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Realizing Colloidal Artificial Ice on Arrays of Optical Traps
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We demonstrate how a colloidal version of artificial ice can be realized on optical trap lattices.
Using numerical simulations, we show that this system obeys the ice rules and that for strong colloid-
colloid interactions, an ordered ground state appears. We show that the ice rule ordering can occur
for systems with as few as twenty-four traps and that the ordering transition can be observed at
constant temperature by varying the barrier strength of the traps.

PACS numbers: 82.70.Dd

In certain spin models, the geometric spin arrange-
ments frustrate the system since not all of the nearest
neighbor spin interaction energies can be minimized si-
multaneously [1]. A classic example of this is the spin
ice system [2, 3], named after the similarity between
magnetic ordering on a pyrochlore lattice and proton or-
dering in water ice [4]. Spin ice behavior has been ob-
served in magnetic materials such as Ho2Ti2O7, where
the magnetic rare-earth ions form a lattice of corner-
sharing tetrahedra [2]. The spin-spin interaction energy
in such a system can be minimized locally when two spins
in each tedrahedron point inward and two point outward,
leading to exotic disordered states [5]. There are several
open issues in these systems, such as whether long range
interactions order the system, or whether the true ground
state of spin ice is ordered [6].

In atomic spin systems, the size scale is too small to ex-
amine ordering on the individual spin level directly, and
very low temperatures are required to freeze the spins.
Artificial versions of spin ice systems that overcome these
limitations would be very useful. In a recent experiment,
a geometrically frustrated system was constructed from
a square lattice of small, single-domain magnetic islands
[7]. Each vertex of the lattice represents a meeting point
for four spins. Wang et al. demonstrated that the sys-
tem obeys the “ice rules” of two-spins-in, two-spins-out
at each vertex for closely spaced islands, and has a ran-
dom spin arrangement for widely spaced islands. Unlike
in atomic systems, it is possible to image the ground state
of the resulting spin ice directly using a scanning probe.

Here, we propose another version of an artificial spin
ice system in which both statics and dynamics can be
probed directly. We use numerical simulations to show
that square ice as well as other frustrated states can be
constructed using interacting colloidal particles confined
in two-dimensional (2D) periodic optical trap arrays.
Due to the micron size scale of the colloids, the ordering
and dynamics could be imaged with video-microscopy in
an experiment. The colloidal system may also equilibrate
much more rapidly than the nanomagnet system, since
thermal fluctuations are present and can be controlled
by changing the relative strength of the optical traps. In
addition, the colloidal interaction can be changed from

nearest neighbor to longer range simply by adjusting the
screening length. A variety of different static and dy-
namical trap geometries can be constructed with optical
arrays [8], and colloidal crystallization and melting have
already been demonstrated in square and triangular op-
tical trap arrays [9, 10]. It is also possible to make ar-
rays with elongated traps that have a double well shape
such that a single colloid can be located in either well
[11, 12]. Colloid-colloid interaction forces between neigh-
boring traps were strong enough to induce a zig-zag or-
dering and permit signal propagation in an experiment
on a chain of 23 double well elongated traps [11].

We consider an artificial ice system created with
charged colloids on a square lattice of elongated optical
traps at a one-to-one filling. Each trap has a double well
potential similar to those created experimentally [10, 11]
The vertices where four traps meet correspond to the
oxygen atoms or the pyrochlore tetrahedrons, and the
charged colloidal particles model the ’in’ or ’out’ spins.
We classify the resulting six vertex types [14] according
to their electrostatic energy, and study the change in the
occupancy of different vertex types as a function of col-
loid charge and trap spacing. For noninteracting colloids
we find random occupancy of each vertex type. When the
colloid charge is increased, ice-rule obeying vertices dom-
inate the system. At high interaction strengths, we find
a long-range ordered minimum energy state predicted
previously for spin ice systems [6]. We can recover the
random vertex occupancy at high colloid charge by in-
creasing the spacing between traps. When the traps are
gradually biased in one direction, we obtain a transition
between two ice-rule obeying ground states. Since it can
be difficult to construct very large arrays of traps exper-
imentally, we show that a system with as few as 24 traps
and open boundary conditions still exhibits the ordering
transition observed for larger arrays. Previous experi-
ments focused on order-disorder transitions for colloids
as a function of increasing trap strength [10]. Thus, we
also demonstrate that the spin ordering transition occurs
at constant temperature when the trap barrier strength
is varied.

We perform 2D Brownian dynamics (BD) simulations
for systems of two sizes. System A contains N = 1800
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FIG. 1: (a) Schematic of the basic unit cell with four double
well traps each capturing one colloid. (b-d) Images of a small
portion of system A with N = 1800. Dark circles: colloids;
ellipses: traps. (b) Random vertex distribution at q = 0. (c)
Long-range ordered square ice ground state at q = 1.3. (d)
Biased system at q = 0.4 with F dc = 0.02.

interacting colloids and N = 1800 optical traps with peri-
odic boundary conditions in the x and y directions. Sys-
tem B has N = 24 colloids and N = 24 optical traps with
open boundary conditions. In each case the overdamped
equation of motion for colloid i is:

η
dRi

dt
= Fcc

i + FT
i + Fext

i + Fs
i (1)

where the damping constant η = 1.0. We de-
fine the unit of distance in the simulation to be a0.
The colloid-colloid interaction force has a Yukawa or
screened Coulomb form, Fcc

i = −F0q
2
∑N

i6=j ∇iV (rij)

with V (rij) = (1/rij) exp(−κrij)r̂ij . Here rij = |ri − rj |,
r̂ij = (ri − rj)/rij , ri(j) is the position of particle i(j),

F0 = Z∗2/(4πǫǫ0), Z∗ is the unit of charge, ǫ is the sol-
vent dielectric constant, q is the dimensionless colloid
charge, and 1/κ is the screening length, where κ = 4/a0

unless otherwise mentioned. We neglect hydrodynamic
interactions between colloids, which is a reasonable as-
sumption for charged particles in the low volume frac-
tion limit. The thermal force FT is modeled as ran-
dom Langevin kicks with the properties 〈FT

i 〉 = 0 and
〈FT (t)FT (t′)〉 = 2ηkBTδ(t − t′). Unless otherwise men-
tioned, FT = |FT | = 0. Fext

i represents an externally
applied drive which is set to zero except for the biased
system, where Fext

i = F dc(x̂ + ŷ).
The substrate force Fs

i arises from elongated traps,
shown schematically in Fig. 1(a), arranged in square

Type Configuration Ei/EIII Type Configuration Ei/EIII

I 0000 0.001 IV 1001 7.02

II 0001 0.0214 V 1101 14.977

III 0101 1.0 IV 1111 29.913

TABLE I: Electrostatic energy Ei/EIII for each vertex type.
An example configuration for each vertex is listed; 1 (0) indi-
cates a colloid close to (far from) the vertex.

structures with lattice constant d, as in Fig. 1(b). Each
trap is composed of two half-parabolic wells of strength
fp and radius rp separated by an elongated region of
length 2l which confines the colloid perpendicular to the
trap axis and has a small repulsive potential or barrier
of strength fr parallel to the axis which pushes the col-
loid out of the middle of the trap into one of the ends:
Fs

ik = (fp/rp)r
±
ikΘ(rp−r±ik)r̂±ik+(fp/rp)r

⊥
ikΘ(rp−r⊥ik)r̂⊥ik+

(fr/l)(1 − r
‖
ik)Θ(l − r

‖
ik)r̂

‖
ik. Here r±ik = |ri − r

p
k ± lp̂k

‖|,

r
⊥,‖
ik = |(ri − r

p
k) · p̂k

⊥,‖|, ri (rp
k) is the position of colloid

i (trap k), and p̂k
‖ (p̂k

⊥) is a unit vector parallel (per-

pendicular) to the axis of trap k. We take 2l = 2a0,
rp = 0.4a0, and d = 3a0 unless otherwise noted. Elon-
gated traps of this form have been created in previous
experimental work [11, 12]. Our dimensionless units can
be converted to physical units for a particular system.
For example, when a0 = 2 µm, ǫ = 2, and Z∗ = 300e,
such as in Ref. [13], F0 = 2.5 pN and the trap ends are
0.2 µm apart at d = 3. We find the ground state of each
configuration using simulated annealing.

The vertices are categorized into six types, listed in
Table I, and we identify the percentage occupancy Ni/N
and energy Ei of each type. Type III and type IV vertices
each obey the ice rule of a two-in two-out configuration,
represented here by two colloids close to the vertex and
two far from the vertex. Locally, the system would prefer
type I vertices, but such vertices must be compensated by
highly unfavorable type VI vertices. The colloidal spin
ice realization differs from the magnetic system, where
north-north and south-south magnetic interactions at a
vertex have equal energy. For the colloids, interactions
between two filled trap ends raise the vertex energy Ei,
whereas two adjacent empty trap ends decrease Ei. Since
particle number must be conserved, creating empty trap
ends at one vertex increases the particle load at neigh-
boring vertices. As a result, the ice rules still apply to
our system, but they arise due to collective effects rather
than from a local energy minimization.

In Fig. 1(b) we illustrate a small part of system A with
noninteracting colloids at charge q = 0. The distribution
of Ni/N is consistent with a random arrangement. When
we increase q to q = 1.3 so that the colloids are strongly
interacting, we find a nonrandom configuration where the
system is filled with type III vertices in a checkerboard
pattern corresponding to the square ice ground state [15],
illustrated in Fig. 1(c). We find similar behavior in sys-
tem B containing only 24 traps, which may be easier to
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FIG. 2: ©: NI/N ; � : NII/N ; �: NIII/N ; N: NIV /N ; �:
NV /N ; •: NV I/N . (a) Ni/N vs q at d = 3 and κ = 4.0. (b)
Ni/N vs d at q = 1.3 and κ = 4.0. Inset: schematic spin
representation of the 6 vertex types. (c) Ni/N vs κ at d = 3
and q = 1.0. (d) Ni/N vs q for a biased system at d = 3,
κ = 4.0, and F dc = 0.02.

realize in an experiment.
We use Ni/N to map the transition between the ran-

dom state and the long-range ordered state as a func-
tion of colloid charge q at fixed trap spacing d = 3 and
κ = 4.0 in Fig. 2(a), as a function of d for fixed q = 1.3
and κ = 4.0 in Fig. 2(b), and as a function of κ for fixed
q = 1.0 and d = 3 in Fig. 2(c). Changing q, d or κ
changes the relative colloid-colloid interaction strength.
In Fig. 2(a), NI/N and NV I/N decrease with increas-
ing q for q > 0.1, since this is the most energetically
unfavorable vertex combination. As q increases above
q > 0.3, NII/N , NV /N and NIV begin to decrease since
type II, V and IV vertices are also energetically unfavor-
able. Even though type IV vertices obey ice rules, they
disappear at high q since in square ice they have higher
energy than the type III vertices, which ultimately form
the ground state.

In Fig. 2(b) we fix q = 1.3 and κ = 4.0 and show that
changing the trap spacing d from d = 3 to d = 5 produces
the same transition as changing the colloid charge. As d
increases, the colloid-colloid interaction strength drops,
and the vertices that were suppressed by the high colloid
charge q reappear in the same order: types II, V and IV
first, followed by types I and VI. If q and d are fixed and
the inverse screening length κ is varied, we find that a
similar transition from an ordered to a random configu-
ration occurs, as illustrated in Fig. 2(c) for d = 3 and
q = 1.0. In experiments with dynamic optical traps, it
would be straightforward to adjust the trap spacing d,
allowing both random and ordered limits to be accessed
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FIG. 3: (a,b) Images of the entire sample for system B, with
N = 24 and open boundary conditions at d = 3, q = 1,
κ = 4.0, and F T = 0.9. (a) Disordered system at fr = 0.01.
(b) Square ice ground state at fr = 0.10. (c) The number
of defects Nd versus temperature F T for the same system
with fr = 0.03 (filled circles), fr = 0.07 (open squares), fr =
0.1 (filled diamonds), and fr = 0.15 (open triangles). (d) A
phase diagram showing the ordered and disordered states as
a function of F T vs fr.

readily. The appearance of an ordered state for small
trap spacing is similar to experimental observations of
spin liquid ordering under pressure [16].

From these results we see that a colloidal system can
serve as a model for artificial ice. The advantage of the
colloid realization is that it is possible to directly observe
the dynamical behavior of the individual “spins.” It is
also possible to create more complex systems than can
be achieved with the magnetic system. For instance, to
create biased traps, we introduce a small driving force
oriented at a 45◦ angle along the diagonal of the square
plaquettes. This causes the colloids to favor sitting
in the topmost and rightmost halves of the traps, and
breaks symmetry in the same way as applying a mag-
netic field along the [100] direction in a pyrochlore sys-
tem [17, 18, 19, 20]. In Fig. 1(d) we illustrate the ground
state of a system biased in this way with q = 0.4, d = 3,
κ = 4, and F dc = 0.02. All of the traps are effectively
tilted in the rightward and upward directions, and the
system has a ground state made up entirely of type IV
vertices. In Fig. 2(d), we see that in the biased system,
increasing q produces a transition between the tilted and
the spin ice ground states. At the transition, we find
vertex clusters composed entirely of type III or type IV
vertices, with pairs of type II and type V vertices located
at the boundaries between the clusters. Type I and type
VI vertices never appear in this system.

In experimental systems using current equipment, a
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limited number of optical traps are available. For ex-
ample, 23 traps were employed in recent experiments on
double well elongated traps [11]. It is therefore pertinent
to determine how small of a system can still exhibit the
artificial ice behavior. Additionally, experimental sys-
tems have no periodic boundary conditions, so it is im-
portant to understand whether the boundaries affect the
response of the system.

In Fig. 3(a,b) we illustrate two configurations of sys-
tem B, which contains 24 traps and has open boundary
conditions, for the case q = 1.0, d = 3.0, and κ = 4.0
at a temperature FT = 0.9. A disordered configuration,
shown in Fig. 3(a), results when the strength of the repul-
sive barrier at the center of each trap, fr = 0.01, is small.
Here the thermal effects are strong enough that the col-
loids are hopping between the two different wells in each
trap. As fr is increased, a freezing transition occurs and
the system forms the ordered phase, seen in Fig. 3(b) for
fr = 0.10. To quantify the ordering transition, we mea-
sure the time-averaged number of defects in the system,
Nd, which is determined by comparing the colloid config-
uration C with the two possible ground states for the 24
traps: G, shown in Fig. 3(b), and G′, obtained by flip-
ping each colloid in Fig. 3(b) to the opposite side of each

trap. We take Nd = 〈min(
∑N

i |Ci − Gi|,
∑N

i |Ci − G′
i|)〉,

where |Ci −G
(′)
i | = 0 (1) if colloid i is at the same (oppo-

site) end of the trap in the two configurations. A plot of
Nd versus FT in Fig. 3(c) shows that as FT is decreased,
there is a freezing transition into the ordered state where
Nd = 0. The freezing temperature decreases as fr is low-
ered. The most straightforward experiment to perform
would be to fix temperature and the other parameters
while varying the strength of the barrier at the center of
the traps, fr. To illustrate that the order-disorder arti-
ficial ice transition can also occur as function of barrier

strength, we map out a phase diagram as a function of
fr and FT in Fig. 3(d). This shows that for systems as
small as 24 traps, the artificial ice behavior should be
experimentally observable.

All of the systems we have studied up to this point have
a well defined, long-range ordered ground state. We have
also found that if a honeycomb arrangement of traps is
used instead of the square trap arrangement considered
here, only disordered ground states occur [21].

In conclusion, we have shown that an artificial ice
model system can be created using charged colloidal par-
ticles in arrays of elongated optical traps. The system
obeys the ice rules and shows a transition between a ran-
dom configuration and a long-range ordered ground state
as a function of colloid charge, trap size, and screening
length. We demonstrate that a thermally induced order-
disorder transition also occurs in samples with only 24
traps and open boundary conditions, which should be
well within the range of current experimental capabili-
ties. This transition can be observed at fixed temperature
by varying the trap barrier strength, which would be the
most straightforward experiment to conduct. Besides op-
tical traps, other systems including electrophoretic traps
[22] or patterned surfaces may also be used to confine the
colloids. Similar effects should occur for vortices in type-
II superconductors interacting with elongated arrays of
blind holes. Experimental versions of frustrated colloidal
systems could allow for direct visualization of the dy-
namics associated with frustrated spin systems, such as
deconfined or confined spin arrangements, as well as spin
dynamics at melting transitions.

Note added- A simulation study [23] of the experimen-
tal dipolar system appeared after submission of this work.
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[1] A.P. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994).
[2] M.J. Harris et al., Phys. Rev. Lett. 79, 2554 (1997).
[3] S.T. Bramwell and J.M. Harris, J. Phys.: Condens. Mat-

ter 10, L215 (1998); S.T. Bramwell and M.J.P. Gingras,
Science 294, 1495 (2001).

[4] P.W. Anderson, Phys. Rev. 102, 1008 (1956); L. Pauling,
The Nature of the Chemical Bond (Cornell University
Press, Ithaca, NY, 1960) pp. 465 - 8.

[5] R. Moessner and A.P. Ramirez, Phys. Today 59(2), 24
(2006).

[6] R.G. Melko, B.C. den Hertog, and M.J.P. Gingras, Phys.
Rev. Lett. 87, 067203 (2001); R. Siddharthan, B.S. Shas-
try, and A.P. Ramirez, Phys. Rev. B 63, 184412 (2001).

[7] R.F. Wang et al., Nature 439, 303 (2006).
[8] D.G. Grier, Nature (London) 424, 810 (2003).
[9] P.T. Korda, G.C. Spalding and D.G. Grier, Phys. Rev. B

66, 024504 (2002); C. Reichhardt and C.J. Olson,
Phys. Rev. Lett. 88, 248301 (2002); K. Mangold, P. Lei-
derer, and C. Bechinger, ibid. 90, 158302 (2003).

[10] M. Brunner and C. Bechinger, Phys. Rev. Lett. 88,
248302 (2002).

[11] D. Babic and C. Bechinger, Phys. Rev. Lett. 94, 148303

(2005); D. Babic, C. Schmitt and C. Bechinger, Chaos,
15, 026114 (2005).

[12] C. Schmitt, B. Dybiec, P. Hanggi, and C. Bechinger, Eu-
rophys. Lett. 74, 937 (2006).

[13] M.F. Hsu, E.R. Dufresne, and D.A. Weitz, Langmuir 21,
4881 (2005).

[14] R. Youngblood, J.D. Axe, and B.M. McCoy, Phys. Rev.
B 21, 5212 (1980).

[15] F.H. Stillinger and K.S. Schweizer, J. Phys. Chem. 87,
4281 (1983).

[16] I. Mirebeau et al., Nature 420, 54 (2002).
[17] M.J. Harris et al., Phys. Rev. Lett. 81, 4496 (1998).
[18] A.P. Ramirez et al., Nature 399, 333 (1999).
[19] H. Fukazawa et al., Phys. Rev. B 65, 054410 (2002).
[20] Z. Hiroi et al., J. Phys. Soc. Japan 72, 411 (2003).
[21] A. Libál, C. Reichhardt, and C.J. Olson Reichhardt, to

be published.
[22] A.E. Cohen, Phys. Rev. Lett. 94, 118102 (2005).
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