM/Γ(z, b) − C1)} r ≤ |z − b| ≤ 1
2(gM/Γ(z, b) − C1) |z − b| > 1.

Note that on the sphere {z : |z − b| = 1} we have

2(gM/Γ(z, b) − C1) ≥ 0 = log |z − b|

while
2(gM/Γ(z, b) − C1) ≤ 2(log |z − b| + C2 − C1) ≤ log |z − b|

holds on the sphere {z : |z−b| = r}. Thus v is a well-defined plurisubharmonic function
on M/Γ and ρ := exp(2v) is a bounded plurisubharmonic function on M/Γ satisfying
ρ(z) = |z − b|2 on B(b, r).

5.4. Steinness. Fix a plurisubharmonic exhaustion function ψ on M . For t >
0 we put Mt = {z ∈ M : ψ(z) < t} and Vt = π(Mt). Again every Vt is locally
Stein relative compact domain in M/Γ and we have M/Γ =

⋃

t>0 Vt. According to
the argument in 3.4, it suffices to show that for every t > 0 there is a continuous
strictly plurisubharmonic function in a neighborhood of Vt. By 5.3, there exists finite
coordinate balls B(wi, ri), i = 1, · · · , m and bounded plurisubharmonic functions ρi

such that {B(wi, ri)}1≤i≤m cover Vt and equalities ρi(z) = |z − wi|2 hold on B(wi, ri).
Put ρ = ρ1 + · · · + ρm. Then the positive current ∂∂̄ρ will dominate a continuous
positive (1, 1)−form in a neighborhood of V t. By a standard regularization of the
function ρ, we get a smooth strictly plurisubharmonic function in a neighborhood of
Vt.

5.5. In view of Corollary 2, it is natural to ask the following

Question. For a Stein manifold, is pluricomplex hyperbolicity equivalent to the
existence of a negative C∞ strictly plurisubharmonic function?

6 Proof of Theorem 3

6.1. Proof of 1). It is easy to construct a negative plurisubharmonic function ρ so
that −ρ ≍ δM . Let R be the diameter of M . Fix w ∈M and put

Cw =
sup{ρ(z)=ρ(w)/2} | log |z − w|/R|

inf{ρ(z)=ρ(w)/2}(−ρ(z))
.

12



We can define a negative plurisubharmonic function on M which equals to log |z−w|/R
for ρ(z) ≤ ρ(a)/2 and max{log |z − w|/R,Cwρ(z)} otherwise. Hence

gM(z, w) ≥ Cwρ(z) for ρ(z) > ρ(w)/2. (6)

Since M is convex, gM is symmetric (cf. [8]). Thus for z ∈M\Γa we have

−
∑

γ∈Γ

gM(γ(z), a) = −
∑

γ∈Γ

gM(z, γ−1(a)) = −
∑

γ∈Γ

gM(γ−1(a), z) <∞

according as (6). Combining with (5), the conclusion follows.

6.2. Proof of 2). Usually one denotes by Tg,n the Teichmüller space of Riemann
surfaces with genus g and n punctures. It is a bounded Stein domain in C3g−3+n.
Recently, Krushkal [7] observed that the pluricomplex Green function relates to the
Teichmüller distance by

gTg,n
(z, w) = log tanh dT (z, w),

in particular, gTg,n
is symmetric. Thus for z ∈M − Γa we have

−
∑

γ∈Γ

gTg,n
(γ(z), a) = −

∑

γ∈Γ

gTg,n
(z, γ−1(a)) = −

∑

γ∈Γ

gTg,n
(γ−1(a), z)

=
∑

γ∈Γ

log tanh dT (γ−1(a), z) ≤ Cz

∑

γ∈Γ

e−2dT (γ−1(a),z)

≤ Cze
2dT (z,a)

∑

γ∈Γ

e−2dT (γ−1(a),a) <∞.

By (5), the assertion follows.

7 Proof of Theorem 4

7.1. Proof of Theorem 4. It is well-known that the series

∑

γ∈Γ

|jγ(z)|2

is always convergent at every z ∈ Ω, moreover, it is convergent uniformly on compact
subsets of Ω (cf. Lemma 5 of Chapter 10 in [13]). Here jγ denotes the Jacobian of γ.
On the other hand, from relation

KΩ(z) = KΩ(γ(z))|jγ(z)|2 (7)

we conclude that
∑

γ∈Γ

1

KΩ(γ(z))
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is also convergent uniformly on compact subsets of Ω. Suppose p ∈ LΓ, namely, there
exists a compact subset K, {zk} ⊂ Ω with zk → p and {γk} ⊂ Γ so that γk(zk) ∈ K.
Observe that

lim
k→∞

KΩ(zk) = lim
k→∞

KΩ(γ−1
k (γk(zk))) = ∞,

hence p ∈ ΛΩ. For the second assertion, it suffices to verify that ΛΩ is closed in
∂Ω. Suppose ΛΩ ∋ pk → p. Since for every k there exists a point zk ∈ Ω satisfying
|zk − pk| < 1/k and KΩ(zk) > k, we have p ∈ ΛΩ.

7.2. It seems worthwhile to mention the following

Proposition 5. Let Ω be a bounded domain in Cn and Γ a countable group of
automorphisms of Ω. Then Γ is properly discontinuous iff there exists one point a ∈ Ω
such that

∑

γ∈Γ

|jγ(a)|2 <∞.

Proof. It suffices to verify the ”if” part. By (7) we have

∑

γ∈Γ

1

KΩ(γ(a))
<∞.

As 1/KΩ is a positive continuous function, the assertion follows immediately from
Proposition 1.

8 Proofs of Theorem 5, 6, 7

8.1. Proof of Theorem 5. By Richberg’s theorem [11], we may assume ψ is negative,
C∞ strictly plurisubharmonic on Ω. Put

u(z) = sup
γ∈Γ

ψ(γ(z)), z ∈ Ω.

Clearly, u is Γ−invariant. Since ψ(z) → −∞ as z → ∪a∈DCΓa, we conclude that for
any open subset W ⊂⊂ Ω there exists a finite subset Γ′ of Γ so that

ψ(γ(z)) < max
γ∈Γ′

ψ(γ(z)), ∀ z ∈W, γ ∈ Γ\Γ′.

Thus u(z) = maxγ∈Γ′ ψ(γ(z)) for z ∈ W so that it is continuous and strictly plurisub-
harmonic there. As W is arbitrarily chosen, u descends to a negative, continuous and
strictly plurisubharmonic function on Ω/Γ. The rest argument is same as 3.4.

8.2. Proof of Theorem 6. It is well-known that elements of Aut(B)\{I} are divided
into three classes: those have fixed points in B are called elliptic, those have one
or two fixed points on ∂B and no fixed points in B are called parabolic or hyperbolic
respectively (see e.g., [12]). Let Γ be an infinite, cyclic, free and properly discontinuous
subgroup of Aut(B) and γ the generator of Γ. Clearly, γ can not be elliptic.
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By Proposition 2, it suffices to show that CΓ0 contains at most two elements. Let
p ∈ CΓ0, namely, there there is a subsequence γkj (0) → p as j → ∞. Thus we have

γkj+1(0) = γ(γkj(0)) → γ(p)

since γ is continuous on the closure of B. On the other hand, Proposition 3 implies

γkj+1(0) = γkj (γ(0)) → p.

Hence γ(p) = p, i.e., p is a fixed point of γ on ∂B. The proof is complete.

8.3. Proof of Theorem 7. Every element in Aut (∆2) is of form

γ(z1, z2) = (γ1(z
1), γ2(z

2)) or γ(z1, z2) = (γ2(z
2), γ1(z

1))

where γ1, γ2 ∈ Aut (∆). In the first case, we have

γk(z1, z2) = (γk
1 (z1), γk

2 (z2)).

As Γ = {γk : k ∈ Z} acts properly discontinuously, we conclude that there exists at
least one component of γ, say γ1, which can not be elliptic. The argument in 8.2 yields

CΓz ⊂ Fix(γ1) × ∆, ∀ z ∈ ∆2

where Fix(γ1) is the set of fixed points γ1. Hence the condition of Theorem 5 is verified
(e.g., take ψ(z) =

∑

p∈Fix(γ1) log |z1 − p|).
In the second case, we have

γ2m(z1, z2) = ((γ2 ◦ γ1)
m(z1), (γ1 ◦ γ2)

m(z2)).

For every z ∈ ∆2, the set CΓz consists of the cluster points of {γ2m(z) : m ∈ Z} and
{γ2m+1(z) : m ∈ Z}. From relation γ2m+1 = γ ◦ γ2m, we see that that γ maps the set
of cluster points of the first to the second. On the other hand, since

p ∈ Fix(γ2 ◦ γ1) ⇒ γ1(p) ∈ Fix(γ1 ◦ γ2)

p ∈ Fix(γ1 ◦ γ2) ⇒ γ2(p) ∈ Fix(γ2 ◦ γ1),

neither γ1 ◦ γ2 nor γ2 ◦ γ1 is elliptic. The argument in 8.2 shows that the cluster points
of {γ2m(z) : m ∈ Z} are contained in Fix(γ2 ◦ γ1)×Fix(γ1 ◦ γ2) which has at most four
elements, hence ∪z∈∆2CΓz has at most eight elements. The proof is complete.

8.4. Finally, let us present another example. Let

Ω = {(z1, z′) ∈ C × Cn−1 : |z1|2 + ψ(z′) < 1}

where ψ enjoys the following properties: i) ψ is C∞ and plurisubharmonic in Cn−1; ii)
there exist positive numbers α, C so that ψ(z′) ≥ C|z′|α; iii) ψ is weighted homoge-
neous, i.e., there are positive integers τ1, τ2, · · · , τn such that

ψ(cτ2z2, · · · , cτnzn) = |c|τ1ψ(z′), ∀ c ∈ C.
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Property i), ii) implies that Ω is a bounded Stein domain. Consider the Cayley trans-
formation

Φ : Ω → H := {z ∈ Cn : Im z1 > ψ(z′)}

z →
(

i
1 + z1

1 − z1
,

iz2

(1 − z1)2τ2/τ1
, · · · , izn

(1 − z1)2τn/τ1

)

.

Simple computations show

Φ−1(z) =

(

z1 − i

z1 + i
,
22τ2/τ1i2τ2/τ1−1

(z1 + i)2τ2/τ1
z2, · · · , 2

2τn/τ1i2τn/τ1−1

(z1 + i)2τn/τ1
zn

)

.

Fix a positive number r 6= 1. Put

γ̃(z) = (rτ1z1, rτ2z2, · · · , rτnzn) ∈ Aut (H)

and Γ = {γk : k ∈ Z} where γ = Φ−1 ◦ γ̃ ◦ Φ. It is not difficult to see CΓ0 =
{(1, 0′), (−1, 0′)} and the function |z1|2 − 1 provides a barrier at (1, 0′) and (−1, 0′).
Thus Theorem 5 applies.
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