It is the cache of ${baseHref}. It is a snapshot of the page. The current page could have changed in the meantime.
Tip: To quickly find your search term on this page, press Ctrl+F or ⌘-F (Mac) and use the find bar.

GENE THERAPY IN THALASSEMIA AND HEMOGLOBINOPATHIES | Breda | Mediterranean Journal of Hematology and Infectious Diseases

GENE THERAPY IN THALASSEMIA AND HEMOGLOBINOPATHIES

Laura Breda, Roberto Gambari, Stefano Rivella

Abstract


Sickle cell disease (SCD) and ß-thalassemia represent the most common hemoglobinopathies caused, respectively, by the alteration of structural features or deficient production of the ß-chain of the Hb molecule. Other hemoglobinopathies are characterized by different mutations in the α- or ß-globin genes and are associated with anemia and might require periodic or chronic blood transfusions. Therefore, ß-thalassemia, SCD and other hemoglobinopathies are excellent candidates for genetic approaches since they are monogenic disorders and, potentially, could be cured by introducing or correcting a single gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer of these hemoglobinopathies have proved unsuccessful due to limitations of available gene transfer vectors. With the advent of lentiviral vectors many of the initial limitations have been overcame. New approaches have also focused on targeting the specific mutation in the ß-globin genes, correcting the DNA sequence or manipulating the fate of RNA translation and splicing to restore ß-globin chain synthesis. These techniques have the potential to correct the defect into hematopoietic stem cells or be utilized to modify stem cells generated from patients affected by these disorders. This review discusses gene therapy strategies for the hemoglobinopathies, including the use of lentiviral vectors, generation of induced pluripotent stem cells (iPS) cells, gene targeting, splice-switching and stop codon readthrough.

 


Keywords


ß-thalassemia, sickle cell anemia, hemoglobinopathies, gene transfer, lentiviral vector, gene correction, splice-switching, stop codon readthrough, hematopoietic stem cells, induced pluripotent stem cells (iPS)

Full Text: PDF HTML

Refbacks

  • There are currently no refbacks.


Mediterr J Hematol Infect Dis ISSN 2035-3006