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Abstract.

In the present work, the Eulerian Large Eddy Simulation of dilute disperse phase flows is in-
vestigated. By highlighting the main advantages and drawbacks of the available approaches in the
literature, a choice is made in terms of modelling: a Fokker-Planck-like filtered kinetic equation pro-
posed by Zaichik et al. 2009 and a Kinetic-Based Moment Method (KBMM) based on a Gaussian
closure for the NDF proposed by Vie et al. 2014. The resulting Euler-like system of equations is
able to reproduce the dynamics of particles for small to moderate Stokes number flows, given a LES
model for the gaseous phase, and is representative of the generic difficulties of such models. Indeed,
it encounters strong constraints in terms of numerics in the small Stokes number limit, which can
lead to a degeneracy of the accuracy of standard numerical methods. These constraints are: 1/as the
resulting sound speed is inversely proportional to the Stokes number, it is highly CFL-constraining,
and 2/the system tends to an advection-diffusion limit equation on the number density that has
to be properly approximated by the designed scheme used for the whole range of Stokes numbers.
Then, the present work proposes a numerical scheme that is able to handle both. Relying on the
ideas introduced in a different context by Chalons et al. 2013: a Lagrange-Projection, a relaxation
formulation and a HLLC scheme with source terms, we extend the approach to a singular flux as well
as properly handle the energy equation. The final scheme is proven to be Asymptotic-Preserving
on 1D cases comparing to either converged or analytical solutions and can easily be extended to
multidimensional configurations, thus setting the path for realistic applications.

Key words. disperse phase flows, large-eddy simulation, realizability, asymptotic preserving,
gaussian closure

AMS subject classifications.

1. Introduction. The simulation of disperse phase flows is nowadays of great
importance in several applications, such as automotive engines, aeronautical combus-
tors or fluidized beds. Actually, the modelling of such flows relies on the accurate
description of both the continuous carrier phase, gaseous or liquid, and the discrete
particulate phase, composed of particles or droplets.

In the context of small particles with respect to all carrier phase flow scales, the
modelling of the carrier phase could be envisioned at a Mesoscopic level [29], i.e. the
flow around each particle is not resolved and the coupling effects between particles
and the carrier phase are modeled using Mesoscopic closures, such as the Stokes law
for drag force. At this level, to solve the statistics of the disperse phase, a Population
Balance Equation (PBE) on the Number Density Function (NDF) can be used. The
NDF represents the probability of having a particle at a certain position of the phase
space, the phase space dimensions being the relevant properties of the particles, like
their position, velocity, size, temperature... To solve this equation, three approaches
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†Fédération de Mathématiques - FR CNRS 3487, Ecole Centrale Paris, Grande Voie des Vignes,

92295 Chatenay-Malabry, France
‡CNRS Laboratoire EM2C - UPR 288, Grande Voie des Vignes, 92295 Chatenay-Malabry, France
§Ecole Centrale Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry, France
¶Center For Turbulence Research, Stanford University, 488, Escondido Mall, Stanford CA 94305-

3035, USA

1

ar
X

iv
:1

40
3.

28
38

v1
  [

m
at

h.
N

A
] 

 1
2 

M
ar

 2
01

4
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are possible:
• Full resolution: the PBE is directly solved by discretizing the entire phase

space. This method is the most precise for compactly supported distributions,
but is too expensive for unsteady configurations when the phase space of the
particles is too large1;

• Direct Monte Carlo Simulation (DMSC): the NDF is sampled by an ensemble
of individual stochastic Lagrangian realizations, which are solved by means
of ODEs. This approach is less expensive than the full resolution, but may
also be limited by statistical convergence issues when the dimensionality of
the phase space is high and many realizations are needed;

• Moment methods: instead of solving for the NDF directly, moments of the
NDF are solved, which are integrals over the phase space. By reducing the
phase space to the physical space only, this method is computationally effi-
cient. However it requires an additional effort in terms of modelling, as the
integration step results in a loss of information.

In the present work, we are interested in moment methods, because of their com-
putational efficiency with regards to other approaches. One of the main issues with
moment methods is the accurate description of the velocity distribution of the par-
ticulate phase. Actually, in turbulent flows, the velocity distribution can drastically
change with the inertia of the particles, which can be quantified by the Stokes number
based on the Kolmogorov time scale. For Stokes number smaller than one, the NDF
is monokinetic, i.e. all particles at the same position have the same velocity, and
such a distribution can be uniquely determined using zero and first order moments,
i.e. density and momentum. For higher Stokes number, particles trajectories may
cross, and the velocity distribution is no longer a unique Dirac δ-function, and higher
order moments are needed. To handle these higher order moments, several methods
can be found in the literature, and can be split into two categories. On one hand,
Algebraic-Closure-Based Moment Methods (ACBMM) [2, 46, 55, 54] derive closures
for the second order moments using physical and/or mathematical assumptions. On
the other hand, Kinetic-Based Moment Methods (KBMM) close the system by using
a presumed shape for the NDF [48, 56, 17, 45, 72, 70, 71], which has as many pa-
rameters as the number of moments required to be controlled to describe the NDF
accurately. The choice between each type of closure is motivated by the structure
and the complexity of the encountered PTC, and is directly related to the number of
moments.

The moment methods are a powerful tool to simulate academic configurations,
but when it comes to complex configurations with a large spectrum of time and space
scales, the mesh size may become too large and the computation too expensive to be
achieved. To circumvent this issue, the Large Eddy Simulation is a powerful strategy:
by filtering the equations in space or frequency domain, the mesh requirements can
be significantly reduced. For the gas phase, the problem has been intensively studied,
see [68, 59, 58] for example. In this work this topic is not addressed, assuming that
the gas phase closures affecting the disperse phase are given, and that we are in a
sufficiently dilute regime to neglect the impact of the disperse phase on the gas phase,
i.e a one-way coupling regime. For the disperse phase, two types of approach can be
found in the literature, which differs by the filtering procedure:

• The first approach consists in deriving moment equations of the NDF, and

1For example for 3D simulations where the phase space is at least 6D, 3D for the position and
3D for the velocity of the particles.
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then filtering this system to obtain the filtered moment equations. This
method was investigated in [57], which proposes to use a Smagorinsky-like
approach. It had already been applied in academic and industrial applica-
tions [6, 53, 65]. The main issue is that the connection between the NDF and
the filtered moment equations is lost. Thus, the realizability of the moment
equations, that is the moment are always those of a positive NDF, is hard to
achieved;

• The second approach consists in filtering the kinetic equation, and then deriv-
ing moment equations on the filtered NDF. This approach was first envisioned
in [61], and has been also studied in the context of the Mesoscopic Eulerian
Formalism (MEF) [27] in [74]. The main interest of such an approach is that it
keeps a clear link between the kinetic level, which is in fact the filtered kinetic
equation, and the moment level, which is really helpful to devise realizable
methods.

Whatever the method used to obtain the LES equations, one of the main issues of
the LES modelling is the asymptotic behavior at small Stokes number: when the
Stokes number of the particles tends to zero, the resulting system admits a natural
asymptotic behavior governed by an advection-diffusion on the number density, as the
particles become tracers diffusing in the carrier gas phase. This asymptotic limit is
important for real applications, for example in liquid-fuel combustion systems: when
the droplets evaporates, they tend to this zero Stokes number, and the right dynamics
has to be captured to reproduce the right fuel distribution in the system. For now,
LES models have various way of dealing with this limit:

• In [57], the authors do not treat this limit, because they consider moderate
Stokes number flows, for which the limit is not predominant;

• In [66], they obtain an advection-diffusion limit, but with an isotropic dif-
fusion coefficient, whereas the real diffusion coefficient, which is the subgrid
scale tensor of the gas phase, can be anisotropic;

• In [61] and [74], the authors get the right limit, that is an asymptotic advection-
diffusion asymptotic limit on the density, with a potentially anisotropic dif-
fusion coefficient.

Following these statements, in the present work we will investigate the close link
between modelling and numerical methods for the LES approach of Zaichik et al.
[74]. For this model, in the zero Stokes number limit, the flux and source terms
that arises from the closures at the kinetic level become infinite, leading to strong
constraints on the time step. Thus, using a global unified scheme for the whole
Stokes range and recovering the proper asymptotic limit for small Stokes numbers
is not straightforward, as these extreme constraint on the numerics will degrade the
quality of the numerical approximation; standard numerical methods for hyperbolic
system of conservation laws will not preserve the asymptotic limit or eventually lead
to robustness issues.

Consequently, the goal of the present study is to propose a numerical scheme
which (1) recovers the advection-diffusion asymptotic limit for the number density,
referred as the asymptotic-preserving property [39, 43] and (2) can get rid of the
small time step imposed by the source term and the acoustic waves in a standard
time-explicit Godunov-type method. To do so, we rely on the approach proposed by
Chalons, Girardin and Kokh in [18], which is based on three ingredients:

• a Lagrange-Projection decomposition [32], that separates the terms respon-
sible for the acoustic waves and the transport waves. This decomposition
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overcomes the strong restriction on the time step CFL condition coming from
the large value of the sound speed when the Stokes number goes to zero by
means of a time-implicit treatment of the Lagrangian system, see [22] where
such an approach was first proposed;

• a relaxation strategy first introduced by Suliciu [69] and Jin and Xin [44], and
then further studied by many authors for instance in [21, 14, 16, 8, 22]. The
motivation for using a relaxation approach is to circumvent the nonlinearities
involved in the pressure law and then to make the time-implicit treatment of
the Lagrangian step very low cost;

• a USI (Upwinding Sources at Interfaces) approach first initiated by Cargo
and Le Roux [11], Greenberg and Le Roux [36], Gosse and Le Roux [34],
(see also Gosse [33], Perthame and Simeoni [62], Jin [41], R. Botchorishvili,
B.Perthame and A.Vasseur [7]...) the principle of which is to upwind the
sources at interfaces in order to get the expected asymptotic-preserving prop-
erty (or related well-balanced property). The form of the USI approach used
here is the same as the one recently introduced in [15] and [18].

The novelty of the present contribution is related to the particular context of turbulent
two-phase flows, which involve singular fluxes and infinite sound speeds in the limit as
well as relaxation source terms in the energy equation, a different context compared
to the original studies in the field, for which we provide a specific treatment.

The paper is organized as follow. First the modelling approach is presented, based
on the kinetic equation of [74], and on a Gaussian closure for the moment system [56],
arguing on the physical aspect of such a system, and presenting the asymptotic limit.
Second, the main features of the numerical scheme are described: (1) a Lagrange-
Projection [32] to decouple slow material and fast sound waves, which allows to use
an explicit numerical method for material wave for the sake of precision and an implicit
method on sound waves to avoid the CFL limitation, (2) a relaxation strategy [16], to
avoid the non-linearity induced by the pressure law, and (3) an HLLC scheme which
includes the source terms [30], to recover the asymptotic limit of the moment system.

2. Moment methods for the Large Eddy Simulation of particle-laden
flows. In the present work, the following assumptions are considered:

• point particles: no effect of the finite size of particles. Particles are smaller
than the Kolmogorow length scale of the carrier flow, so that every flow
modification induced by the particles is immediately diffused by the micro-
mixing of the turbulence;

• high Knuden number: the mean free path of particles is sufficiently large to
neglect collisions;

• very dilute regime: the impact of the disperse phase on the carrier phase is
neglected;

• fixed size solid particle: no size change nor breakup are accounted for.
Consequently, in the hierarchy of modelling approaches proposed in [29], here the
description of the flow is done at the mesoscopic level: we consider the Number
Density Function (NDF) f(t,x,v) where t is the time, x the position and v the
velocity of a particle. The state of the particle is then solely described by its position
and velocity.

2.1. The Population Balance Equation and the moment methods. The
NDF f(t,x,v) satisfies a Population Balance Equation:

∂tf + v · ∂xf + ∂v · (Fdf) = 0, (2.1)
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where Fd is the drag force applied by the carrier phase on the disperse phase. The
drag force is modeled using Stokes law:

Fd(v) =
ug − v

τp
, (2.2)

where τp is the relaxation time of particles.
In real applications, solving Eq. (2.1) directly is intractable for two reasons: the

high dimensionality of the phase space in 3D and the wide range of scales of either
carrier or disperse phases. An alternative is the macroscopic Eulerian approach:
Eq. (2.1) is integrated over the velocity phase space, and conservation equations on
moments are obtained:

Mijk =

∫∫∫
vi1v

j
2v
k
3f(t,x,v)dv, (2.3)

∂tMijk + ∂x

Mi+1,j,k

Mi,j+1,k

Mi,j,k+1

 = − 1

τp

(i+ j + k)Mi − ug ·

 iMi−1,j,k
jMi,j−1,k
kMi,j,k−1

 . (2.4)

This conservation equation lives now in a 3D space. However, for every moment
set of order N = i + j + k that is solved, additional higher order moments of order
N + 1 are necessary. This additional moment requires a closure law, that determines
(1) the accuracy of the method (2) the size N of the moment set.

In turbulent flows, the choice of the closure law is directly related to the occurrence
of Particle Trajectory Crossings (PTC). When the Stokes number of the particles
with respect to the Kolmogorov time scale StK = τp/τK is smaller than one, the
velocity distribution is monokinetic i.e. the particulate phase has only one velocity
per position in physical space. Several strategies exist in the literature for this range
of Stokes number:

• the dusty gas approach [13, 52]: the particles have the same velocity as the
gas phase;

• the Equilibrium Eulerian approach [3]: particle velocity is chosen has an
expansion around the gas velocity;

• the Monokinetic approach [48]: the particle velocity is solved using a conser-
vation equation for the momentum of the particulate phase. This approach
had also been envisioned in a volume-averaged sense in [26].

When StK > 1, the velocity distribution becomes multivalued because of PTC,
referred as Random Uncorrelated Motion (RUM) in [67], and the closure laws for
higher order moments has to be chosen to reproduce the NDF as accurately as pos-
sible. Moreover the choice of the NDF is not uniquely determined, and, as stated by
the Hamburger Moment problem, for a finite set of moments, an infinite number of
distributions is possible. So, two choices have to be made: (1) the number of moments
to solve and (2) the assumptions on the unclosed moments or the shape of the NDF.
In fact, this second choice splits the literature into two type of methods:

• Algebraic-Closure-Based moment methods (ACBMM)[55, 54]2: The closure
is devised based on the use of a limited information on the moments, like
the total energy of the particulate phase, and a series of assumptions on the

2These groups were also referred as differential and algebraic model respectively in [2]
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moments, for example equilibrium assumption on the deviatoric part of the
stress tensor, see [46];

• Kinetic-Based moment methods (KBMM) [49]: the closure is made at the
kinetic level, by choosing a presumed equilibrium shape for the NDF.

The former are interesting, because it provides closed systems using a limited number
of moments (density, momentum, and central energy). However, as the link between
the moment and kinetic levels is not straightforward, it faces reliability issues i.e.
the presumed moments do not correspond to a positive NDF. The KBMM overcome
this issue by relying on a positive presumed shape for the NDF, thus realizability
is intrinsically preserved. Moreover, as KBMM generates well-defined systems of
equations of hyperbolic or weakly-hyperbolic type with an entropic structure [50, 51,
19, 70], the design of realizable numerical methods is easier than for ACBMM, for
which the mathematical structure is hard to determine. Thus in this work we will
focus on KBMM, and our choice will be driven by the needs of the LES modelling.

2.2. The Filtered Population Balance Equation. In real turbulent appli-
cations, the range of scale encountered in the carrier phase is so wide that solving the
whole spectrum is totally unreachable with the available computational resources. To
avoid this problem, LES methods filter equations in physical or frequency space. The
filtering operation for a quantity φ is:

φ =

∫∫∫
G(x− x1,∆)φ(x1, t)dx1, (2.5)

where · denotes a filtered quantity. The filtering of the carrier phase will decompose
the velocity seen by the particle ug = ug + u′g where ug is the filtered carrier phase
velocity and u′g is the carrier phase velocity fluctuation. For the disperse phase, two
methods have been used in the literature:

• Filtering the moment equation 2.4, see [66, 57];
• Filtering the PBE and get moments of the filtered NDF, see [61, 74].

Theoretically the two methods lead to the same equations, as velocity and physical
spaces are independent.However, the latter strategy seems more interesting because:

• the PBE is linear whereas the moment equations are non-linear;
• the filtering at the moment level loses track of the link with the underlying

NDF.
Consequently, filtering at the kinetic level is our choice for the present work.

Filtering Eq. (2.1), we get:

∂tf + v · ∂xf + ∂v

(
ug − v

τp
f

)
= − 1

τp
∂v · (u′gf)r, (2.6)

where f is the filtered NDF and (ugf)r = ugf−ugf is the subgrid correlation between
the carrier phase velocity and the NDF of the particles.

To model this subgrid correlation, two contributions have been found in the lit-
erature that lead to the same closure:

• In [61], the authors derive the kinetic equation in direct analogy with the
work of Reeks [63, 64] who use the Lagrangian History Direct Interaction
(LHDI);

• In [74], the authors follow the same strategy but based on the work of Zaichik
et al. [73], which consider the impact of the gas phase on the disperse phase
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to be a Gaussian process, and thus make use of the Furutsu-Donsker-Novikov
Formula [60].

Following [74] , the closure for the subgrid correlation in the kinetic equation is:

− 1

τp
∂v · (u′gf)r = ∂v ·

(
µ∂vf + λ∂xf

)
, (2.7)

where:

λij = gruτg,ij , µij = τg,ik

(
fru
τp

+ lru∂xk
uj

)
, (2.8)

where fru, gru and lru are response coefficients (see [74] for details) whose long-time
values are:

fru =
1

1 + St
, gru =

1

St(1 + St)
, lru =

1

St(1 + St)2
. (2.9)

Here, the Stokes number is St = τp/τ
r
L where τ rL is the Integral time scale of the

subgrid eddies.
The resulting kinetic equation in non-dimensional form is:

∂t∗f + v∗ · ∂x∗f + ∂v∗ ·
(

u∗g − v∗

St
f

)
= ∂v∗ ·

(
µ∗ · ∂v∗f + λ∗ · ∂x∗f

)
, (2.10)

where:

µ∗ij = τ∗g,ik

(
fru
St
δkj + lru

∂u∗g,j
∂x∗k

)
, λ∗ij = gruτ

∗
g,ij . (2.11)

In the following, star exponents are dropped for the sake of clarity.

2.3. Asymptotic limit of the filtered PBE for small Stokes number.
To determine the equilibrium state and the asymptotic limit of the filtered kinetic
equation Eq. (2.10), The Chapman-Enskog expansion is used [20]. Contrary to the
one proposed in [2], it is performed in the classical way, assuming a decomposition of
the solution into power of St:

f = f
0

+ Stf
0
φ1 +O

(
St2
)
. (2.12)

Rewriting Eq. (2.10)

∂tf + v.∂xf =
1

St
J (f), (2.13)

where J (f) is the relaxation operator:

J (f) = ∂v ·
[
(v − ug)f + Stµ∂vf + Stλ∂xf

]
. (2.14)

Inserting Eq. (2.12) into Eq. (2.13), and grouping terms by powers of St:

∂tf
0

+ v · ∂xf
0

+ St
(
∂tf

0
φ1 + v · ∂xf

0
φ1
)

=
1

St
J (f

0
) + J (f

0
φ1) +O(St). (2.15)

For small Stokes number, the zeroth order of Eq. (2.15) is:

J (f
0
) = Stλ∂xf

0
+ Stµ∂vf

0 − (ug − v) f
0

= 0. (2.16)
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The solution of such an equation has the form:

f
0
(x, u) = Γ(x,v)

ρ

(2π)3/2
√
|τ g|

exp
(
−(v − ug)τ

−1
g (v − ug)

T
)
, (2.17)

where ρ =
∫

vfdv and Γ(x,v) is an unknown function that is equal to 1 in the case
of an homogenous NDF in space. The zeroth order distribution leads to the following
equation on density:

∂tρ+ ∂x · ρu0 = 0, (2.18)

where u0 =
∫

vf0dv. To find u0, the zeroth order moment of Eq. (2.16) is taken and
leads to:

u0 = ug −
τ g
ρ
∂xρ, (2.19)

so that the asymptotic limit at the kinetic level leads to the following asymptotic limit
at the moment level:

∂tρ+ ∂x · ρug = ∂x · (τ g∂xρ) . (2.20)

One important thing to notice at this point is that this asymptotic limit is not a
consequence of the modelling approach we choose, this is the limit that every LES
model for the particulate phase has to recover in the low Stokes number limit. It is
also worth noticing that the resulting moment system does not depend on any closure
for the disperse phase, but only on the closure for the gas phase. Thus, any moment
method that treats the number density should have the same asymptotic limit. To
achieve the description of the low Stokes number limit, taken the first order moment
of Eq. (2.16), the asymptotic limit of the internal energy σ0 = 1

2

∫
v⊗vf0dv− 1

2u⊗u
is recovered:

σ0 = τ g

(
1− ∂x ⊗ ug + ∂x ⊗

(
τ g
ρ
∂xρ

))
, (2.21)

where ⊗ is the symmetric tensor outer product.

2.4. Moment equations for LES. After obtaining the kinetic equation, one
has to go up to the moment level, and thus to choose the number of moments to
solve and the closure law. Our choice is driven by the asymptotic limit of the PBE.
Actually, the equilibrium distribution is a perturbation of a Gaussian distribution.
Therefore, the minimal model to reproduce this asymptotic limit has to be a Gaussian
distribution. Following [70], where the Anisotropic Gaussian distribution is used to
close the moment system in a DNS context, we will use moments up to second order,
that is 10 moments in 3D. The resulting system of equation is the following 3:

∂tρ+ ∂x · (ρu) = 0 (2.22)

∂t(ρu) + ∂x · (ρuuT + P) = ρ
ug − u

St
(2.23)

∂t(ρE) + ∂x · ((ρE + P)⊗ u) = ρ
ug ⊗ u + Stµ− 2E

St
, (2.24)

3In [61], the authors derive equations for zero-to-second order moments and close the fluxes by
using a zero third order central moments assumption, but they do not rely on the link with the
kinetic level, see [70] for details.
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where Eij = 1
2 ũiũj +

σij

2 is the total energy tensor, and Pij the pressure tensor:

ρσij =

∫∫∫
[(vi − ui)(vj − uj)] f(t,x,v)dv (2.25)

Pij = ρ (σij + λij) . (2.26)

2.5. Numerical issues associated to the low Stokes number limit. In the
following, the study will be fully performed in 1D for the sake of simplicity, even if
all the developments can be straightforward envisaged in 3D. Moreover, we consider
an homogeneous gaseous flow field, to focus on the main difficulties of the moment
method.

The resulting system of equation is:


∂tρ+ ∂xρu = 0,

∂tρu+ ∂x
(
ρu2 + P

)
= −ρu− ug

St
,

∂tρE + ∂x (ρuE + uP ) = −ρuu− ug
St

− ρ2ε− Stµ

St

(2.27)

where E = u2/2 + ε is the total energy and P = ρ(2ε + λ) is the pressure. Observe
from now on that the last equation can be formulated in terms of internal energy and
for smooth solutions as follows

∂tε+ u∂xε+
P

ρ
∂xu = −2ε− Stµ

St
.

Recall that λ and µ are given by

µ =
τg

St(1 + St)
, λ =

τg
St (1 + St)

. (2.28)

Therefore, it is clear that the subgrid scale effects represented by τg 6= 0 appear in
two terms: a relaxation term on the internal energy, which tends to relax the internal
energy of the disperse phase towards the subgrid scale internal energy of the gas
phase (see paragraph below on the asymptotic analysis), and a pressure-like term via
λ, acting like a flux and which propagates the time and space correlation of the gas
phase over the disperse phase.

Characteristic analysis. Easy manipulations show that (2.27) equivalently writes
for smooth solutions

∂tρ+ u∂xρ+ ρ∂xu = 0

∂tu+
(2ε+ λ)

ρ
∂xρ+ u∂xu+ 2∂xε = −u− ug

St

∂tε+
P

ρ
∂xu+ u∂xε = −2ε− Stµ

St

. (2.29)

Focusing on the convective part only (without source terms), the characteristic veloc-
ities are then given by

λ1 = u− c < λ2 = u < λ3 = u+ c,

where the speed of sound c is given by c =
√

6ε+ 3λ. Observe that the square of the
sound speed is made of two contributions, namely the classical one 6ε = γ(γ − 1)e
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associated with the perfect gas equation of state with adiabatic coefficient γ = 3, and a
new contribution involving the subgrid stress of the gas phase τg via λ. Importantly,
the presence of this new contribution (τg 6= 0) makes the sound speed c tend to
infinity when the Stokes number St goes to zero. From a physical point of view, it
simply means that the smaller the Stokes number St is, the faster the time and space
correlations of the gas phase propagate over the dispersed phase. From a numerical
point of view, this property is expected to give a strong constraint on the time step
for a fully explicit in time Godunov-type method according to the well-known CFL
stability condition.

Asymptotic analysis. Here we consider the asymptotic behavior of the model
when the Stokes number St tends to 0. Multiplying the last two equations of (2.29)
by St (1 + St) and letting St go to 0 gives

u = ug −
τg
ρ
∂xρ, (2.30)

2ε = τg

(
∂x

(
τg
ρ
∂xρ

)
+ 1
)
. (2.31)

Combining these two relations with the first equation of (2.29) (written in conservation
form) then gives the following asymptotic limit

∂tρ+ ∂xρug = ∂x (τg∂xρ) , (2.32)

2ε = τg

(
∂x

(
τg
ρ
∂xρ

)
+ 1
)
. (2.33)

The number density then evolves according to an advection-diffusion equation, which
is coherent with the asymptotic limit at the kinetic level. If one want to solve small
Stokes number flows only, it is easy to directly solve Eq. (2.32). If one want to be
able to solve a large range of Stokes numbers with the same method, Eq. (2.27) is
needed. However, in the low Stokes number limit, Eq. (2.27) encounter two strong
and limiting effects:

• the sound speed c and the source terms tend to infinity: it leads to strong
constraints for explicit numerical schemes, as well as high numerical diffusion
for material waves u.

• the numerical method has to recover the asymptotic limit at low Stokes num-
ber, which is not possible with ”classical” schemes.

In the following, a numerical scheme is proposed to handle these two features of the
chosen methodology.

3. Numerical scheme. The aim of this section is to describe a numerical
scheme which (1) recovers the advection-diffusion asymptotic limit for the number
density, referred as the asymptotic-preserving property [39, 43] and (2) can get rid of
the small time step imposed by the source term and the acoustic waves in a standard
time-explicit Godunov-type method. We rely on the approach proposed by Chalons,
Girardin and Kokh in [18] and based on three ingredients:

• a Lagrange-Projection decomposition [32], [22];
• a relaxation strategy first introduced by Suliciu [69] and Jin and Xin [44],

and then further studied by many authors for instance in [21, 14, 16, 8, 22];
• a USI (Upwinding Sources at Interfaces) approach first initiated by Cargo

and Le Roux [11], Greenberg and Le Roux [36], Gosse and Le Roux [34] (see
also for related works in a wide range of applications [47], [40], [42], [35], [10],
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[5], [12], [24], [28], [25], [9], [4, 1], [37] and the references therein).

The next three subsections give only a brief description of these three main in-
gredients as details can be found for instance in [18]. The objective is to provide the
reader with the most important update formulas and to focus on the specific treat-
ment of the singular fluxes as well as of the source term associated with the internal
energy, which are not included in the upwinding at the interfaces, receives a treatment
through a splitting like approach and still satisfied the objective of being asymptotic
preserving on energy.

3.1. Lagrange-Projection and source terms decomposition. The objec-
tive of the Lagrange-projection is to decompose the full system into two sub-systems
using a chain rule argument on the space derivatives. The first one only involves
the transport wave, and the second one involves the acoustic waves (and the source
terms). This kind of approach can be seen as an operator splitting strategy, and the
main interest is to enable the use of different solvers for each subsystem. In this work,
we shall consider explicit-explicit solvers but also implicit-explicit solvers in order
to get rid of the strong CFL stability restriction imposed by the sound speed. By
implicit-explicit, we mean here implicit on the acoustic waves and source terms and
explicit on the transport part following the same approach as in [18] (see [22]). Note
that the source term associated with the internal energy in the last equation of (2.27)
being not considered in [18], we shall treat it separetely here using again a splitting
strategy. Therefore, we shall end with three sub-systems to be treated numerically.
Using the property ∂xρuX = u∂xρX + ρX∂xu for X = {1, u, E} in the full system
(2.27), we get the following transport system: ∂tρ+ u∂xρ = 0

∂tρu+ u∂xρu = 0
∂tρE + u∂xρE = 0,

(3.1)

which corresponds to the advection of each field with velocity u. The acoustic and
source term part is then given by

∂tρ+ ρ∂xu = 0

∂tρu+ ρu∂xu+ ∂xP = −ρu− ug
St

∂tρE + ρE∂xu+ ∂xPu = −ρuu− ug
St

− ρ2ε− Stµ

St
.

(3.2)

Introducing τ = 1/ρ and τ∂x = ∂m this sytem equivalenty writes
∂tτ − ∂mu = 0

∂tu+ ∂mP = −u− ug
St

∂tE + ∂mPu = −uu− ug
St

− 2ε− Stµ

St
.

(3.3)

Now splitting the drag force and energy relaxation terms leads to
∂tτ − ∂mu = 0

∂tu+ ∂mP = −u− ug
St

∂tE + ∂mPu = −uu− ug
St

,

(3.4)
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and 
∂tτ = 0
∂tu = 0

∂tε = −2ε− Stµ

St
.

(3.5)

It is now a matter of approximating the three systems (3.4), (3.1) and (3.5).

3.2. Relaxation procedure. As mentioned above, system (3.4) may receive an
implicit treatment in order to reduce the CFL stability restriction. In order for this
implicit procedure to be cheap we propose to use a relaxation strategy, the objective
of which being to overcome the difficulties introduced by the pressure nonlinearities.
More precisely, the main idea is to consider the pressure P as a new unknown Π of
the system and to solve for an additional equation for this new variable. We propose
the following relaxation system

∂tτ − ∂mu = 0

∂tu+ ∂mΠ = −u− ug
St

∂tE + ∂mΠu = −uu− ug
St

∂tΠ + a2∂mu = 0.

(3.6)

According to the very classical relaxation method, see for instance [69], [44], [16],
[8], this system will be solved instead of (3.4) at each time step and with Π = P at
initial time (the new relaxation variable Π is said to be at equilibrium). It is worth
noticing that the convective part of (3.6) has three constant eigenvalues given by −a,
0 and a so that the associated characteristic fields are linearly degenerate. Note also
that a has to be chosen sufficiently large according to the subcharacteristic condition
a > max (ρc) in order to avoid instablities in this relaxation procedure. We refer for
instance the reader to [14] and [23] for a rigorous proof and for more details.
To conclude this short section, let us introduce the new variables←−w and −→w defined by
←−w = Π−au and −→w = Π+au. These quantities are easily shown to be strong Riemann
invariants associated with the characteristic speeds ±a and allow to equivalently write
(3.6) as follows : 

∂tτ − ∂mu = 0

∂t
−→w + a∂m

−→w = −u− ug
St

∂t
←−w − a∂m←−w =

u− ug
St

∂tE + ∂mΠu = −uu− ug
St

.

(3.7)

3.3. Notations and overview of the numerical scheme. In this section, we
introduce some notations and present the proposed numerical method for approximat-
ing the solutions of (2.27). This method can be understood as an operator-splitting
strategy consisting in solving the three systems (3.4), (3.5) and (3.1) in this order.
Recall that (3.4) will be solved using the relaxation system (3.7).
Let be given a constant time step ∆t and a constant space step ∆x. Introducing
xj+1/2 = (j + 1/2)∆x for j ∈ Z and tn = n∆t for n ∈ N, the approximate solution of
(2.27), say uλ(x, t), with u0 as initial data is classically sought as a piecewise constant
function on each slab Cnj = [xj−1/2;xj+1/2)× [tn; tn+1) for (n, j) ∈ N×Z, and we set

uλ(x, t) = unj for all (x, t) ∈ Cnj , j ∈ Z, n ∈ N.
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Here λ stands for the ratio λ = ∆t/∆x, and for completeness we set

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx.

Assuming that the approximate solution uλ(x, tn) is known, we propose to advance
it to the next time level tn+1 according to a classical splitting strategy between (3.4),
(3.5) and (3.1).

First step (tn → tn+1=) This step consists in solving the Lagrangian system (3.4),
that is to say

∂tv + ∂mg(v) = S(v), (3.8)

with v = (τ, u, E)t, g(v) = (−u, P, Pu)t and S(v) = (0,−u− ug
St

,−uu− ug
St

)t. Note

that the change of variables u → v is one-to-one. We consider vλ(x, tn) (easily
calculated from uλ(x, tn)) as initial data. To define un+1=

j , we propose to use a
Godunov-type method based on the definition of an approximate Riemann solver for
(3.7) as detailed in [18]. The proposed approximate Riemann solver here coincides ex-
actly with the one proposed in [18] up to very minor modifications : the gravity is not
taken into account in the present paper and the friction terms make the velocity tend
to ug here instead of 0. This approximate Riemann solver includes the source terms
in its definition in the sense that the definition of the intermediade states actually de-
pends on the source term S(v) and in particular on the Stokes number St. Therefore,
the source term S(v) is taken into account at each interface of the mesh, in agree-
ment with the celebrated USI (Upwinding Sources at Interfaces) approach introduced
in [11], [36], [34]. Note however that the way the sources are upwinding here is really
different and relies on the formalism of consistency in the integral sense introduced by
Gallice in [31], [30] for systems of conservation laws with sources. This formalism is
nothing but a generalization of the well-known Harten, Lax and van Leer formalism
[38] for systems of conservation laws. We then refer the reader to [18] for more details.

Time-explicit Godunov-type scheme. Averaging the approximate Riemann solutions
defined at each interface leads to the following Godunov-type update formulas

τn+1=
j = τnj +

∆t

∆mj
(u∗j+ 1

2
− u∗j− 1

2
),

−→w n+1=
j = −→w n

j − a
∆t

∆mj
(−→w n

j −−→w n
j−1) + ∆t a

∆mj−1/2

∆mj

ug − u∗j− 1
2

St
,

←−w n+1=
j =←−w n

j + a
∆t

∆mj
(←−w n

j+1 −←−w n
j )−∆t a

∆mj+1/2

∆mj

ug − u∗j+ 1
2

St
,

En+1=
j = Enj −

∆t

∆mj
((up)∗j+ 1

2
− (up)∗j− 1

2
) +

∆t

∆mj
ug

∆mj+1/2u
∗
j+ 1

2

+ ∆mj−1/2u
∗
j− 1

2

2St

− ∆t

∆mj

∆mj+1/2(u∗
j+ 1

2

)2 + ∆mj−1/2(u∗
j− 1

2

)2

2St
,

(3.9)
where we have set

∆mj = ρnj ∆x, ∆mj+1/2 =
∆mj + ∆mj+1

2
,



14 A. Vié, C. Chalons, & M. Massot

and

u∗j+ 1
2

=
St

2aSt+ ∆mj+1/2
(−→w n

j −←−w n
j+1+ug

∆mj+1/2

St
), p∗j+ 1

2
=
−→w n
j +←−w n

j+1

2
. (3.10)

Using the relation

un+1=
j =

−→w n+1=
j −←−w n+1=

j

2a
,

we also have

τn+1=
j =τnj +

∆t

∆mj
(u∗j+ 1

2
− u∗j− 1

2
),

un+1=
j =unj −

∆t

∆mj
(p∗j+ 1

2
− p∗j− 1

2
) +

∆t

∆mj

∆mj−1/2(ug − u∗j− 1
2

) + ∆mj+1/2(ug − u∗j+ 1
2

)

2St
,

En+1=
j =Enj −

∆t

∆mj
((up)∗j+ 1

2
− (up)∗j− 1

2
) +

∆t

∆mj
ug

∆mj+1/2u
∗
j+ 1

2

+ ∆mj−1/2u
∗
j− 1

2

2St

− ∆t

∆mj

∆mj+1/2(u∗
j+ 1

2

)2 + ∆mj−1/2(u∗
j− 1

2

)2

2St
.

(3.11)
This scheme is shown to be stable under the following CFL condition

max
j∈Z

a
∆t

∆mj
≤ 1

2
,

see again for instance [18]. Using classical notations, one has thus defined vλ(x, tn+1=).
This piecewise constant solution will be used in the second step as a natural initial
condition.

Time-implicit Godunov-type scheme. In order to get rid of the above CFL restric-
tion on the time step ∆t, which becomes stronger and stronger as the Stokes number
goes to zero, a time-implicit version can be simply defined as follows,

τn+1=
j = τnj +

∆t

∆mj
(u∗j+ 1

2
− u∗j− 1

2
),

−→w n+1=
j = −→w n

j − a
∆t

∆mj
(−→w n+1=

j −−→w n+1=
j−1 ) + ∆t a

∆mj−1/2

∆mj

ug − u∗j− 1
2

St
,

←−w n+1=
j =←−w n

j + a
∆t

∆mj
(←−w n+1=

j+1 −←−w n+1=
j )−∆t a

∆mj+1/2

∆mj

ug − u∗j+ 1
2

St
,

En+1=
j = Enj −

∆t

∆mj
((up)∗j+ 1

2
− (up)∗j− 1

2
) +

∆t

∆mj
ug

∆mj+1/2u
∗
j+ 1

2

+ ∆mj−1/2u
∗
j− 1

2

2St

− ∆t

∆mj

∆mj+1/2(u∗
j+ 1

2

)2 + ∆mj−1/2(u∗
j− 1

2

)2

2St
,

(3.12)
where u∗

j+ 1
2

and p∗
j+ 1

2

are now implicitly defined by

u∗j+ 1
2

=
St

2aSt+ ∆mj+1/2
(−→w n+1=

j −←−w n+1=
j+1 +ug

∆mj+1/2

St
), p∗j+ 1

2
=
−→w n+1=
j +←−w n+1=

j+1

2
.

(3.13)
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Let us notice that the second and third equations do not depend on τ and E and can
thus be solved independenlty. The corresponding system is easily seen to be linear
with a pentadiagonal and strictly diagonally dominant matrix. Therefore, ←−w n+1=

j

and −→w n+1=
j are uniquely defined for any ∆t. Then, τn+1=

j and En+1=
j follow explic-

itly (which makes the overall strategy very low cost) thanks to the first and fourth
equations of (3.12).

About the Asymptotic-Preserving property. Let us discuss in this short paragraph
the asymptotic behavior of the proposed numerical scheme when the Stokes number
St goes to zero. We focus on the explicit-explicit version for simplicity. Let us first
observe that λSt goes to τg when St goes to zero by definition of λ, so that StP goes
to τgρ by definition of P . We then easily get by definition of ←−w and −→w the following
limit

lim
St→0

u∗j+ 1
2

=
1

∆mj+1/2
(τgρ

n
j − τgρnj+1 + ug∆mj+1/2),

that is to say

lim
St→0

u∗j+ 1
2

= ug −
2τg

ρnj + ρnj+1

ρnj+1 − ρnj
∆x

.

This limit is clearly consistent with the expected mass flux

u = ug −
τg
ρ
∂xρ,

in (2.30).
Regarding the asymptotic behavior of the internal energy (2.33), it will be useful in
the next steps of the method to estimate the asymptotic behavior when the Stokes
number goes to zero of the following discrete time derivative

St
εn+1=
j − εnj

∆t
. (3.14)

With this in mind, it is first easily shown from the second equation of (3.11) that
Stun+1=

j goes to zero with the Stokes number (the calculations are left to the reader).
Then letting St go to zero in the third equation of (3.11) shows that (3.14) asymptot-
ically behaves like

St
(
− ∆t

∆mj
((up)∗j+ 1

2
− (up)∗j− 1

2
) +

∆t

∆mj
ug

∆mj+1/2u
∗
j+ 1

2

+ ∆mj−1/2u
∗
j− 1

2

2St

− ∆t

∆mj

∆mj+1/2(u∗
j+ 1

2

)2 + ∆mj−1/2(u∗
j− 1

2

)2

2St

)
.

Using the properties that u∗
j+ 1

2

and Stp∗
j+ 1

2

are respectively consistent with u =

ug −
τg
ρ
∂xρ and τgρ, together with the Leibniz relation

(up)∗j+ 1
2
−(up)∗j− 1

2
=

1

2

(
u∗j+ 1

2
+u∗j− 1

2

)(
p∗j+ 1

2
−p∗j− 1

2

)
+

1

2

(
p∗j+ 1

2
−p∗j− 1

2

)(
u∗j+ 1

2
−u∗j− 1

2

)
,
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we easily get that (3.14) is asymptotically consistent with −τg∂xu when St goes to
zero.

Second step (tn+1= → tn+1−) The second step consists in solving the transport
step (3.1) with vλ(x, tn+1=) as initial data, which can be easily and equivalently
transformed in terms of the u = (ρ, ρu, ρE)t variables. Following [32] (see also [18]),
we consider a very classic upwind and time-explicit numerical scheme given by

Xn+1−
j = Xn+1=

j +
∆t

∆x

[
u∗,+j−1/2X

n+1=
j−1 +

[
u∗,−j+1/2 − u

∗,+
j−1/2

]
Xn+1=
j − u∗,−j+1/2X

n+1=
j+1

]
(3.15)

where α± = (α ± |α|)/2 for any α and X ∈ {ρ, ρu, ρE}. This scheme is shown to be
stable under the following CFL condition

∆t

∆x

(
u∗,+j−1/2 − u

∗,−
j+1/2

)
≤ 1. (3.16)

About the Asymptotic-Preserving property. Let us go on with the asymptotic-preserving
property. The first equation of (3.15) writes

ρn+1−
j = ρn+1=

j +
∆t

∆x

[
u∗,+j−1/2ρ

n+1=
j−1 +

[
u∗,−j+1/2 − u

∗,+
j−1/2

]
ρn+1=
j − u∗,−j+1/2ρ

n+1=
j+1

]
,

that we can combine with the first equation of (3.9), namely

τn+1=
j = τnj

(
1 +

∆t

∆x
(u∗j+ 1

2
− u∗j− 1

2
)
)
,

to give the conservative update formula

ρn+1−
j = ρnj −

∆t

∆x

(
{ρu}j+ 1

2
− {ρu}j− 1

2

)
, (3.17)

with numerical flux given by

{ρu}j+ 1
2

= ρn+1=
j u∗,+j+1/2 + ρn+1=

j+1 u∗,−j+1/2.

We have just seen in the previous step that u∗
j+ 1

2

is consistent with ug −
τg
ρ
∂xρ in the

limit St→ 0. As a consequence, the conservative formula (3.17) is clearly consistent
with the first equation (2.32) of the expected asymptotic limit.
Regarding the second equation (2.33), we just note here that the following discrete
time derivative

St
εn+1−
j − εn+1=

j

∆t
(3.18)

goes to zero when the Stokes number goes to zero since ε evolves according to the
transport equation

∂tε+ u∂xε = 0,

in this step. Recall indeed that the interfacial velocity u∗
j+ 1

2

used to discretize this

equation is such that Stu∗
j+ 1

2

goes to zero with the Stokes number.
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Third step (tn+1− → tn+1) The last step consists in solving (3.5) with vλ(x, tn+1−)
as initial data. Compared to the work of [18], this step is the main difference, as no
internal energy relaxation exists in their work. Here we choose to decouple this relax-
ation step because the leading order for the asymptotic limit is on the mean velocity
component, such as it is not mandatory to include this step in the HLLC solver. To
define vλ(x, tn+1), it is a natural idea to use a classical pointwise implicit evaluation
of the source term. More precisely, it amounts to set

τn+1
j = τn+1−

j ,

un+1
j = un+1−

j ,

εn+1
j = εn+1−

j −∆t
2εn+1
j − Stµ

St
,

or equivalently 
τn+1
j = τn+1−

j ,

un+1
j = un+1−

j ,

εn+1
j =

St(µ∆t+ εn+1−
j )

St + 2∆t
.

(3.19)

About the Asymptotic-Preserving property. Let us first recall that the first equation
(2.32) has been proved at the end of the second step and remains valid since ρ is not
expected to be modified in this last step. Regarding now the second equation (2.33),
we first write (3.19) under the following equivalent form

St
εn+1
j − εnj

∆t
+ 2εn+1

j = St
εn+1=
j − εnj

∆t
+ St

εn+1−
j − εn+1=

j

∆t
+ Stµ.

Since limSt→0 Stµ = τg(1+∂xug), using the results obtained in the previous two steps
then clearly gives that 2εn+1

j is asymptotically consistant with −τg∂xu+ τg + τg∂xug,

that is to say with (2.33) by the relation u = ug −
τg
ρ
∂xρ.

3.4. Main properties. We gather in this section the main properties of the
proposed algorithm. We focus on the implicit-explicit version.

Theorem 3.1. Under the CFL condition (3.16) and provided that a is chosen
sufficiently large, the implicit-explicit in time numerical scheme is well defined and
satisfies the following stability properties:

(i) it is a conservative scheme for the density ρ. It is also a conservative scheme
for ρu and ρE when the source terms are omitted,

(ii) the density ρnj is positive for all j and n > 0 provided that ρ0j is positive for
all j,

(iii) it is asymptotic preserving.

Sketch of the proof. Property (i) has been proved in the course of the description
of the second step for the density, see (3.17). The proof is similar for ρu and ρE.
Property (ii) is obtained from standard manipulations [32], [22]. The asymptotic-
preserving property has been proved in the previous subsections.

Remark. The validity of an entropy inequality has been proved in [18] for the explicit-
explicit version of the scheme. Regarding the implicit-explicit version, we refer the
reader to [22].
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Fig. 4.1. Stokes number=0.1: Comparison between refined solution with 2000 cells (black full
line), Explicit non-AP scheme (squares) and Explicit AP scheme (crosses) with 100 cells at time
t = 0.2s.

4. Numerical results. Here we propose a test case which highlights the effects
of the subgrid scale of turbulence on the disperse phase. The domain is [−1, 1]. The
initial state for the disperse phase is a spatially Gaussian distribution ρ(t = 0, x) = 1+
exp

(
−x2/(2σ2

0)
)
, where σ = 0.01, which mimics the dispersion of particles occurring

in a turbulent field. At time t = 0, the particles are at rest, i.e. u(t = 0, x) = 0 and
ε(t = 0, x) = 0. The gas phase is constant in time and space, and is decomposed into
a mean velocity ug = 0, which in fact generates no fluxes, and a subgrid scale energy
τg = 1/10.

For the explicit schemes, two different explicit constraints are imposed on the
time step through the source terms and the CFL number:

∆tsource ≤
St

2
, ∆tCFL ≤ CFL

∆x

c
= CFL

∆x√
6ε+ 3λ

. (4.1)

At time t = 0s, the time step is then:

∆t = min

(
St

2
,

CFL√
3τg

∆x
√

St(1 + St)

)
. (4.2)

In Figs. 4.1-4.2, results at time t = 0.2s for the density, the mean velocity and
the internal energy are plotted against the position, for the Explicit non-AP and AP
schemes, and for St = 0.1 and St = 0.01, using 100 cells. The Stokes number is not
sufficiently small to use the asymptotic solution as a reference. So a 2000-cell solution
is use as a reference, for which a sufficient mesh convergence has been verified for the
sake of the comparisons. For these Stokes number and this space discretization, the
differences between non-AP and AP schemes are not obvious, as the contribution of
the subgrid flux and source terms are not predominant.

In Figs. 4.3-4.4, results at time t = 0.2s for the density, the mean velocity and
the internal energy are plotted against the position, for the Explicit non-AP and
AP schemes, and for St = 0.001 and St = 0.0001, using 100 cells. Here the Stokes
numbers are small enough for the time step to be CFL-driven. The Stokes number
is now sufficiently small to use the asymptotic solution as a reference, the statement
having been verified. Now the differences between non-AP and AP scheme are clearly
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Fig. 4.2. Stokes number=0.01: Comparison between refined solution with 2000 cells (black full
line), Explicit non-AP scheme (squares) and Explicit AP scheme (crosses) with 100 cells at time
t = 0.2s.
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Fig. 4.3. Stokes number=0.001: Comparison between asymptotic analytic solution (black full
line), Explicit non-AP scheme (squares) and Explicit AP scheme (crosses) with 100 cells at time
t = 0.2s.

highlighted: for both Stokes numbers, the AP scheme matches the asymptotic solution
whereas the non-AP scheme comes up with a significant deviation which increases
while the Stokes number decreases. The quality of the results are also quantitatively
assessed in Fig. 4.5, in which the error on the density against the number of cells is
plotted for the non-AP and the AP schemes and St = 0.0001. It shows two orders
of magnitude between the two schemes, definitely demonstrating the necessity of AP
schemes in such regimes, and the quality of the proposed explicit one.

However, even if the explicit AP scheme obtains good results for every Stokes
number, it is constrained by the explicit description of acoustic waves. To avoid such
a constraint, the Implicit scheme is a solution. We recall that by Implicit, we mean
that the acoustic and source terms are addressed implicitly, where the material wave
are still addressed explicitly.

In Figs. 4.6-4.7, the results for the Implicit AP and Implicit non AP schemes
are presented, for St = 0.0001 and for a time step which is respectively 10 times
and 50 times larger than the explicit time step. It is shown, even using big time
steps comparing to the explicit one, increasing the error, the Implicit AP scheme still
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Fig. 4.4. Stokes number=0.0001: Comparison between asymptotic analytic solution (black full
line), Explicit non-AP scheme (squares) and Explicit AP scheme (crosses) with 100 cells at time
t = 0.2s.
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Fig. 4.5. Stokes number=0.0001: Error on the number density comparing to the asymptotic
analytic solution using the Explicit non-AP scheme (squares) and the Explicit AP scheme (crosses).

matches the asymptotic solution, where the non AP one obtains less precise results.
The qualitative evaluation of the error on the density plotted in Fig.4.8 demonstrates
it again, the AP scheme being impacted by larger time steps but keeping a low error
comparing to the explicit one.
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Fig. 4.6. Stokes number=0.0001: Comparison between asymptotic analytic solution (black full
line), Implicit non-AP scheme (squares) and Implicit AP scheme (crosses) with 100 cells at time
t = 0.2s and ∆t = 10∆texplicit.
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Fig. 4.7. Stokes number=0.0001: Comparison between asymptotic analytic solution (black full
line), Explicit non-AP scheme (squares) and Implicit AP scheme (crosses) with 100 cells at time
t = 0.2s and ∆t = 50∆texplicit.

10
2

10
3

10
−4

10
−3

10
−2

10
−1

 N
cell

 e
rr

o
r 

o
n

 ρ

Fig. 4.8. Stokes number=0.0001: Error on the number density comparing to the asymptotic
analytic solution using the Implicit non-AP scheme (squares) and the Implicit AP scheme (crosses)
for ∆t = 10∆texplicit (full lines) and ∆t = 50∆texplicit (dot lines).
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5. Conclusions. In this work, a comparison of existing fully Eulerian strategies
for LES has been presented. This comparison highlighted two important aspects of
each method: the way the moment equations are closed and the asymptotic behavior
at small Stokes number.

Concerning the closure of the moment equations, on the one side ACBMM can
not always ensure the realizability of the moments, because of the lack of a clear link
between the moment closure and an underlying NDF. On the other side, KBMM are
intrinsically realizable, as long as the underlying presumed NDF is realizable, and
accurate and stable numerics are used.

Regarding the available method for particle-laden flow LES, a Kinetic-Based LES
method based on the work of [74] and [61] has been chosen. The resulting moment
method has two main drawbacks: when the Stokes number tends to zero, the source
terms become infinite and in the case of Euler equations, the sound speed too. More-
over the system of equations must tend to a clear advection-diffusion asymptotic limit.
To handle it, a new numerical scheme has been designed based on the work of [18]
and constituted of a Lagrangian-Projection, a relaxation method and a HLLC scheme
with source terms, with a specific treatment of the peculiarities of the models we
work with, that is the singular behavior of the fluxes and the inclusion of energy
relaxation. The resulting scheme is proven to be Asymptotic-Preserving for the small
Stokes number limit in 1D cases.

The next step is to use the strategy for the simulation of multi-dimensional flows,
especially by considering an Anisotropic Gaussian closure [70] to recover the full details
of the asymptotic limit. The adaptation of the scheme to space varying Stokes number
(for example in evaporating flows) has also to be investigated.
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[71] A. Vié, E. Masi, O. Simonin, and M. Massot. On the direct numerical simulation
of moderate-stokes-number turbulent particulate flows using Algebraic-Closure-
Based and Kinetic-Based Moment Methods. In Proceedings of the Summer Pro-
gram 2012, Center for Turbulence Research, Stanford University, pages 1–10,
2012.

[72] C. Yuan and R.O. Fox. Conditional quadrature method of moments for kinetic
equations. J. Comput. Phys., 230(22):8216–8246, 2011.

[73] L.I. Zaichik. A statistical model of particle transport and heat transfer in turbu-
lent shear flows. Phys. Fluids, 11(6):1521–1534, 1999.

[74] L.I. Zaichik, O. Simonin, and V.M. Alipchenkov. An eulerian approach for large
eddy simulation of particle transport in turbulent flows. Journal of Turbulence,
10(4):1–21, 2009.


