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Abstract

Background: Aging is a fundamental biological process. Characterization of genetic and environmental factors that
influence lifespan is a crucial step toward understanding the mechanisms of aging at the organism level. To capture the
different effects of genetic and environmental factors on lifespan, appropriate statistical analyses are needed.

Methodology/Principal Findings: We developed an online application for survival analysis (OASIS) that helps conduct
various novel statistical tasks involved in analyzing survival data in a user-friendly manner. OASIS provides standard survival
analysis results including Kaplan-Meier estimates and mean/median survival time by taking censored survival data. OASIS
also provides various statistical tests including comparison of mean survival time, overall survival curve, and survival rate at
specific time point. To visualize survival data, OASIS generates survival and log cumulative hazard plots that enable
researchers to easily interpret their experimental results. Furthermore, we provide statistical methods that can analyze
variances among survival datasets. In addition, users can analyze proportional effects of risk factors on survival.

Conclusions/Significance: OASIS provides a platform that is essential to facilitate efficient statistical analyses of survival data
in the field of aging research. Web application and a detailed description of algorithms are accessible from http://sbi.
postech.ac.kr/oasis.
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Introduction

During the last two decades, we have witnessed the explosion of

the field of aging research. For identifying mechanisms of aging,

many approaches have been attempted to discover genetic and

environmental factors that regulate aging in various organisms

[1,2]. A key experiment for examining the effects of genetic

modulation or chemical compounds on aging is the measurement

of lifespan, which requires analysis of survival over time during

aging processes. By performing appropriate statistical analyses on

survival data, one can extract a wealth of useful information (Table

S1) [3–6]. For example, a log-rank (Mantel-Cox) test was

introduced to determine whether experimental treatments signif-

icantly affected lifespan or not [7,8]. In addition, analysis of hazard

function from lifespan data has gained popularity because the

shape of the cumulative hazard plots has been proposed to reflect

the rate of aging [9]. Therefore, accurate and efficient execution of

statistical analyses is a crucial step towards a better understanding

of aging at the molecular level.

Despite the development of statistical analyses of lifespan data,

there is a need for developing further statistical methods to explain

complex phenomena involved in aging. One of the interesting

characteristics of aging is that even relatively homogeneous

individuals under controlled environmental conditions often

display variations in lifespan [10,11]. That is, some populations

in a mostly homogeneous genetic background show precipitous

survival curve at a specific time point whereas others display

gradual survival curve. One possible explanation for this

phenomenon is that stochastic components such as epigenetic

switch or noisy gene expression, which may be influenced by some

unknown factors, play an important role in this variation in

lifespan. In addition, genetic components have been suggested to

contribute the variances in lifespan [12]. Analyzing the contribu-

tion of such factors will require a novel statistical test that can

quantify the variances of lifespan data.

Here we report an open-access service for survival analysis, the

online application for survival analysis (OASIS) which provides

not only canonical survival analysis methods but also advanced

statistical tests for comparing the variances in survival datasets.

OASIS is a user-friendly online application which runs in a

browser without downloading or installation. These features of

OASIS will not only help researchers in the field of aging research

analyze their data in depth but will potentially facilitate the

standardization of survival analysis.
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Results

OASIS web application
To provide a standardized platform for biologists in aging

research fields to perform survival analyses, we developed OASIS

server which is accessible by using the majority of modern web

browsers. After surveying experiments, recorded survival data are

imported as an input of OASIS web server in a simple format

(Figure 1A). The input format should consist of following items in a

given order: an experimental identifier and observed data. The

line started with ‘‘%’’ sign indicates the experimental identifier.

Observed data have at least three columns: observed time, the

number of dead subjects, and the number of censored (e.g.

missing) subjects during the observation interval (Figure 1B;

sample inputs are available in the OASIS webpage). These

columns should be separated with tabs.

OASIS is composed of three statistical frameworks that can

facilitate proper analysis of survival data (Figure 1C). In the basic

survival analysis, OASIS provides various statistical methods such

as Kaplan-Meier statistics, mean and median survival time,

survival and log cumulative hazard plots for depicting the

characteristics of each dataset (Figure 2). For statistical compar-

isons of different survival datasets, OASIS performs hypothesis

testing such as log-rank test, Fisher’s exact test, Kolmogorov-

Smirnov test, and Neyman’s smooth test (Figure 3). In particular,

survival time F-test, partial slopes rank-sum test, and normalized

chow test are novel testing methods for the comparison of the

shape of survival or hazard functions. Furthermore, OASIS

generates hazards regression that can evaluate the effect of several

risk factors (Figure 4). By using these outputs produced by OASIS,

users can interpret survival data comprehensively.

Statistical testing for differences in the length of lifespan
A comprehensive comparison of survival datasets between an

experimental group and a control group is important to determine

the effects of experimental treatments on survival. For example,

some drug treatments can only increase the average survival time,

whereas others can increase both average and maximum survival

times. Therefore, to distinguish these differences OASIS provides

various statistical comparison methods (Figure 3). For example, the

statistics of average survival time can be obtained by using log-

rank test, whereas those of a specific time point can be obtained by

using Fisher’s exact test [13]. OASIS provides log-rank test,

Fisher’s exact test, and other tests that are explained in the

followings.

1.1 Log-rank test. Mantel-Cox test, so-called log-rank test, is

a kind of nonparametric test that is frequently used for comparing

two survival functions through overall lifespan data [7,8,14–17].

The log-rank statistics in two groups such as an experimental and a

control groups is calculated as follows.

x2~

X
i:tiƒt

(di{ei)

2
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2

X
i:tiƒt

Var(di{ei)
;

Var(di{ei)~
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ni
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;

where di is the number of deaths in group 1, and ei (estimated as

din1ið Þ=ni) is the number of expected deaths in group 1. n1i is the

size of the population of group 1 at risk during the ith interval, and

ni is the total size of population at risk during the ith interval.

1.2 Fisher’s exact test. Fisher’s exact test is frequently used

in survival analysis [6,13,18–24]. To test different survival

functions at specific time points instead of overall lifespan, the

program can calculate the probability of observed data with

Fisher’s exact test at different time points using the following

formula.

pt~
azb

a

 !
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c

 !,
azbzczd
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~

(azb)!(czd)!(azc)!(bzd)!

(azbzczd)!a!b!c!d!

;

where a and b are the numbers of living subjects in group 1 and

group 2 respectively and c and d are that of dead subjects in group

1 and group 2 respectively at the specific time t. P-value of Fisher’s

exact test is calculated as the sum of probabilities less than or equal

to pt of all combinations. Generally, 90% mortality rate is used for

Fisher’s exact test. However, in some cases, comparisons between

two datasets at 90% mortality show no statistically significant

difference because of several reasons including drastic death at an

old age. This suggests that one might want to put more emphasis

on earlier deaths than later ones because later deaths might result

from causes unrelated to normal aging.

1.3 Weighted log-rank test. As mentioned in the previous

paragraph, one might want to put more emphasis on earlier deaths

than the later ones or vice versa. To generalize log-rank test for

these needs, Fleming and Harrington developed G(rho, gamma)-

weighted log-rank test [25,26]. The weighted test statistics is

calculated by the following equation.

x2~

X
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wi(di{ei)
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;

where wi represents the G(rho, gamma) weight defined as S(t)rho(1-

S(t))gamma. Generally if rho .0 and gamma = 0, the test is sensitive

to early differences, whereas if rho = 0 and gamma .0, the test is

sensitive to later differences [26].

Statistical testing for differences in the shape of hazard
function

2.1 Kolmogorov-Smirnov test. While the log-rank test is

commonly used for comparing survival data between samples, it is

optimized for special assumptions on the underlying distributions

such that the hazard ratio or relative risk l2(t) / l1(t) is constant in

time t. In that case, a log-rank test generally gives optimal results.

However, one may need statistical tests that do not depend on the

distribution of survival data. The Kolmogorov-Smirnov test is

suitable for this purpose so that it robustly works in the condition

where the hazard functions l1(t) and l2(t) cross over through time

t. The Kolmogorov-Smirnov test is based on the following

equation.

Online Application for the Survival Analysis
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Figure 1. Statistical components of the OASIS. (A) Overall flowchart of survival analysis (B) Input for basic survival analysis and statistical testing.
Observed data have at least three columns; time after observation started, the number of dead subjects, and the number of censored subjects during
the interval. (C) The web application provides a uniform platform that comprises of three analysis parts: basic survival analysis, statistical testing, and
Cox proportional hazards regression.
doi:10.1371/journal.pone.0023525.g001
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D½0,t�~ sup
0ƒtƒt

S1(t){S2(t)j j ;

where sup represents a supremum of a set that gives the smallest

real number that is greater than or equal to every number in the

set and D represents the largest absolute vertical deviation. OASIS

adopted surv2.ks function implemented in the R packages [27] to

provide Kolmogorov-Smirnov test. We note that the Kolmogorov-

Smirnov test in OASIS is not applicable to survival data that

contain tied observations [e.g. multiple events (deaths or failures)

during an observed time interval]. OASIS provides a warning

message if there is any tied observation in survival data within or

between samples.

2.2 Neyman’s smooth test. Another statistical comparison

method for detecting a wide spectrum of alternatives is Neyman’s

smooth test. It was developed to test the homogeneity of two

different survival data by comparing a null model, S1(t) = S2(t) to

various alternative models. The alternative models embedded the

null model with Legendre polynomials based on Neyman’s

goodness-of-fit idea as the following equation.

S2(t)~S1(t) expfhT y(t)g ;

where h = (h1,…, hd)T is a parameter set of bounded functions y
(t) = (y1(t), …, yd(t))T, which models possible differences between

S1(t) and S2(t). Therefore, if h = 0, null hypothesis is accepted.

Since the Neyman’s smooth test selects optimal smooth model in

Legendre polynomials with Schwarz’s selection rule, it is different

from Kolmogorov-Smirnov test with respect to providing an idea

of the types of difference between two survival data [28]. The

selected dimension represents a type of difference between S1(t)

and S2(t). If the selected dimension (d) is 1, this suggests that S1(t) is

Figure 2. Results of basic survival analysis. (A) The output of Kaplan-Meier estimator. (B) Mean/median survival time of data. Survival time at
25%, 50%, 75%, 90%, and 100% mortality are shown. (C) Survival and log cumulative hazard plots.
doi:10.1371/journal.pone.0023525.g002

Online Application for the Survival Analysis

PLoS ONE | www.plosone.org 4 August 2011 | Volume 6 | Issue 8 | e23525



different from S2(t) by the constant hazard ratio. If the selected d is

2, the relationship between two samples is likely to be monotonic.

If the selected d is 3, the relationship between two samples is likely

to have a convex or a concave form. OASIS adopted surv2.neyman

function implemented in the R packages [28] to provide the

Neyman’s smooth test. Similar to the Kolmogorov-Smirnov test,

the Neyman’s smooth test is not currently applicable when there

are tied observations in survival data.

2.3 Chow test. Chow test, a variant of F-test, was invented

by economist Gregory Chow to test whether the coefficients in

two linear regressions on different data sets are same or not

[29]. This test is generally used for detecting structural break

that is an unexpected shift in time series data. In OASIS, we

used this analysis for detecting structural differences between

two different log cumulative hazard functions by using the

following equation.

F~
(RSSp{(RSS1zRSS2))=k

(RSS1zRSS2)=(N1zN2{2k)
;

where RSSp represents the sum of squared residuals from pooled

log cumulative hazard data. RSS1 and RSS2 represent the sum of

squared residuals from two different log cumulative hazard data

respectively. N1 and N2 are the numbers of observation in each

data and k, which is 3 in this case, is the total number of

Figure 3. Results of statistical testing and input format. Output of statistical tests for differences in lifespan data between samples.
doi:10.1371/journal.pone.0023525.g003
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parameters of linear regression model. The test statistic follows the

F distribution with (k, N1 + N2 – 2k) degrees of freedom.

Statistical testing for differences of the variances in
survival time

3.1 Survival time F-test. We provide survival time F-test,

which is used to examine whether two normal populations have

the same variance or not. Because censored data are generally

used in survival analysis, one can estimate the number of dead

animals using survival function S(t) and then perform F-test for the

comparison of variances of two different survival data. The F-test

is used under the condition that the survival times of individuals

follow a normal distribution. As a normality check method for a

given dataset, we provide the Shapiro-Wilk test in the OASIS

website. If the P-value generated by the Shapiro-Wilk test is

smaller than 0.01, then the chance of survival data following the

normal distribution is less than 0.01. In that case, we provide a

warning message because the results of F-test are not applicable.

3.2 Partial slopes rank-sum test. We devised another

statistical test method for comparing the differences in the slopes of

two log cumulative hazard plots. We calculated partial slopes of the

log cumulative hazard plot. With null hypothesis that two different

log cumulative hazard plots have same slopes, we conducted rank-

sum tests with set of partial slopes as following definitions.

D1~f
ln ({ ln (S1(ti))){ ln ({ ln (S1(ti{1)))

ti{ti{1

ji~2:::kg;

D2~f
ln ({ ln (S2(tj))){ ln ({ ln (S2(tj{1)))

tj{tj{1
jj~2:::lg;

where D1 and D2 are sets of partial slopes of each group. These sets

are compared with rank-sum test.

Figure 4. Results of the Cox proportional hazard regression and input format. (A) Input for Cox proportional hazard regression. Observed
data have at least three columns; observed time, the status of events (dead or censored), and the values of risk factors. (B) Output of Cox proportional
hazard regression.
doi:10.1371/journal.pone.0023525.g004
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The partial slopes rank-sum test is based on a non-parametric

statistics that requires sufficient number of samples (in this case,

partial slopes) for the reliable analysis. Since a partial slope is

defined as the changes in log cumulative hazard divided by the

corresponding change in survival time between two neighbouring

time points, the number of observed time points rather than the

total sample size is important for this non-parametric analysis. To

obtain statistically meaningful results, at least six observed time

points are needed.
3.3 Normalized chow test. Chow test is used for testing

whether the coefficients in two linear regressions on different

datasets are same or not [29]. However, researchers who perform

survival analysis tend to be interested in examining the difference

in slope rather than in determining the difference in y-intersect.

For this purpose, before conducting Chow test, we normalized the

log cumulative hazard data to have a mean of zero. In this case,

the linear regression of each dataset has zero y-intersect. Thus, one

can examine the differences in the slopes of datasets and pooled

data. We verified the difference in the lifespan variations through

normalized Chow test, a statistical test that examines whether the

coefficients of two linear regressions on different normalized data

sets are equal. Similar to the log-rank test, the assumption is that

survival rate is constant over time to apply the normalized Chow

test.

Application of basic survival analysis to experiments
As a test case, we analyzed a lifespan dataset of the roundworm

C. elegans using OASIS. Mutations in daf-2, which encodes an

insulin/IGF-1 receptor homolog, extend the lifespan of C. elegans

[30,31]. The FOXO transcription factor DAF-16 is required for

daf-2 mutants to live long [32-35]. We measured the lifespan of

wild-type and daf-2(e1370) mutant animals with or without

knocking down the daf-16 transcription factors using RNA

interference. OASIS provided the result that daf-2(e1370)

mutation significantly extended lifespan and decreased mortality

rate (Figure 5). By using OASIS, we generated the survival and log

cumulative hazard plots that illustrated these differences (Figure 5).

Among the groups of our experiments, only daf-2(e1370) mutants

showed a different survival pattern from others using these graphs.

The survival curve of daf-2(e1370) mutants was shifted to the right

compared to others (Figure 5A). In addition, the y-intercept in the

log cumulative hazard plot of daf-2(e1370) mutants was smaller

than those of others (Figure 5B). To statistically validate these

results that daf-2(e1370) mutants live long, we compared the mean

lifespan and conducted various statistical tests. The mean lifespan

of daf-2(e1370) mutants is larger than 30 days, whereas those of

other groups are approximately 20 days (Table 1). By using log-

rank test and Fisher’s exact test, we determined the statistical

significance of these lifespan differences. By using log-rank test, we

showed that the wild type and daf-2(e1370) have significantly

different mean lifespans (P,1.0610210), whereas the wild type

and daf-2(e1370) mutants treated with daf-16 RNAi have similar

mean lifespans (P = 0.113). In addition, proportions of survivors at

specific time points can be compared by using Fisher’s exact tests.

These statistical analyses acquired by using OASIS are consistent

with previous reports [30–35]. Furthermore, we examined the

OASIS analysis by comparing with publicly available datasets and

confirmed its validity (Table S2).

Advanced statistical analyses for the comparison of
variances in survival data

To examine the usefulness of advanced statistical methods in

OASIS, we conducted a model-based test to show how different

statistical methods implemented in OASIS work on complex

survival variations that are beyond the reach of conventional

analysis. Three different types of hypothetical survival datasets, A,

B and C were generated for developing this test (Figure 6).

Datasets A and B have the same mean lifespans (20 days) but

different lifespan variances (2 days for A; 4 days for B), whereas

dataset B and C have the same lifespan variances (4 days) but

different mean lifespans (20 days for B; 30 days for C). The

characteristics of each dataset were depicted in the survival

(Figure 6A) and log cumulative hazard plots (Figure 6B) where the

differences of lifespan variations were not evident. It is difficult to

distinguish lifespan variations using conventional methods for

survival analysis. Specifically, log-rank test was suitable for the

comparison of mean lifespan, whereas Neyman’s test was effective

to distinguish structural differences between two survival curves

(Figure 6C). In contrast, three statistical methods that we

implemented in OASIS, the survival time F-test, partial slopes

rank-sum test, and normalized Chow test, were able to

discriminate the variances in the lifespan data (Figure 6C).

Figure 5. Survival analysis of wild-type and daf-2 mutant
C. elegans in combination with daf-16 RNA interference. (A)
Survival plots and (B) log cumulative hazard plots of wild type, daf-2
mutant [daf-2(e1370)], daf-16(RNAi), and daf-2 mutant treated with daf-
16 RNAi [daf-16(RNAi); daf-2(e1370)] animals.
doi:10.1371/journal.pone.0023525.g005
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We then applied these statistical methods to survival experi-

ments with C. elegans. We analyzed the lifespan data of daf-2(e1370)

mutant C. elegans treated with RNAi targeting daf-16/FOXO or

with RNAi targeting mag-1, which encodes a C. elegans homolog of

Drosophila mago nashi known to regulate hermaphrodite germ-line

sex determination [36]. We found that both daf-16 RNAi and mag-1

RNAi in daf-2(e1370) mutant background significantly shortened

lifespan compared to control RNAi (P,1.0610210, log-rank test)

(Figure 7A). We found that daf-16 RNAi- and mag-1 RNAi-treated

daf-2(e1370) mutants have similar mean lifespans (P = 0.82, log-rank

test). However, the analyses of lifespan variances using OASIS

revealed that mag-1 RNAi resulted in a significantly different

variance in lifespan compared with daf-16 RNAi (Figure 7B,

P,1.0610210, survival time F-test; P,0.05, partial slopes rank-sum

test; P,1.0610210, normalized Chow test). As another example, we

analyzed the lifespan datasets of wild-type and tax-2(p671); isp-

1(qm150) double mutant C. elegans, which has mutations in tax-2 [a

subunit of a cyclic-nucleotide gated calcium channel] and isp-1 [an

iron-sulfur protein in complex III in the respiratory chain]. In our

previous report, we showed that the mean lifespan values of these

two lifespan datasets were similar (P = 0.12, log-rank test) but the

lifespan curves crossed with each other [37]. Using OASIS, we

found that the difference of variances in lifespan between these two

datasets is statistically significant (P,1.0610210, survival time F-

test; P,0.05, partial slopes rank-sum test; P,0.05, normalized

Chow test). Together, these analyses indicate that our advanced

statistical methods are useful for distinguishing the differences in

lifespan variances. Moreover, the results shown here using C. elegans

mutants or RNAi suggest that genetic components underlie at least

in some cases of the lifespan variances.

Discussion

Rigorous analysis of survival data is crucial for aging research.

Several statistical tools for survival analysis are available (Table

S3), but for the first time, we provide OASIS for the

comprehensive analysis of survival data including generation of

KAPLAN-MEIER statistics, visualization of survival and log

cumulative hazard plots, statistical test of hypothesis, and hazards

regression. OASIS is based upon Django [38], python-based web

framework, and R statistical environment [27] to integrate

essential and advanced statistical features as well as a user-friendly

graphical interface for survival analysis.

Historically, comparison of average survival time was predom-

inantly used for the analysis of survival data. However, in many

cases of survival data comparisons as shown in our examples

(Figure 7), two survival curves with obviously different shapes may

have similar mean survival times and therefore researchers may

conclude that the differences in the survival datasets are not

statistically significant. As described recently [10], even a

population of organisms with relatively homogeneous genetic

and environmental factors showed gradual lifespan curves instead

of sharp precipitated line. Stochastic factors including epigenetic

switch and noisy gene expression [10] and/or genetic components

[12] may underlie this phenomenon and it will be crucial to

identify and to characterize these factors in the future. Here, we

provide advanced statistical methods for analyzing the differences

in variances among survival datasets and we believe these methods

will be useful to objectively quantify the variances based on

statistical significance.

For proper survival analysis, OASIS users should consider

underlying statistical assumptions. For example, log-rank test is

Table 1. Statistical analysis for the lifespan data of daf-2 mutants in combination with daf-16 RNAi knock down.

Statistics

Name No. of subjects Restricted mean Age in days at % mortality (days)

Days Std. Err. 95% C.I. 25% 50% 75% 90% 100%

Wild type 52 19.35 1.07 17.24,21.45 15 18 25 30 32

daf-2(e1370) 223 32.87 0.64 31.63,34.12 29 34 39 41 -

daf-16(RNAi) 127 17.74 0.43 16.91,18.57 15 18 22 25 28

daf-16(RNAi); daf-
2(e1370)

366 20.84 0.46 19.94,21.73 15 21 24 29 39

Comparison between samples

Type Name Log-rank test Fisher exact test at % mortality (P-value)

x2 Prob . x2 25% 50% 75% 90%

Control Wild type

daf-2(e1370) 119.2 0.00E+00* 4.04E-11 1.09E-13 7.53E-07 9.35E-05

daf-16(RNAi) 5.03 2.50E-02 1.00E+00 2.52E-01 6.03E-02 3.69E-03

daf-16(RNAi); daf-2(e1370) 2.51 1.13E-01 5.55E-02 4.15E-01 1.83E-01 2.59E-02

Control daf-2(e1370)

Wild type 119.2 0.00E+00* 4.04E-11 1.09E-13 7.53E-07 9.35E-05

daf-16(RNAi) 206.8 0.00E+00* 1.16E-13 1.10E-12 8.49E-13 1.06E-10

daf-16(RNAi); daf-2(e1370) 146.1 0.00E+00* 2.69E-10 9.56E-13 1.60E-12 5.06E-02

Users can compare restricted mean and ‘‘maximum survival time,’’ which is generally the 90th percentile of survival. C.I. indicates confidence interval. In the case of daf-
2(e1370) the age in days at 100% mortality (days) was not determined ‘‘-’’, because the last individual C. elegans that survived was censored. * The log-rank test in OASIS
provides ‘0.00E+00’ when P,1.0610210.
doi:10.1371/journal.pone.0023525.t001
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suitable when the baseline survival rate is not changing over time. In

addition, three advanced statistical tests, the survival time F-test,

partial slopes rank-sum test and normalized chow test, are used to

identify the differences in lifespan variations based on specific

assumptions. In the statistical testing, OASIS automatically generates

all pair-wise comparison results, which may increase type I error [39].

To adjust multiple testing, OASIS provides the corrected P-values

with Bonferroni method, one of the most commonly used correction

methods for multiple statistical comparisons. Together with the

consideration of these assumptions, performing lifespan experiments

in several times independently will give reliable results for

distinguishing the differences in lifespan variations.

Availability and Requirements
The software is available for public use at http://sbi.postech.ac.

kr/oasis.

Figure 6. Advanced statistical results analyzing the differences of survival variations using hypothetical datasets. (A) Survival plots
and (B) log cumulative hazard plots of different types of hypothetical survival data. (C) Concept figures of each statistical test are illustrated. P-values
of each statistical test are shown. Significant differences are indicated as bold font in red.
doi:10.1371/journal.pone.0023525.g006

Figure 7. Examples of lifespan variations among experimental datasets. (A) Survival plots of daf-2(e1370) mutants treated with control
RNAi, mag-1 RNAi, and daf-16 RNAi. (B) Gaussian fitting curves for the survival time F-test that analyzes the variances of daf-2(e1370) mutants treated
with control RNAi, mag-1 RNAi, and daf-16 RNAi.
doi:10.1371/journal.pone.0023525.g007
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Because researchers’ unpublished data are uploaded to the

website, OASIS encrypts input data and does not permit access of

other users to ensure security and privacy.

Methods

Basic survival analysis
To estimate survival time as the area under the survival curve, it

is necessary to characterize the survival function which is a

probability of death after some specific time t.

S(t)~P(Twt);

where t is some specific time, T is a random variable of the time,

and P denotes the probability of death.

Generally, we only observe censored data that include missing

subjects. To consider these missing subjects, the Kaplan-Meier

estimator was proposed in 1958 [40,41] for right censored data

analysis. The survival function S(t) is estimated in the Kaplan-Meier

method as following formula.

S
_

(ti)~ P
j:tjƒti

p
_

j~ P
j:tjƒti

(1{
dj

nj

);

where p
_

j is the conditional probability of survival during the jth

interval, dj is the number of deaths and nj is the size of the

population at risk during the jth interval.

Using the Kaplan-Meier estimator, OASIS gives various outputs

such as variance of survival function, mean and median lifespan,

lifespan at % mortality, survival plots, and log-cumulative hazard

plots (Figure 2). These outputs generally describe the character-

istics of survival data. For example, the slope of log-cumulative

hazard plots indicates the age-dependent increase in death rate

and the Y-intercept represents the hazard rate at the beginning of

the observation. More detailed explanations are in the Text S1.

Cox proportional hazard regression
Whereas a hypothesis testing is useful for comparing survival

data among two or more groups, Cox proportional-hazards

regression is suitable for analyzing the proportional effects of

several risk factors on survival [42]. OASIS provides Cox

proportional hazards regression, which can evaluate the effect of

several risk factors such as sex, age, and weight on survival

(Figure 4B). Mortality rate can be explained by the proportional

sum of risk factors. Cox formulated semi-parametric model with

the following equation.

hi(tjXi,1,:::,Xi,k)

~h0(t) exp (b1Xi,1zb2Xi,2zb3Xi,3:::zbkXi,k)

~h0(t) exp (bT Xi);

where Xi,1, …, Xi,k represent k risk factors that are assumed to act

independently, b1, …, bk are their regression coefficients, h0(t) is

the baseline hazard at time t, and i is a subscript for observation.

OASIS provides standard Cox proportional-hazards regression

and robust methods [43] (Text S1). Both methods provide

regression coefficient of risk factors and their statistical signif-

icance.

To identify risk factors that explain hazard function with

proportion, the input data format should be different from that of

survival analysis. As shown in Figure 4A, OASIS takes following

format of input data for Cox proportional hazards regression in

the given order; the name of fields and observed data. The line

starting with ‘‘%’’ sign indicates the name of fields. Observed data

have at least three columns; observed time, the status of events

(dead or not), and the values of risk factors. Other columns are

considered as the values of risk factors. These columns are

separated with tabs.

Supporting Information

Text S1 Detailed explanations of statistical methods for
survival analyses
(PDF)

Table S1 Statistical methods used for survival analyses
(PDF)

Table S2 Comparisons of OASIS results with reference
data
(PDF)

Table S3 Web-based statistical methods for survival
analysis
(PDF)
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