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In a previous paper, the convergence of the effective field theory approach of Furnstahl, Serot
and Tang to the nuclear many-body problem was studied by applying it to selected doubly-magic,
and neighboring single-particle and single-hole, nuclei far from stability. The success of that ap-
proach, interpreted through density functional theory, would imply reliable densities. In this paper,
the single-particle (Kohn-Sham) wave functions are probed using weak transitions near the Fermi
surface. The weak currents are the Noether currents derived from the effective Lagrangian. The
general single-particle transition matrix elements, from which any semi-leptonic weak rate can be
calculated, are obtained in terms of upper and lower components of the Dirac wave functions. Here
beta-decays in nuclei neighboring 132Sn are studied and compared with available experimental data.
Calibration of the theoretical results for such decays may also have useful application in element
formation.

INTRODUCTION

In a recent paper [1] the convergence of calculations to
experimental results at different levels of approximation
from a new approach to the nuclear many-body problem
was studied. This approach combines the principles of
Effective Field Theory (EFT) with Density Functional
Theory (DFT). The results of that work showed that the
total binding energy of even-even Sn isotope nuclei can be
reproduced below the 1% level. In addition to this agree-
ment for the total binding energy of the doubly-magic
nuclei 132

50Sn82,
100
50Sn50,

78
28Ni50 and 48

28Ni20, the chemical
potential for neighboring nuclei, differing by one particle
or hole from the doubly-magic ones, was also well repro-
duced below the 10% level. The agreement in binding
energies shows that the energy functional derived from
the effective lagrangian of Furnstahl, Serot and Tang [2]
is indeed a good approximation and thus, according to
DFT, the ground-state densities obtained in each case
are also a good approximation to the true ground-state
densities. Although in [1] both proton and neutron den-
sities for 132Sn and 100Sn were presented, there has been
no direct measurement of either of them and thus the
comparison with experiment has not yet been established
directly.

In the Kohn-Sham approach, the ground-state density
is constructed from single-particle wave functions, ob-
tained by solving the Kohn-Sham equations of the sys-
tem. These equations are the energy eigenvalue equa-
tions for a system of non-interacting particles subject to
a local external potential. Except for the energy eigen-
value close to the Fermi surface (i.e. the energy necessary
to extract one particle from the system) all other en-
ergy eigenvalues have no direct physical meaning. If the
single-particle (hole) energy at the Fermi surface agrees
with experiment, one can assume that the wave function
associated with it must also be a good approximation.
In this paper the validity of the last statement is stud-
ied, and in an indirect way the accuracy to which the

ground state density is reproduced. The wave functions
describing one particle outside a doubly-magic core or
one hole in a doubly-magic core are used to calculate var-
ious β-transition rates. These wave functions represent
the initial or final nuclear states (in coordinate represen-
tation) in these transitions. Here, based on the above
arguments, an accurate description of the wave function
is assumed to be guaranteed by the accuracy with which
its binding energy is reproduced. Therefore the ideal case
of study corresponds to a ground-state to ground-state
transition, since in these cases there is a closer agreement
with the experimental energy values. Wave functions of
excited states will be less accurate as these states lie far-
ther away from the Fermi surface and thus their energy is
not well reproduced. Furthermore, it is expected that the
particle-particle transition will give a cleaner result since
the description of a particle outside the doubly-magic
core can be well approximated by a single-particle wave
function. The description of a hole, on the other hand,
is more complicated since it represents a more complex
many-body state and its description by a single-particle
wave function might be expected to be less accurate.
Using the results obtained in [1] and the available ex-
perimental data, this paper focuses on the core nucleus
132
50Sn82 and its single-particle and single-hole neighbors

133
50Sn83,

131
50Sn81,

133
51Sb82 and 131

49 In82. Using these nu-
clei, the two types of transitions, particle-particle and
hole-hole, can be investigated and compared with exper-
imental results to validate the observations made above.
The first case, i.e. the particle-particle transition, corre-
sponds to the β-decay process 133

50Sn83 → 133
51Sb82+e

−+νe

and the second one, the hole-hole case, to the transition
131
49 In82→131

50Sn81 +e−+νe. In both cases ground-state to
ground-state transitions, as well as transitions from and
to low-lying excited states, are considered.

To study these processes a general expression describ-
ing semi-leptonic transitions has been obtained that in-
corporates the Dirac wave functions calculated by solv-
ing the Kohn-Sham equations derived from the effective
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lagrangian [1, 2]. The upper and lower components of
the Dirac spinors are then used to calculate the ma-
trix elements of the appropriate electroweak currents.
These currents are obtained from the same effective la-
grangian and correspond to the leading order Noether
currents [3, 4]. At any level of approximation in the effec-
tive lagrangian, the axial-vector currents satisfy PCAC
and show a pion-pole dominance [3]. The matrix ele-
ments of the currents thus constructed are used in a gen-
eral multipole expansion from which any semi-leptonic

weak interaction can be calculated [4]. This paper focuses
on β-decay rates. Applications to other semi-leptonic
processes are being considered for future work. The cal-
culated decay rates have been corrected for the screen-
ing effect from the valence electrons in the daughter nu-
cleus [5] and for the slowing down of the emitted elec-
trons due to the attractive Coulomb core (Fermi func-
tion). This last correction uses a relativistic description
of the electron and takes into account the effects of the
size of the nucleus [5].

Calculations of β-decay properties, like the half-live
(τ1/2) and β-delayed neutron emission (Pn), have been
done extensively using mainly the following models: gross
theory, quasi-particle random phase approximation (pn-
QRPA) and shell model calculations. Gross theory has
been used in large-scale calculations where the discreet-
ness of the final energy levels of the daughter nucleus
are smoothed out and different single-particle strength
functions (Gaussian, modified Lorentz) are used to cal-
culate the β-decay strength [6]. This approach has been
used to calculate both allowed and first-forbidden tran-
sitions using the Q-values from mass formulas as input.
Improvements to this model have been made in which
pairing and other shell effects are taken into account [7].
Shell model calculations are one of the most elaborate
methods used. In this type of calculation it is possi-
ble to incorporate multi-particle transition amplitudes,
which are uniquely determined by the specification of the
model Hamiltonian. Such an approach has the advantage
of predicting the state and mass dependence of observed
decay strengths making the results independent of any
mass formulas input. The disadvantage of this method
lies in the large matrices that have to be computed when
the number of nucleons increases, therefore its applica-
tions has been limited to small nuclei. A calculation for
proton-rich nuclei has been attempted for the cases of sd-
shell nuclei and can be found in [8]. The third approach,
pn-QRPA, has also been used in extensive calculations of
β-decay observables. This approach can be considered to
be between the shell model and gross theory. A descrip-
tion of the formalism for even-even mother nuclei, as well
as references, can be found in [9]. The extensions to odd
systems and odd nuclei can be found in [10] and [11].

From the above models used to calculate β-decay half-
lives, QRPA has shown to give good agreement with
experimental results. Some extensive calculations have

been performed [12, 13, 14] showing an agreement with
experiment within a factor of two. The calculations in-
cluded in [12] describe the β-strength function by apply-
ing the pn-QRPA method with a Gamow-Teller residual
interaction, the strength of which is fitted to experimen-
tally known half-lives of known isotopes for a fixed mass
number A. Pairing correlations are treated in the BCS
model using a constant pairing force and without taking
into account the Pauli blocking. The proton and neutron
gaps are equal and are taken from the values of global
systematics. In addition to this, spin-isospin ground-
state correlations are included. For very neutron-rich
nuclei only allowed Gamow-Teller transitions are consid-
ered and the influence of first-forbidden transitions on the
half-lives of nuclei far from stability is neglected. Nuclear
deformations also are taken into account using the Nils-
son model from which the wave functions of the parent
and daughter nuclei are calculated assuming the same
ground-state deformation for both. The main uncertain-
ties in these calculations come from the mass formulas
used as input, which in general become less accurate for
nuclei far from stability. The results obtained show an
agreement with experimental data for nuclei with short
half-lives (<1 s) with an average deviation of 1.4.

Other calculations have concentrated on some spe-
cific range of nuclei important for the r-process such
as those close to 132Sn, as in our case. In [15] an
analysis of the ground-state properties and τ1/2 of nu-
clei close to 132Sn is performed using the Hartree-Fock-
Bogoliubov plus BCS pairing approach (HFB+BCS). Al-
though some studies indicate that the nuclei in this region
are spherical, the calculations included both spherical
and deformed nuclei. Contributions from pairing using
a constant strength, zero-range force were also included.
Again here, only allowed GT transitions were calculated
and the GT strength function was obtained using the
method of a self-consistent treatment of the ground and
excited states of even-even and odd-A superfluid nuclei
solving QRPA-like equations in the finite Fermi-system
(FFS) theory. Using this method, the Qβ were also de-
termined and no additional mass formulas were used. A
density functional describing the nuclear system was used
with parameters fitted to stable nuclear properties ob-
taining three different sets. One of them was special-
ized to reproduce not only known ground-state proper-
ties of magic nuclei but also single particle energies of
132Sn. Details and additional references are given in [15].
A similar study [16], focused on nuclei in the r-process
path, used a general method that combines the micro-
scopic QRPA model for allowed GT β-decay with statis-
tic gross theory of first-forbidden decays. In general, the
results show that there is a much better agreement with
experiment when the first-forbidden transitions are in-
cluded, especially for large values of τ1/2. When the cal-
culated half-lives for a large range of nuclei were com-
pared with experimental results it was found that the
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quantity ln(τcalc/τexp) lies in the range 10-0.1.
Because of new data and improved methods to cal-

culate β-decay properties, there have been efforts to
compile the existing experimental, as well as calculated
data. In [17] such a compilation can be found which in-
cludes the most recent experimental data for half-lives
as well as the results from two different models: 1)
Kratz-Herrmann formula (KHF) and 2) Macroscopic-
microscopic QRPA.

Table I summarizes the results obtained from the
methods discussed above in the particular cases of the
nuclei 133Sn and 131In. Here one can appreciate the level
of agreement with experiment. The best agreement for
the decay of 133Sn is given by R3, with a ratio of calcu-
lated to experimental half-lives, τ1/2, equal to 0.87 or a
deviation of 13%. In the case of 131In, the best agree-
ments are obtained by KHF and R3 with a deviation of
22% and 18%, respectively.

All these models aim to reproduce the known exper-
imental β-decay half-lives as well as predict its value
for other nuclei, especially those far from stability. As
pointed out in [17], most of the models can be grouped
in two categories: those which give a mathematical ex-
pression (e.g. a polynomial) for the quantity of interest
and those based on an effective interaction. Models of the
first type have no direct link to the underlying nucleon-
nucleon interaction and do not give additional informa-
tion regarding the nuclear single-particle wave functions.
For models of the second type, these approaches use
different effective interactions fitted to better reproduce
the experimental β-decay data. In other cases, because
there is an overparametization of the effective interaction,
its relation with the nucleon-nucleon interaction is also
lost. Most of these models combine different approaches
and approximations to better reproduce the experimen-
tal data.

In general, it can be said that there is no consistent

theory that by fixing its parameters once, reproduces not

only the masses but also the single-particle levels and β-

decay properties of nuclei.
In this paper such a consistent approach is explored

and compared with experimental data for β-transition
rates of neighboring nuclei 132Sn . This approach corre-
sponds to a new theory that combines Density Functional
Theory and Effective Field theory, where an energy func-
tional is constructed which is consistent with the symme-
tries of QCD and whose parameters are fitted to proper-
ties of stable nuclei [2]. The single-particle wave functions
are obtained by solving the self-consistent Kohn-Sham
equations. In order to maintain a consistent approach,
the correct electroweak currents, needed to calculate the
β-transition rates, are derived from the same effective la-
grangian. These currents are the leading order Noether
currents. The axial-vector current satisfies PCAC at any
order in the effective lagrangian [3]. A comparison with
experimental data will give this approach its validation

and limitations as a calculational tool and will also test
implications of DFT regarding the single-particle wave
functions used to construct the ground state density in
the Kohn-Sham approach.

The results for the ground-state particle-particle β
transition rate show an excellent agreement with exper-
iment (to 5% in the case of the ground-state to ground-
state transition from 133Sn to 133Sb). This is in agree-
ment with the expectation that since the binding energy
of the nuclei and the single-particle energy close to the
Fermi surface of the particle outside the core are well re-
produced, then the single-particle wave-function are also
well reproduced. Transitions to excited states show a sys-
tematic deviation from experimental data, again in agree-
ment with the expectation about the wave functions of
those excited states. In the case of hole-hole transitions,
studied here, the results are less reliable.

The paper is organized as follows: in section 2 a gen-
eral expression for semi-leptonic transition rates in terms
of a multipole expansion and using Dirac wave functions
is presented; in section 3 this formulation is used to cal-
culate β-transition rates for selected nuclei and results
are compared with the existing experimental data; and
finally, section 4 contains the conclusions drawn from this
study.

GENERAL SEMI-LEPTONIC PROCESSES

The calculation of β-decay rates in this paper is based
on a general expression that can be applied to any semi-
leptonic process. In this section the derivation of that
expression is discussed. Much of the material presented
here follows [4].

The starting point is the interaction hamiltonian Hw

which for low energy processes, like β-decay, is described
by the semi-leptonic weak hamiltonian of the standard
model. This interaction hamiltonian is written down to
first order in the weak constant, G. This implies that lep-
tons are treated to this order but the strong interaction
part of the hamiltonian is treated to all orders. The in-
teraction hamiltonian is described by a current-current
form [25]

Hw = − G√
2

∫

d3xjlept
µ (~x)Jµ(~x) (1)

where jlept
µ (~x) is the lepton current and Jµ(~x) the

hadronic current. By taking matrix elements of this
hamiltonian between the initial and final states (lepton
and hadron) the leptonic and hadronic parts factorize
and the matrix elements of the leptonic currents can be
expressed by

〈fl|jlept
µ (~x)|il〉 = lµe

−i~q·~x (2)

where ~q = ~ke + ~kν is the momentum transferred in the
process and ~ke, ~kν are the corresponding electron and
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TABLE I: Calculated β-decay half-lives (in ms) of nuclei close to 132Sn.

Nuclei aKHF aQRPA-1 aQRPA-2 bDF2 bDF3 bR1 bR2 bR3 cGT cGT+ff dexp
133
50Sn83 362 9479 9479 9320 8200 823 10290 1260 - - 1450 ± 30
131
49 In82 216 146 146 390 350 394 1470 332 147.1 139.2 280 ± 30

aSee [17].
bSee [15].
cSee [16].
dSee [18, 19].

neutrino momenta. fl and il represent initial and final
lepton states. In addition, lµ = (~l, il0) and l3 = ~l · q̂,
where q̂ is a unit vector in the direction of ~q, i.e. ~q/|~q|.

Using the expression in Eq.(1) and making a multipole

expansion of the hadronic current to project irreducible
tensor operators, one arrives at the following expression
for the matrix elements [26]. In this and the following
equations the magnitude of ~q is defined by k = |~q|.

〈f |Hw|i〉 =
−G√

2
〈f |{−

∑

J≥1

√

2π(2J + 1)(−i)J
∑

λ=±1

lλ
[

λT mag
J−λ (k) + T el

J−λ(k)
]

+
∑

J≥0

√

4π(2J + 1)(−i)J [l3LJ0(k) − l0MJ0(k)]}|i〉 (3)

The four multipole operators occurring in the previous
expression are defined in the following way [4, 21]:

MJM (k) =

∫

d3x [jJ(kx)YJM (Ωx)]J0(~x) (4)

LJM (k) =
i

k

∫

d3x{~∇ [jJ(kx)YJM (Ωx)]} · ~J (~x) (5)

T el
JM (k) =

1

k

∫

d3x{~∇×
[

jJ(kx)~Y M
JJ1(Ωx)

]

} · ~J (~x) (6)

T mag
JM (k) =

∫

d3x
[

jJ (kx)~Y M
JJ1(Ωx)

]

· ~J (~x) (7)

The multipole operators have the vector–axial-vector
(V-A) structure. The general form of the hadronic cur-
rent is given by

Jµ = Jµ + Jµ5 (8)

and the different parts of the total current Jµ (vector
and axial) used in this paper are given by

Jµ = iψ†γ4γµψ +
(λp − λn)

2m

∂

∂xν
(ψ†γ4σµνψ) (9)

Jµ5 =

(

δµν +
1

m2
π − ∂α∂α

∂

∂xµ

∂

∂xν

)

FAiψ
†γ4γ5γνψ

(10)

where λp and λn are the anomalous magnetic moments
of the nucleon and ∂α∂α stands for the D’alambertian
operator. FA is taken as a constant, i.e. we consider
here small momentum transfers, and its numerical value
is -1.257. These currents are the leading currents as de-
scribed in [2, 3]. There are no additional contributions to
the one-body current coming from higher order terms in
the effective lagrangian [3]. The next contribution to the
current comes from two-body effects which are estimated
to be of the order of O(q/mπ), with q the momentum
transfer. Since the maximum value of q is of the order of
a few MeV, this contribution corresponds to a few percent
correction. Additional contributions, from still higher or-
der terms, are reduced by a factor of q/M , with M the
nucleon mass. These estimates do not take into account
the spin structure of these two-body currents, and the
actual correction will depend on a detailed calculation,
which lies beyond the scope of the present work [27].

In order to evaluate the nuclear matrix elements of the
four multipole operators it is necessary to define the ba-
sis wave functions that are going to be used. For this we
employ the wave functions obtained by solving the Kohn-
Sham equations corresponding to the effective lagrangian
that describes the nuclear many-body system. This la-
grangian and the corresponding Kohn-Sham equations
can be found in [1, 2].

At this point, the important aspect of the wave func-
tions used is that they are described by Dirac spinors and
thus the contributions of both upper and lower compo-
nents have to be taken into account to all orders. Both
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currents and wave functions are used without a non-
relativistic reduction. The form of the Dirac spinors is
given by

ψnκm(~x) =
1

r

(

iG(r)nκΦκm(Ωx)
−F (r)nκΦ−κm(Ωx)

)

ηt (11)

where Φκm(Ωx) are spin spherical harmonics defined by

Φκm(Ωx) =
∑

mlms

〈lml
1

2
ms|l

1

2
jm〉Ylml

(θ, φ)χms
(12)

and χms
are two-component spinors. ηt is a two com-

ponent isospinor describing either a proton or a neu-
tron [28].

The currents as well as the multipole operators have
a matrix structure (two by two block matrix) due to the
Dirac matrices included in them, mixing the upper and
lower components of the initial and final nucleon wave
functions. In what follows, the elements of the matrix
form of these multipoles play an important role and to
keep track of them they will be labeled as follows.

OJM =

(

dJM
1 bJM

bJM dJM
2

)

(13)

Using Eqs.(9) and (10) and the following matrix form
for the Dirac γ matrices (here the conventions of [4] are
used)

~γ =

(

0 −i~σ
i~σ 0

)

(14)

β =

(

1 0
0 −1

)

(15)

then the elements of the multipole matrices can be ob-
tained.

The matrix elements of the multipole operators shown
in Eq.(3) will mix the upper and lower components of
the Dirac wave functions as shown in the following ex-
pression. Here all quantum numbers referring to the final
state are indicated by a prime. Those corresponding to
the lower components of the wave functions, either from
initial or final states, are denoted by an underline. Thus
the Dirac wave function given in Eq.(11) is symbolically
written as

ψnκm(~x) =

(

i ψn(l1/2)jmj

− ψn(l1/2)jmj

)

(16)

Combining this with the matrix given in Eq.(13) one
obtains an expression for the matrix elements of the mul-
tipole operators between initial and final nuclear states

〈f |OJM |i〉 ≡ 〈j′m′
j |OJM |jmj〉

= 〈n′(l′1/2)j′m′
j |dJM

1 |n(l1/2)jmj〉

+〈n′(l′1/2)j′m′
j |dJM

2 |n(l1/2)jmj〉
+i〈n′(l′1/2)j′m′

j |bJM |n(l1/2)jmj〉
−i〈n′(l′1/2)j′m′

j |bJM |n(l1/2)jmj〉
(17)

where OJM represents any of the multipole operators oc-
curring in Eq.(3). By applying the Wigner-Eckard the-
orem to the above matrix elements a reduced formed is
obtained.

〈j′m′
j |OJM |jmj〉 =

(−1)j−mj

√
2J + 1

〈j′m′
jj −mj|j′jJM〉

× 〈j′‖OJ‖j〉
(18)

where the reduced matrix elements of OJM are given by:

〈j′‖OJ‖j〉 = {〈n′(l′1/2)j′‖dJ
1 ‖n(l1/2)j〉

+〈n′(l′1/2)j′‖dJ
2 ‖n(l1/2)j〉

+i(〈n′(l′1/2)j′‖bJ‖n(l1/2)j〉
−i〈n′(l′1/2)j′‖bJ‖n(l1/2)j〉)}

(19)

Each of these reduced matrix elements is composed of
a coefficient corresponding to the angular momentum
structure of the matrix element and a radial integral in-
volving the radial wave functions, G(r) and F (r) and
spherical Bessel functions. The angular momentum coef-
ficients are tabulated and can be found in [21, 22]. The
radial integrals were performed numerically.

Table II shows the form of each matrix element of every
multipole operator defined by Eqs.(4)-(7). Here we have
defined µ(k) = k(λp − λn)/2m and η(k) = 1− k2/(m2

π +
q2), where q2 = k2 − ω2

0 and k = |~q|. The quantity ω0 is
identified as the total decay energy.

Several new definitions taken from [21] have been used
in this table. They are reproduced here for completeness.

ΣM
J (k~x) = ~MM

JJ(k~x) · ~σ
Σ′M

J (k~x) = −i
{

1
k
~∇× ~MM

JJ(k~x)
}

Σ′′M
J =

{

1
k
~∇MM

j (k~x)
}

· ~σ
MM

J (k~x)

(20)

and where

MM
J (k~x) = jJ(kx)YJM (Ωx)

~MM
JL(k~x) = jJ (kx)~Y M

JL1(Ωx)
(21)

All reduced matrix elements of the multipole operators
are now given by combining Eq.(19) and the expressions
given in Table II. From the derivation given in [4], one
arrives at the following expression which is general for

any semi-leptonic process.

1

2j + 1

∑

m′

j

∑

mj

|〈f |Hw|i〉|2 =
G2

2

4π

2j + 1
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TABLE II: This table shows the matrix elements for each of the multipole operators. Here we have used the notation
µ(k) = k(λp − λn)/2m and η(k) = 1 − k2/(m2

π + q2), where q2 = k2 − ω2
0 and k = |~q|. Here ω0 is the total decay energy.

Multipole Operator dJM
1 dJM

2 bJM

MJM MM
J dJM

1 −iµ(k)Σ
′′M
J

M5
JM −i(ω0/k)[1 − η(k)]FA Σ

′′M
J dJM

1 FA MM
J

LJM 0 dJM
1 iΣ

′′M
J

L5
JM iη(k)FA Σ

′′M
J dJM

1 0

T el
JM µ(k)ΣM

J −dJM
1 iΣ

′M
J

T el,5
JM iFA Σ

′M
J dJM

1 0

Tmag

JM iµ(k)Σ
′M
J −dJM

1 ΣM
J

Tmag,5
JM η(k)FA ΣM

J dJM
1 0

×{
∑

J≥1

[(|〈j′‖T el
J ‖j〉|2

+|〈j′‖T mag
J ‖j〉|2)1

2
(~l ·~l∗ − l3 · l∗3)

−1

2
i(~l×~l∗)32Re(〈j′‖T el

J ‖j〉〈j′‖T mag
J ‖j〉∗)]

+
∑

J≥0

[l3l
∗
3 |〈j′‖LJ‖j〉|2 + l0l

∗
0 |〈j′‖MJ‖j〉|2

−2Re(l3l
∗
0〈j′‖LJ‖j〉〈j′‖MJ‖j〉∗)]}

(22)

The rest of this derivation, and the calculations done,
concentrate on β-transition processes. For this particular
semi-leptonic process the transition rate is given by

dω =
V 2

(2π)5
dΩǫdΩνkǫ(ω0 − ǫ)2dǫ

1

2j + 1
∑

lepton
spins

∑

m′

j

∑

mj

|〈f |Hw|i〉|2

(23)

where the ǫ and ν subscripts identify quantities related
to the electron and the neutrino, respectively, and ω0

is the total decay energy. In addition, V corresponds
to the volume of quantization for the lepton wave func-
tions, Ω is the solid angle in the direction of emission of
the lepton, either electron or neutrino, 2j + 1 is the sta-
tistical factor corresponding to the initial nuclear state
and mj corresponds to the projections of the total an-
gular momentum of the initial and final nuclear states.
Using Eq.(22) and evaluating the spin sums (i.e. lepton
traces) one arrives at the final expression that describes
β-transition rates [4].

dω =
V 2

(2π)5
dΩǫdΩνkǫ(ω0 − ǫ)2dǫ

4πG2

2j + 1

{
∑

J≥1

[(|〈j′‖T el
J ‖j〉|2 + |〈j′‖T mag

J ‖j〉|2)(1 − (q̂ · ~β)(q̂ · ν̂))

+ q̂ · (ν̂ − ~β)2Re(〈j′‖T el
J ‖j〉〈j′‖T mag

J ‖j〉∗)]

+
∑

J≥0

[(1 − ν̂ · ~β + 2(q̂ · ~β)(q̂ · ν̂))|〈j′‖LJ‖j〉|2

+(1 + ~β · ν̂)|〈j′‖MJ‖j〉|2

−q̂ · (ν̂ + ~β)2Re(〈j′‖LJ‖j〉〈j′‖MJ‖j〉∗)]}
(24)

where q̂ = ~q/|~q|, ν̂ = ~ν/ν and ~β = ~k/ǫ, ~q is the momen-
tum transfer, ~ν is the momentum of the neutrino and ν
its energy, ~k is the momentum of the electron and ǫ its
energy.

This expression can be integrated over the correspond-
ing phase-space to obtain the desired β-transition rate.
All the nuclear structure input to this formula is em-
bedded in the reduced matrix elements of the multipole
operators. These in turn are generally composed of four
terms as given by Eq.(19) and the expressions of Table II.
For the last part of this section a summary of the expres-
sions needed to evaluate these reduced matrix elements
is included.

As mentioned above, all reduced matrix elements of
the multipole operators are composed of two factors: one
corresponding to the angular momentum structure of the
matrix elements and the other corresponding to an inte-
gral over the initial and final wave functions weighted by
spherical Bessel functions. Their expressions are given
in [22].

〈n′(l′1/2)j′‖MJ(k~x)‖n(l1/2)j〉 =

(4π)−1/2AJ (l′j′; lj)〈n′l′j′|jJ(ρ)|nlj〉
(25)

〈n′(l′1/2)j′‖ΣJ(k~x)‖n(l1/2)j〉 =

(4π)−1/2DJ(l′j′; lj)〈n′l′j′|jJ(ρ)|nlj〉
(26)

〈n′(l′1/2)j′‖Σ′

J(k~x)‖n(l1/2)j〉 =

(4π)−1/2{−J1/2D+
J (l′j′; lj)〈n′l′j′|jJ+1(ρ)|nlj〉

+(J + 1)1/2D−
J (l′j′; lj)〈n′l′j′|jJ−1(ρ)|nlj〉}

(27)
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〈n′(l′1/2)j′‖Σ′′

J(k~x)‖n(l1/2)j〉 =

(4π)−1/2{(J + 1)1/2D+
J (l′j′; lj)〈n′l′j′|jJ+1(ρ)|nlj〉

+J1/2D−
J (l′j′; lj)〈n′l′j′|jJ−1(ρ)|nlj〉}

(28)

In all these expressions jJ (ρ) corresponds to a spherical
Bessel function of order J and argument ρ = kx. The
coefficients AJ , DJ , D+

J and D−
J are tabulated in [21,

22] for a large, but limited number of transitions. For
coefficients of transitions not included in these tables,
explicit expressions of the above coefficients in terms of
3-j and 6-j symbols can be found in [21] [29]. The integral
over the initial and final radial wave functions is given by

〈n′l′j′|θ(ρ)|nlj〉 =

∫ ∞

0

dr u(r)n′κ′θ(ρ)v(r)nκ (29)

Here θ(ρ) stands for the appropriate spherical Bessel
function and u(r) and v(r) for either the upper or lower
component of the Dirac wave function, i.e. either G(r)
or F (r) of Eq.(11), of the initial and final nucleon state.

RESULTS

The calculations of β-transition rates are done by nu-
merical integration of Eq.(24) over the electron and neu-
trino phase-space. These transition rates are very sensi-
tive to the exact decay energy ω0. Although the results
obtained for total binding energies of the nuclei involved
in this study agree within 1% of its experimental values,
here the calculations of the decay rates are done using the
experimental decay energies so as to take into account the
full phase-space available to the process. This way, no ad-
ditional uncertainties are introduced and the direct con-
tributions coming from the calculated nuclear wave func-
tions can be accounted for. The decay energies used here
are taken from [18, 19]. The Dirac wave functions used in
these calculations are solutions to the Kohn-Sham equa-
tions derived from the effective lagrangian given in [2]
using the G1 parameter set.

Two types of transitions are investigated in this pa-
per: 1) particle-particle and 2) hole-hole. The diagram-
matic representation of the transitions studied here are
shown in Fig. 1 for transitions of the particle-particle type
and in Fig. 2 for the hole-hole type. The level structure
indicated on the left side of each figure corresponds to
the results obtained using the EFT/DFT approach. On
the right are the measured levels. In both cases the en-
ergy levels are measured with respect to the ground-state
level, either the calculated (left) or experimental (right).
The results obtained give, for the nuclei considered in the
particle-particle transitions, the correct level ordering al-
though not the right splitting. This is in accord with

DFT with regard to excited states. On the other hand,
based on the agreement obtained for the ground-state
binding energies of the parent and daughter nuclei [1],
it is expected that the wave functions corresponding to
these states, i.e. 2f7/2 and 1g7/2 respectively, are a good
approximation. These particles are outside a filled core
and in this approach they only interact with it through
the mean-fields. An assumption has been made here that
these nuclei, with one particle outside its core, can be de-
scribed by spherically symmetric wave functions.

In the case of the nuclei considered here for hole-hole
transitions, several complications emerge. First, the level
ordering of the daughter nucleus, 131

50Sn81 is reproduced
except for the (2d3/2)

−1 state, which is the measured
ground-state. The calculated ground-state corresponds
to the 1h11/2 level, which lays approximately 200 keV
off the experimental value. Another complication arises
from the fact that there are no ground-state to ground-
state transitions in the hole-hole case, so a direct compar-
ison with the particle-particle situation cannot be made.
Here all transitions go from or to excited states. Yet
another complication comes from the assumption that
it is possible to approximate a hole state wave function
by a single-particle wave function. The hole state cor-
responds to an unfilled core, with one particle missing,
and no interactions among the particles in the unfilled
core have been taken into account beyond the mean-field
one. These three situations make it difficult to compare
the hole-hole type of transitions with experiment. Still
the results, as will be shown below, are not so different
than other calculations and in general follow the pattern
of behavior of the experimental transition rates.

The calculation of β-transition rates using Eq.(24) em-
ploys the initial and final nuclear wave functions. These
wave functions enter into the calculation in a different
form depending on the type of transition, i.e. particle-
particle or hole-hole. In the particle-particle case the ini-
tial and final wave functions correspond with the initial
and final nuclear states. For example, for the ground-
state to ground-state transition 133

50Sn83 →133
51 Sb82 the

initial and final wave function are 2f7/2 and 1g7/2 re-
spectively, see Fig. 1. Hole-hole transitions, on the con-
trary, can be interpreted as a particle transitions going
in the opposite direction [24]. Thus, for example, in the
transition 131

49 In82 →131
50 Sn81 going from ground-state to

the (1h11/2)
−1 state, the initial and final wave functions

would be (1h11/2) and (1g9/2) respectively [30].

Examples of the single-particle wave functions used in
the calculation of β-transition rates are given in Fig. 3
through 6. In these figures the upper and lower compo-
nents of the Dirac wave functions, i.e. the G(r) and F (r)
functions, are plotted simultaneously as a function of the
radial distance r, in Fermis.

The results of the calculation of β-transition rates for
the particle-particle type are shown in Fig. 7. These are
compared with experimental values for each of the tran-
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sitions. Here the calculated results are indicated with a
cross. It can be seen that the ground-state to ground-state

transition is well reproduced. The ratio of calculated to
experimental values is 1.05, or a deviation of 5%. The
other transitions go from the ground-state of the parent
nucleus to an excited state in the daughter nucleus.

The results for these transitions show systematically a
larger value of the decay rates compared with the exper-
imental ones. This agrees well with what is expected of
DFT. Since the calculations have been performed using
the experimental decay energies, the only input from the
EFT/DFT approach at this point has been the single-
particle Dirac wave functions. These, on the other hand,
are used to construct the nuclear ground-state densities
and since this quantity is in principle well reproduced,
the result of the ground-state to ground-state transition
serves as an indirect way of checking it.

Returning to the results for the ground-state to
ground-state transition in the particle-particle case,
Fig. 9 shows the dominant multipoles as a function of
the k = |~q|. The values ploted correspond to the square
of the magnitud of the multipoles defined in Eqs. (4)-(7).
The multipoles ploted correspond to values of J = 0 and
J = 1, with |M0(k)|2 being the most dominant term.
From this figure it is also clear that at low momentum
transfer the only non-vanishing multipoles are |M0(k)|2,
|T el

1 (k)|2 and |L1(k)|2, in accordance with the analysis
made in [4].

The results obtained in the hole-hole type of transi-
tions are shown in Fig. 8. In this case, the results are less
satisfactory than in the particle-particle case. The exper-

imental results are shown here as arrows indicating upper
limits to the decay rates. From the three cases calculated
here, only one lies within the experimentally determined
range. This transition corresponds to a ground-state to
excited state hole-hole transition. The two other cases
shown occur from ground-state to excited state and ex-
cited to ground-state respectively. Their numerical re-
sults are very similar. In these cases, there is no direct
ground-state to ground-state transition which makes it
difficult to compare with the particle-particle case.

CONCLUSIONS

This paper shows the results of calculations of the β-
transition rates of nuclei close to 132

50Sn182. These cal-
culations were inspired from the success of the results
obtained in a previous paper [1] dealing with the appli-
cation of the EFT/DFT approach to the nuclear many-
body system to nuclei far from stability. In reaching this
goal several important results have been obtained.

1. A general expression to calculate any semi-leptonic
process has been derived. The main equations and
definitions needed are given by Eqs. (19), (20)-(21),
(22), (25)-(28) and Table II. The nucleon wave
functions are the Dirac wave functions obtained
from solving the Kohn-Sham equations derived in
the EFT/DFT approach and considers relativis-
tic corrections to all orders in the nucleon wave
functions. Additionally, the electroweak currents
used correspond to the leading Noether currents ob-
tained directly from the same effective lagrangian.
In this sense, the calculation is self-consistent since
all relevant elements have been obtained directly
from a single theory.

2. The results of the β-transition rates calculated us-
ing this formalism agree within 5% with the experi-
mental values for the transition going from ground-
state to the ground-state in the particle-particle
case; see Fig. 7. DFT can reproduce ground-state
observables and since the results of the total bind-
ing energy of the parent and daughter nuclei essen-
tially agree with experiment, it would be expected
that the last particle in the system is well described.
The fact that the β-transition rates deviate system-
atically when the transitions go to excited states
gives additional support to this view.

3. The results of the β-transition rates in the case
of hole-hole transitions are less accurate than the
particle-particle case; see Fig. 8. Here the absence
of a pure ground-state to ground-state transition
does not allow a better assessment of the argument
given above for the particle-particle case. The fact
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that the true ground-state of 131Sn is not repro-
duced makes it even more difficult, although the
results obtained show at least the same pattern of
behavior as the experimental data.
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