It is the cache of ${baseHref}. It is a snapshot of the page. The current page could have changed in the meantime.
Tip: To quickly find your search term on this page, press Ctrl+F or ⌘-F (Mac) and use the find bar.

Journal of Chinese Integrative Medicine Free Full Text
 Home | Current Issue | Past Issues | Search | CollectionsRSS | PDA Services | FAQ | SHCIM Online | Chinese Updated Friday, March 07, 2014
 How to Show Chinese in English Operating System
Technique and Methods
Journal of Chinese Integrative Medicine: Volume 2   September, 2004   Number 5

DOI: 10.3736/jcim20040519
Osteogenesis characteristics of cultured rat mesenchymal stem cells under bone induction condition
1. CHEN Dong-Feng (Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province 510405, China E-mail: cdf27212@21cn.com)
2. LI Hui (Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province 510405, China )
3. ZHOU Jian-Hong (Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province 510405, China )
4. XIE Yao (Department of Anatomy, Zhongshan Medical College, SUN Yat-sen University, Guangzhou, Guangdong Province 510080,China )
5. LI Yi-Wei (Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province 510405, China )
6. DU Shao-Hui (Department of Internal Medicine, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong Province 518000, China )
7. ZHANG Yi (Shenzhen Shahe Hospital, Shenzhen, Guangdong Province 518000, China )
8. HUANG Jie (Shenzhen People's Hospital, Shenzhen, Guangdong Province 518000, China )
9. XU Min (School of Traditional Chinese Medicine, Hong Kong Baptise Univesity, Hong Kong )

Objective: To investigate the osteogenesis characteristics of cultured rat mesenchymal stem cells (MSCs) under bone induction condition.

Methods: MSCs were isolated from adult rat by using density gradient separation method. The osteogenic inducers were compounds of Dexone, β-glycerophosphate sodium and vitamin C.

Results: The MSC attachment formed soon after the seeding and grew into colonies with the appearance of fibroblastic cells. The osteogenic inducer with low dose of Dexone could promote the osteogenic differentiation of MSC.In the group of osteogenic inducer with low dose of Dexone, the expression of alkaline phosphatase (ALP) was remarkably increased after one week’s induction, and the number of positive cells was (15.1±2.6), significantly higher than that of the control group (12.0±3.5) (P<0.01). The calcified deposits began to appear in the group of osteogenic inducer with low dose of Dexone after one week's induction and was increased remarkably after three weeks, and the number of calcified deposits was (9.0±1.7), significantly higher than that of the control group (2.0±1.8) (P<0.01).

Conclusion: MSC can differentiate into osteogenesis by osteogenic induction and may be used to provide seed cells for bone tissue engineering.

JCIM
Open Access
THIS ARTICLE
-  Abstract
-  Full text
-  Download PDF file
-  Send to a friend
-  Related articles in JCIM
-  Cited in JCIM
-  Reader's comments
-  Send a comment

J Chin Integr Med, 2004, 2(5): 375-378

作者简介: 陈东风(1964-),男,硕士,副教授.

Correspondence to: CHEN Dong-Feng, Associate Professor.  E-mail: cdf27212@21cn.com 

基金项目: 国家自然科学基金资助项目(No. 30271677, No. 30371837);广东省自然科学基金资助项目(No. c031483)

Jump to Section
-   Top
-   Article and Author Info
-   Introduction
-   Materials and Methods
-   Results
-   Discussion
-   References
   

      骨组织缺损的修复中所采用的方法大都存在供骨区严重创伤及植骨区骨吸收等问题,而近年来骨组织工程为修复各类型骨组织缺损开拓了更广阔的前景。种子细胞是骨组织工程的三要素之一,选择合适的种子细胞是骨组织工程至关重要的环节。骨髓间充质干细胞(mesenchymal stem cells, MSCs)是指存在于骨髓基质中的非造血干细胞,经适当的诱导可以分化为有成骨潜能的细胞[1]。因此,建立有效的MSCs体外培养体系及诱导分化成骨的体外模型,对骨组织工程及该细胞成骨分化的中药调控机制研究有重要的意义。

 
   

1  材料与方法
1.1  试剂与仪器
  低糖达氏修正依氏培养基(low glucose Dulbecco's modified Eagle's medium, L-DMEM)、 Percoll贮存液和胎牛血清(fetal bovine serum, FBS)为Gibco 公司产品,地塞米松、β-磷酸甘油钠、维生素C为Sigmal 公司产品。CO2孵箱, 德国Heraeus公司产品;倒置相差显微镜,日本Olympus公司产品。成骨诱导培养液:含有地塞米松(0.1 μmmol/L为高剂量,0.05 μmmol/L为低剂量),50 μg/ml 维生素C,10 mmol/L β-磷酸甘油钠及10% FBS的高糖达氏修正依氏培养基(high glucose Dulbecco's modified Eagle's medium, H-DMEM)。L-DMEM,含D-葡萄糖1 g/L和L-谷氨酰胺;H-DMEM,含D-葡萄糖4.5 g/L 和L-谷氨酰胺。
1.2  MSC分离及体外扩增  将大鼠骨髓用含10% FBS的DMEM冲出,充分混匀,转入离心管, 2 000 r/min离心10 min,去上清,L-DMEM重悬,离心去上清后,加4 ml L-DMEM混匀。Percoll贮存液按0.56∶0.44混合,取4 ml放入10 ml离心管内,吸骨髓液在离液面2 cm处贴管壁缓缓加入。水平离心机6 000 r/min离心30 min,收集单核细胞层,用L-DMEM洗涤两次。然后计数细胞,调整密度,按1×109/L密度接种,37℃,5%饱和湿度的CO2 孵箱培养,培养液为含10% FBS的L-DMEM,5 d后更换培养液,弃去未贴壁细胞,3~4 d换液1次,接近融合的MSC用含0.25%胰酶室温消化2~3 min,按1×104/cm2传代。
1.3  MSCs 的成骨诱导  传代的MSC分为对照组和诱导组。对照组培养液为含10% FBS的H-DMEM;诱导组培养液为成骨诱导培养液,又分为地塞米松低剂量和高剂量组,每3 d换液1次。
1.4  碱性磷酸酶组织化学染色  诱导7 d后进行细胞碱性磷酸酶(alkaline phosphatase, ALP)活性检测。磷酸盐缓冲液(PBS)洗细胞数次,4%福尔马林室温固定60 min,蒸馏水冲洗。浸入孵育液[蒸馏水74 ml,pH 4.7的乙酸缓冲液12 ml,5% Pb (NO3)2溶液2 ml,3.2% β-磷酸甘油钠4 ml,37℃ 2 h,双蒸馏水冲洗数次。1%硫化铵浸3 min,流水冲洗。光学显微镜下观察,其中胞质内有棕褐色颗粒的细胞为阳性细胞,选取随机视野计数阳性细胞。
1.5  Von Kossa 染色  培养28 d后进行Von Kossa染色检测[2],确定细胞外基质的矿物化。用无Ca2+、Mg2+的PBS洗细胞3次,4%多聚甲醛室温固定60 min。去离子水冲洗,加入新鲜配置的1%硝酸银,避光染色30 min。去离子水冲洗数次,置于紫外灯下60 min。光学显微镜下观察,阳性为细胞外基质出现黑色团块状,选取随机视野计数阳性细胞。
1.6  统计学方法  光镜放大倍数(10×20),随机选10个视野,计数平均阳性细胞数。所得数据用SPSS软件进行统计学处理,行方差分析。

Jump to Section
-   Top
-   Article and Author Info
-   Introduction
-   Materials and Methods
-   Results
-   Discussion
-   References
   

2  结 果
2.1  形态学观察
  原代贴壁的MSC呈成纤维细胞外观。MSC贴壁伸展开始为多角形、三角形,逐渐变成短梭形、长梭形;细胞不断分裂、增殖,接种后7 d,贴壁细胞逐渐呈现集落生长(见图1),14 d达到融合生长。刚经过传代的MSC呈圆形,很快贴壁,伸展成多角形、三角形,最后呈短梭形和长梭形(见图2)。许多新生的圆形、折光性强的幼稚细胞散布于其间。



图1  原代贴壁的MSC显示成纤维细胞样集落形成 (×200)
Fig 1  Primary MSCs culture with appearance of colony-forming units-fibroblast (×200)



图2  传1代MSC显示成纤维细胞样分布 (×100)
Fig 2  Passage 1 MSCs showing fibroblast-like array (×100)

2.2  碱性磷酸酶组织化学染色结果  传1代MSCs有ALP表达,成骨诱导培养液诱导后7 d,ALP表达较对照组有明显升高,组间比较差别有显著性(P<0.01);地塞米松低剂量组ALP表达最强,阳性细胞数最多(见图3)。见表1。

表1  不同诱导时间ALP阳性细胞数
Tab 1  Number of ALP positive cells after induction
                                                                       (`x±s,cells)

Group

n

7 d

14 d

21 d

28 d

 Control

20

12.0±3.5

13.3±3.2

14.6±3.9

4.5±3.1

 Low dose

20

15.1±2.6**

16.6±2.3**

18.4±2.2**

19.4±2.5**

 High dose

20

13.2±1.9

14.7±2.5

15.7±2.6

16.1±2.3

**P<0.01, vs control group



图3  传1代MSC低剂量地塞米松诱导7 d 后ALP阳性细胞(×200)
Fig 3  ALP positive cells in passage 1 MSCs after 7 d low dose Dexone induction (×200)

2.3  Von Kossa 染色结果  低剂量地塞米松诱导组诱导MSC生长至第7天后,开始出现Von Kossa阳性染色。在密集生长的细胞集落中心可见团块状黑染的区域,为钙沉积形成的结节(见图4)。并不是所有密集生长的细胞均形成钙的沉积,诱导21 d后所形成的钙沉积较大,形状呈圆形或不规则形,进一步增多。在细胞生长密度低的区域无钙化结节形成,而对照组1周后未出现钙化结节,3周后出现少量细小钙化结节,与诱导组比较有显著性差别。见表2。

表2  不同诱导时间钙结节数
Tab 2  Number of calcified deposits after induction
                                                              (`x±s,deposits)

Group

n

7 d

14 d

21 d

28 d

 Control

10

0

2.1±1.4

2.0±1.8

3.5±1.7

 Low dose

10

  4.3±1.6**

7.6±1.6**

9.0±1.7**

9.3±1.4**

 High dose

10

0

1.9±1.3

3.5±1.4

4.7±1.5

**P<0.01, vs control group



图4  传1代MSC低剂量地塞米松诱导7d后钙化结节(×200)
Fig 4  Calcified deposits in passage 1 MSCs after 7d low dose Dexone induction (×200)

Jump to Section
-   Top
-   Article and Author Info
-   Introduction
-   Materials and Methods
-   Results
-   Discussion
-   References
   

3  讨 论
      应用干细胞工程作为骨组织工程的“上游”研究修复骨缺损具有极其重要的作用和深远的影响。MSC取材方便,对机体损伤小,体外扩增能力强,具有多向分化潜能,是目前骨组织工程新的种子细胞。本实验建立MSC体外诱导成骨分化模型,有助于我们研究MSC成骨分化的中药分子机制,亦为骨组织工程的临床应用奠定基础。
      MSC在成骨过程中,经历以下三期:细胞转化增殖期、细胞聚集分泌期及细胞外基质钙化期。成骨细胞分化成熟,除了细胞形态的变化,ALP活性增强及细胞外基质钙化是两个重要标志。
      本实验证实,MSC在成骨诱导剂作用下,可向成骨细胞方向分化,表现为ALP活性升高和钙沉积形成。在成骨细胞系中ALP的表达作为成骨活动是否活跃的一种标志,MSC的ALP活性越高,说明它向成骨细胞分化的程度越高。检验钙沉积形成用Von Kossa法,成骨细胞合成的骨质、类骨质中主要成分为磷酸钙、碳酸钙,碳酸钙与银离子生成碳酸银,碳酸银不稳定,在光照下分解成黑色金属银,故染色阳性区域呈黑色。本实验低剂量诱导组诱导7 d后即形成钙沉积,21 d后钙沉积明显增多,而对照组很少看到钙沉积。
      本实验发现,低浓度地塞米松对MSC成骨分化有促进作用,低浓度地塞米松作用于传1代MSC,7 d即有明显钙化结节形成,而高浓度地塞米松和对照组未出现钙化结节。有研究表明,糖皮质激素对成骨分化既有促进,又有抑制作用,它依赖于使用的剂量、作用的时间、细胞所处的阶段和细胞的种类[2]。地塞米松在成骨分化早期以促进基质合成为主,后期以促进钙化为主,因此生理浓度的糖皮质激素对骨形成是必需的,并由β-磷酸甘油钠和维生素C加强。维生素C主要是促进体外培养细胞合成胶原,形成钙化,同时可调节ALP活性。β-磷酸甘油钠提供骨组织在体外培养体系中发生沉淀所需的磷离子,从而加速钙化结节形成[3]。Pittenger等[4]使用地塞米松、β-磷酸甘油钠和抗坏血酸诱导人MSC使ALP表达升高并形成骨结节。因此,MSC具有向成骨细胞分化的能力。

Jump to Section
-   Top
-   Article and Author Info
-   Introduction
-   Materials and Methods
-   Results
-   Discussion
-   References
   
References
1. Chen D, Ji X, Harris MA, et al. Differential roles for bone morphogenetic protein (BMP)receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages[J]. J Cell Biol, 1998, 142(1) : 295-305.
    
2. Jaiswal N, Haynesworth SE, Caplan AI, et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro[J]. J Cell Biochem, 1997, 64(2) : 295-312.
    
3. Coelho MJ, Fernandes MH. Human bone cell cultures in biocompatibility testing.PartⅡ:effect of ascorbic acid, beta-glycerophosphate and dexamethasone on osteoblastic differentiation[J]. Biomaterials, 2000, 21(11) : 1095-1102.
    
4. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 999, 284(5411) : 143-147.
  
Jump to Section
-   Top
-   Article and Author Info
-   Introduction
-   Materials and Methods
-   Results
-   Discussion
-   References
   
JCIM
Open Access
THIS ARTICLE
-  Abstract
-  Full text
-  Download PDF file
-  Send to a friend
-  Related articles in JCIM
-  Cited in JCIM
-  Reader's comments
-  Send a comment
    
Reader's comments
1. ?Х?? ????? ????? ??? ???? http://www.prduedic.com/gucci?????-86-1.html/ (2013-11-12 0:00:00)

Send a comment

 Home | Current Issue | Past Issues | Search | CollectionsRSS | PDA Services | FAQ | SHCIM Online | Chinese
Copyright © 2003-2012 by JCIM Press. All rights reserved. ISSN 1672-1977