It is the cache of ${baseHref}. It is a snapshot of the page. The current page could have changed in the meantime.
Tip: To quickly find your search term on this page, press Ctrl+F or ⌘-F (Mac) and use the find bar.

Silver nanoparticles embedded in zeolite membranes: release of silver
skip to content
Dovepress - Open Access to Scientific and Medical Research
View our mobile site

14804

Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action



Original Research

(7076) Total Article Views


Authors: Nagy A, Harrison A, Sabbani S, Munson,Jr. RS, Dutta PK, Waldman WJ

Published Date September 2011 Volume 2011:6 Pages 1833 - 1852
DOI: http://dx.doi.org/10.2147/IJN.S24019

Amber Nagy1, Alistair Harrison2, Supriya Sabbani3, Robert S Munson, Jr2, Prabir K Dutta3, W James Waldman1
1Department of Pathology, The Ohio State University; 2Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, 3Department of Chemistry, The Ohio State University, Columbus, OH, USA

Background: The focus of this study is on the antibacterial properties of silver nanoparticles embedded within a zeolite membrane (AgNP-ZM).
Methods and Results: These membranes were effective in killing Escherichia coli and were bacteriostatic against methicillin-resistant Staphylococcus aureus. E. coli suspended in Luria Bertani (LB) broth and isolated from physical contact with the membrane were also killed. Elemental analysis indicated slow release of Ag+ from the AgNP-ZM into the LB broth. The E. coli killing efficiency of AgNP-ZM was found to decrease with repeated use, and this was correlated with decreased release of silver ions with each use of the support. Gene expression microarrays revealed upregulation of several antioxidant genes as well as genes coding for metal transport, metal reduction, and ATPase pumps in response to silver ions released from AgNP-ZM. Gene expression of iron transporters was reduced, and increased expression of ferrochelatase was observed. In addition, upregulation of multiple antibiotic resistance genes was demonstrated. The expression levels of multicopper oxidase, glutaredoxin, and thioredoxin decreased with each support use, reflecting the lower amounts of Ag+ released from the membrane. The antibacterial mechanism of AgNP-ZM is proposed to be related to the exhaustion of antioxidant capacity.
Conclusion: These results indicate that AgNP-ZM provide a novel matrix for gradual release of Ag+.

Keywords: silver nanoparticles, zeolite, antibacterial agent, oxidative stress


Post to:
Cannotea Citeulike Del.icio.us Facebook LinkedIn Twitter


Readers of this article also read: