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Coding Schemes with Rate-Limited Feedback

that Improve over the Nofeedback Capacity for

a Large Class of Broadcast Channels
Youlong Wu, Michèle Wigger

Abstract

We propose new coding schemes for the two-receiver discretememoryless broadcast channel (BC)

with rate-limited feedback from one or both receivers. Our schemes apply a block-Markov strategy and

Marton coding in each block. Also, the receivers use the feedback links to send Wyner-Ziv compression

messages about their previously observed outputs to the transmitter.

We have two types of schemes. In the first type the transmittersimply relays the compression

messages obtained over the feedback links by encoding them into the Marton cloud center of the next-

following block. Each receiver uses these compression messages to reconstruct a quantized version of

the other receiver’s outputs in order to improve the decoding of its desired data message. In our scheme,

each receiver can decode the Marton cloud center with the same performance as if the compression

messages that it had sent itself over the feedback link in theprevious block was not present. This implies

in particular that for asymmetric setups where one receiveris stronger than the other (e.g., less noisy),

the feedback allows to improve the stronger receiver’s performance—by conveying it the information

about the weaker receiver’s outputs—without degrading theweaker receiver’s performance.

The described coding scheme is analyzed with sliding-window decoding, backward decoding, or a

mixture thereof. These schemes strictly improve over the nofeedback capacity region for the class of

strictly essentially less-noisy BCs, which we introduce in this paper. This holds even when thereis only

feedback from the weaker receiver and no matter how small (but positive) the feedback rate. Examples of
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strictly essentially less-noisy BCs are the binary symmetric BC (BSBC) or the binary erasure BC (BEBC)

with unequal cross-over probabilities or unequal erasure probabilities to the two receivers. Our schemes

also improve over the nofeedback capacity region of the binary symmetric channel/binary erasure channel

BC and also for parameter ranges where the BC is not essentially less-noisy but more capable. Previous

to our work, feedback was known to increase capacity only fora few very specific memoryless BCs

with feedback.

In our second type of scheme, the encoder decodes all the feedback information and processes it with

some local information before sending the result to the receivers. When the feedback-rates are sufficiently

large, then our scheme can recover all previously known capacity and degrees of freedom results for

memoryless BCs with feedback. This includes in particular the result by Wang and by Georgiadis and

Tassiulas for the binary erasure BC when all erasures are known to both receivers, the results by Shayevitz

and Wigger and by Chia, Kim, and El Gamal on variations of the Blackwell DMBC, and the result by

Maddah-Ali and Tse on memoryless fading BCs with completelystale state information. In fact, as the

feedback-rates tend to infinity our scheme improves over a special case of the Shayevitz-Wigger scheme

which is known to recover the mentioned results.

With appropriate modification, our schemes can achieve the same rates also for BCs with noisy

feedback assuming that the receivers can code over the feedback links.

I. INTRODUCTION

For most discrete memoryless broadcast channels (DMBC), itis not known whether feedback can

increase the capacity region, even when the feedback links are noise-free and of infinite rate. There are

some exceptions. For example, for all physically degraded DMBCs the capacity regions with and without

feedback coincide [1]. The first simple example DMBC where (even rate-limited) feedback increases

capacity was presented by Dueck [2]. His example and coding scheme were generalized by Shayevitz

and Wigger [3] who proposed a general scheme and achievable region for DMBCs with generalized

feedback. In the generalized feedback model, the feedback to the transmitter is modeled as an additional

output of the DMBC that can depend on the input and the receivers’ outputs in an arbitrary manner.

It has recently been shown [4] that the Shayevitz-Wigger scheme for generalized feedback includes as

special cases the two-user schemes by Wang [5], by Georgiadis and Tassiulas [6], and by Maddah-Ali

and Tse [7], which achieve the capacity region and the degrees of freedom region of their respective

channels. Further, the Shayevitz-Wigger scheme also includes the schemes in [8], [9], [10] and [11] for

setups with imperfect (rate-limited) delayed channel state-information (CSI) at the transmitter. (A more

detailed discussion of these connections is provided at theend of Section III-B.)
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Other achievable regions for general DMBCs with perfect or noisy feedback have been proposed by

Kramer [12] and by Venkataramanan and Pradhan [13]. Kramer’s achievable region can be used to show

that feedback improves capacity for some specificbinary symmetric BC(BSBC). Comparing the general

achievable regions in [3], [12], [13] to each other is hard because of their complex form which involves

several auxiliary random variables.

A different line of works has concentrated on the memorylessGaussian broadcast channel (BC) [14],

[15], [16], [17], [18], [19], [20], [21]. The best achievable region when the noises at the two receivers

are independent is given in [18] and is based on a MAC-BC duality approach. In [20], the asymptotic

high-SNR sum-capacity for arbitrary noise correlation is derived.

In this paper, we present two types of coding schemes for DMBCs with rate-limited feedback. Our

schemes use a block-Markov strategy where in each block theyapply Marton coding [22], which to date

is the best known coding scheme without feedback. The messages sent over the feedback links are simply

compression information that describe the channel outputsthat the receivers observed during a block.

In our first type of scheme, (Schemes 1A–1C), the encoder transmits exactly these compression

informations as part of the cloud center of the Marton code employed in the next block. Thus, here,

the encoder onlyrelays the feedback messages from one receiver to the other. Each receiver can hence

reconstruct a compressed version of the other receiver’s outputs and apply a modified Marton decoding

to these compressed outputs and its own observed outputs. The Marton decoding is modified to account

for the fact that each receiver already knows a part of the message sent in the cloud center—namely the

compression information it had generated itself after the previous block. As we will see, the decoding

can be performed as well as if the part of the cloud-center message known at a receiver was not present.

In this sense, in the cloud center we are sending informationthat is useful to one of the two receivers

without disturbing the other receiver, or in other words, without occupying the other receiver’s resources.

For asymmetric setups where one of the two receivers is stronger than the other, e.g., less noisy, this

implies that we can send the compression message, and thus the information about the other receiver’s

outputs, to the stronger receiver without harming the performance of the weaker receiver. This allows in

particular to improve over Marton’s original nofeedback scheme.

We discuss the described coding strategy when the two receivers apply backward decoding

(Scheme 1A), when they apply sliding-window decoding (Scheme 1B), and when one receiver applies

backward decoding and the other sliding-window decoding (Scheme 1C).

Our coding strategy is reminiscent of the compress-and-forward relay strategy [23] or the noisy network

coding for general networks [24], [25] in the sense that the two receivers compress their channel outputs
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and send these compression indices over the feedback links.However, in our schemes, we use Marton

coding since our transmitter has to send two independent private messages to the two receivers (we could

treat them as a big common message, but this would perform poorly). Moreover, whereas in noisy network

coding the transmitter where to generate new compression indices that describe its observed feedback

outputs, in our schemes the transmitterdecodes and forwards (or relays)the compression messages that

were sent over the feedback links. Thus, in our schemes the transmitter sends compression indices that

describe the outputs observed at the two receivers.

Our schemes are particularly beneficial for the class ofstrictly essentially less-noisyDMBCs, which

we define in this paper and which represents a subclass of Nair’s essentially less-noisy DMBCs [26].

Our class includes the BSBC and thebinary erasure BCs(BEBC) with unequal cross-over probabilities

or unequal erasure probabilities at the two receivers, and the binary symmetric channel/binary erasure

channel BC(BSC/BEC-BC) for a large range of parameters. For strictly essentially less-noisy DMBCs

Marton coding is known to achieve capacity [26]. For this class of DMBCs, our schemes improve strictly

over the nofeedback capacity region no matter how small but positive the feedback rates are and even

when there is feedback only from the weaker receiver. In fact, for most of these channels our scheme can

improve over all boundary points(R1 > 0, R2 > 0) of the nofeedback capacity region. The described

schemes also improve over the nofeedback capacity region ofthe BSC/BEC-BC when the DMBC is

more capable [27], unless the BSC and BEC have same capacities.

Thus, unlike for previous schemes, with our new schemes we can easily show that feedback increases

the capacity region for a large set of DMBCs.

We present a fourth scheme, Scheme 2, where the encoder uses the feedback messages toreconstruct

compressed versions of the channel outputs, and thenprocessesthese compressed signals together with

the previously sent codewords to generate update (compression) information intended to both receivers.

This update information is sent as part of the cloud center ofthe Marton code employed in the next-

following block. This scheme is reminiscent of the Shayevitz-Wigger scheme [3] but for rate-limited

feedback. Moreover, in our Scheme 2 here, the update information is sent only in the cloud center and

using a joint source-channel code, whereas in the Shayevitz-Wigger scheme parts of it are also sent in

the satellite codewords but using only a separate source-channel code.

Since here the update information is sent using a joint source-channel code, in the limit as the feedback

rates increase, the region achieved with our Scheme 2 improves over the region achieved by the Shayevitz-

Wigger scheme when this latter is restricted to send all the update information in the cloud center. Notice

that this represents a prominent special case of the Shayevitz-Wigger scheme which subsumes the schemes
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Fig. 1. Broadcast channel with rate-limited feedback

by Wang [5], by Georgiadis and Tassiulas [6], by Maddah-Ali and Tse [7], and also the schemes in [8],

[9], [10] and [11] when these are specialized to memoryless BCs and to delayed state-information only.

All our results hold also with noisy feedback when the receivers can code over the feedback links.

A. Notation

Let R denote the set of reals andZ+ the set of positive integers. For a finite setA, we denote by|A|

its cardinality and byAj, for j ∈ Z+, its j-fold Cartesian product,Aj := A1 × . . .×Aj.

We use capital letters to denote random variables and small letters for their realizations, e.g.X and

x. For j ∈ Z+, we use the short hand notationsXj and xj for the tuplesXj := (X1, . . . ,Xj) and

xj := (x1, . . . , xj). Given a setS ∈ R2, we denote by bd(S) and int(S) the boundary and the interior

of S.

Z ∼ Bern(p) denotes thatZ is a binary random variable taking values 0 and 1 with probabilities 1−p

andp. Also, we use the definitions̄a := (1− a) anda ∗ b := āb+ ab̄, for a, b ∈ [0, 1]. Given a positive

integern, let 1[n] denote the all-one tuple of lengthn, e.g.,1[3] = (1, 1, 1). The abbreviation i.i.d. stands

for independent and identically distributed.

Given a distributionPA over some alphabetA, a positive real numberε > 0, and a positive integer

n, let T n
ε (PA) denote the typical set in [28].Hb(·) denotes the binary entropy function. Finally, given

an eventǫ, we denote its complement byǫc.

II. CHANNEL MODEL

Communication takes place over a DMBC with rate-limited feedback, see Figure 1. The setup is

characterized by the finite input alphabetX , the finite output alphabetsY1 and Y2, the channel law

PY1Y2|X , and nonnegative feedback ratesRFb,1 and RFb,2. If at discrete-timet the transmitter sends

the channel inputxt ∈ X , then Receiveri ∈ {1, 2} observes the outputYi,t ∈ Yi, where the pair

(Y1,t, Y2,t) ∼ PY1Y2|X(·, ·|xt). Also, after observingYi,t, Receiveri can send a feedback signalFi,t ∈ Fi,t

to the transmitter, whereFi,t denotes the finite alphabet ofFi,t and is a design parameter of a scheme.
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The feedback link between the transmitter and Receiveri is assumed to be instantaneous and noiseless

but rate-limited to RFb,i bits on average. Thus, if the transmission takes place over atotal blocklength

N , then

|Fi,1| × · · · × |Fi,N | ≤ 2NRFb,i , i ∈ {1, 2}. (1a)

The goal of the communication is that the transmitter conveys two independent private messages

M1 ∈ {1, . . . , ⌊2NR1⌋} andM2 ∈ {1, . . . , ⌊2NR2⌋}, to Receiver 1 and 2, respectively. EachMi, i ∈ {1, 2},

is uniformly distributed over the setMi := {1, . . . , ⌊2NRi⌋}, whereRi denotes the private rate of

transmission of Receiveri.

The transmitter is comprised of a sequence of encoding functions
{

f
(N)
t

}N

t=1
of the form f

(N)
t :

M1×M2×F1,1×· · ·×F1,t−1×F2,1×· · ·×F2,t−1 → X that is used to produce the channel inputs as

Xt = f
(N)
t

(

M1,M2, F
t−1
1 , F t−1

2

)

, t ∈ {1, . . . , N}. (2)

Receiveri ∈ {1, 2} is comprised of a sequence of feedback-encoding functions{ψ
(N)
i,t }Nt=1 of the form

ψ
(N)
i,t : Yt

i → Fi,t that is used to produce the symbols

Fi,t = ψ
(N)
i,t (Yi,1, . . . , Yi,t), t ∈ {1, . . . , N}, (3)

sent over the feedback link, and of a decoding functionΦ
(N)
i : YN

i → Mi used to produce a guess of

MessageMi:

M̂i = Φ
(N)
i (Y N

i ). (4)

A rate region(R1, R2) with averaged feedback ratesRFb,1, RFb,2 is called achievable if for every

blocklengthN , there exists a set encoding functions
{

f
(N)
t

}N

t=1
and for i = {1, 2} there exists a set of

decoding functionsΦ(N)
i , feedback alphabets{Fi,t}

N
t=1 satisfying (1), and feedback-encoding functions

{

ψ
(N)
i,t

}N

t=1
such that the error probability

P (N)
e := Pr(M1 6= M̂1 or M2 6= M̂2) (5)

tends to zero as the blocklengthN tends to infinity. The closure of the set of achievable rate pairs

(R1, R2) is called thefeedback capacity regionand is denoted byCFb.

In the special caseRFb,1 = RFb,2 = 0 the feedback signals are constant and the setup is equivalent to

a setup without feedback. We denote the capacity region for this setupCNoFB.

III. PRELIMINARIES

We recall some previous results on the capacity region of DMBCs without and with feedback.
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A. Previous Results Without Feedback

The capacity region of DMBCs without feedback is in general unknown. The best known inner bound

without feedback is Marton’s region [22],RMarton, which is defined as the set of all nonnegative rate

pairs (R1, R2) satisfying

R1 ≤ I(U0, U1;Y1) (6a)

R2 ≤ I(U0, U2;Y2) (6b)

R1+R2 ≤ I(U0, U1;Y1)+I(U2;Y2|U0)−I(U1;U2|U0) (6c)

R1+R2 ≤ I(U0, U2;Y2)+I(U1;Y1|U0)−I(U1;U2|U0) (6d)

for some probability mass function (pmf)PU0U1U2
and a functionf : U0 × U1 × U2 → X such that

X = f(U0, U1, U2).

An important subset of Marton’s region is thesuperposition coding region, R(1)
SuperPos, which results

when Marton’s constraints (6) are specialized toU1 =const. andX = U2. That means,R(1)
SuperPos is

defined as the set of all nonnegative rate pairs(R1, R2) satisfying

R1 ≤ I(U ;Y1) (7a)

R2 ≤ I(X;Y2|U) (7b)

R1 +R2 ≤ I(X;Y2) (7c)

for some pmfPUX . The superposition coding regionR(2)
SuperPosis defined similarly toR(1)

SuperPosbut where

indices1 and2 need to be exchanged.

Remark 1. To evaluate Marton’s region, it suffices to consider distributionsPU0U1U2X for which one of

the following conditions holds:

• I(U0;Y1) = I(U0;Y2);

• I(U0;Y1) < I(U0;Y2) andU1 = const.;

• I(U0;Y1) > I(U0;Y2) andU2 = const..

The proof is given in [29], [30]. For convenience to the reader, we reprove the statement in Appendix E.

The best known outer bound without feedback is the Nair-El Gamal outer bound [31] which is defined

as the set of all nonnegative rate pairs(R1, R2) satisfying

R1 ≤ I(U ;Y1) (8a)



8

R2 ≤ I(V ;Y2) (8b)

R1 +R2 ≤ I(U ;Y1) + I(X;Y2|U) (8c)

R1 +R2 ≤ I(V ;Y2) + I(X;Y1|V ) (8d)

for some pmfPUV X .

The Nair-El Gamal outer bound is known to coincide with Marton’s region for the following classes

of DMBCs, which also play a role in the present paper:

• stochastically or physically degraded DMBCs [32]

• less noisy DMBCs [33]

• essentially less noisy DMBCs [26]

• more capable DMBCs [33].

In all these classes of DMBCs one of the two receivers is stronger than the other receiver in some sense.

This makes that superposition coding is as good as the more general Marton coding and achieves capacity.

Remark 2. The relationship among these various classes of BCs is established in [26], [34]:

• degraded( less-noisy( more capable,

• less noisy( essentially less noisy,

• essentially less-noisy* more capable,

• more capable* essentially less-noisy.

We recall the definition of essentially less-noisy DMBCs as they are most important for this paper.

Definition 1 (From [26]). A subsetPX of all pmfs on the input alphabetX is said to be asufficient

classof pmfs for a DMBC if the following holds: Given any joint pmfPUV X there exists a joint pmf

P ′
UV X that satisfies

P ′
X(x) ∈ PX

IP (U ;Y1) ≤ IP ′(U ;Y1)

IP (V ;Y2) ≤ IP ′(V ;Y2)

IP (U ;Y1) + IP (X;Y2|U) ≤ IP ′(U ;Y1) + IP ′(X;Y2|U)

IP (V ;Y2) + IP (X;Y1|V ) ≤ IP ′(V ;Y2) + IP ′(X;Y1|V ) (9)

where the notationsIP and IP ′ indicate that the mutual informations are computed assuming that

(U, V,X) ∼ PUV X and (U, V,X) ∼ P ′
UVX andP ′

X(x) is the marginal obtained fromP ′
UV X .
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Definition 2 (From [26]). A DMBC is calledessentially less-noisyif there exists asufficient classof

pmfsPX such that wheneverPX ∈ PX , then for all conditional pmfsPU |X ,

I(U ;Y1) ≤ I(U ;Y2). (10)

The class of essentially less-noisy DMBCs contains as special cases the BSBC and the BEBC. Also

the memoryless Gaussian BC is essentially less noisy.

To evaluate the superposition coding regionR
(1)
SuperPosof an essentially less-noisy DMBC, it suffices to

evaluate the region given by constraints (7) for pmfsPUX that satisfyI(U ;Y1) ≤ I(U ;Y2).

B. Previous Results with Feedback

Previous results on the DMBC with feedback mostly focus on perfect output feedback, which in our

setup corresponds to infinite feedback ratesRFb,1, RFb,2 → ∞.

A simple outer bound on the capacity with output feedback is given in [35]. It equals the capacity

region C
(1)
Enh of an enhanced DMBC where the outputsY n

1 are also revealed to Receiver 2. Notice that

this enhanced DMBC is physically degraded and thus, with andwithout feedback, its capacity region is

given by the set of all nonnegative rate pairs(R1, R2) that satisfy

R1 ≤ I(U ;Y1) (11a)

R2 ≤ I(X;Y1, Y2|U) (11b)

for some pmfPUX .

Exchanging everywhere in the previous paragraph indices1 and2, we can define a similar enhanced

capacity regionC(2)
Enh, which is also an outer bound toCFb. The intersectionC(1)

Enh ∩ C
(2)
Enh yields an even

tighter outerbound [5], [6].

The achievable region with feedback that is most closely related to our paper is the Shayevitz-Wigger

region [3], which is defined as the set of all nonnegative ratepairs (R1, R2) satisfying (12) for some

pmfs PQPU0U1U2|Q, PV0V1V2|U0U1U2Y1Y2Q and some functionf : Q × U0 × U1 × U2 → X , whereX =

f(U0, U1, U2, Q).

This region is generally difficult to evaluate due to the presence of six auxiliary random variables in

the rate constraints. Recently, Kim, Chia, and El Gamal [4] studied the more general Shayevitz-Wigger

region for generalized feedback [3], which differs from theabove region only in that in some places the

outputsY1 or Y2 have to be replaced by the generalized feedback outputỸ . In particular, they proposed

two choices for the auxiliary random variables for the Shayevitz-Wigger region with generalized feedback
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R1 ≤ I(U0, U1;Y1, V1|Q)− I(U0, U1, U2, Y2;V0, V1|Q,Y1) (12a)

R2 ≤ I(U0, U2;Y2, V2|Q)− I(U0, U1, U2, Y1;V0, V2|Q,Y2) (12b)

R1 +R2 ≤ I(U1;Y1, V1|Q,U0) + I(U2;Y2, V2|Q,U0) + min
i∈{1,2}

I(U0;Yi, ViQ)− max
i∈{1,2}

I(U0, U1, U2, Y1, Y2;V0|Q,Yi)

−I(U0, U1, U2, Y2;V1|Q,V0, Y1)− I(U0, U1, U2, Y1, Y2;V2|Q,V0, Y2)− I(U1;U2|Q,U0) (12c)

R1 +R2 ≤ I(U0, U1;Y1, V1|Q) + I(U0, U2;Y2, V2|Q)− I(U1;U2|Q,U0)

−I(U0, U1, U2, Y2;V0, V1|Q,Y1)− I(U0, U1, U2, Y1;V0, V2|Q,Y2) (12d)

and presented simplified expressions for the maximum sum-rates that these choices achieve for symmetric

state-dependent DMBCs with state known at both receivers and where the generalized feedback equals

the delayed state sequence. Their first choice is given by

Q =



























0 w. p. 1− 2p

1 w. p. p

2 w. p. p

, (13a)

V0 = V1 = V2 =



























∅ if Q = 0

Y1 if Q = 1

Y2 if Q = 2

, (13b)

and

X =



























U0 if Q = 0

U1 if Q = 1

U2 if Q = 2

(13c)

for joint pmf PU0U1U2
= PU0

PU1
PU2

. This choice essentially results in a coded time-sharing scheme.

Their second choice is

Q =











1 w. p. 1/2

2 w. p. 1/2
, (14a)
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V0 = V1 = V2 =











Y1 if Q = 1

Y2 if Q = 2

, (14b)

and

X =











U1 if Q = 1

U2 if Q = 2

(14c)

for some joint pmfPU0U1U2
= PU0

PU1|U0
PU2|U0

. This choice results in a randomized superposition coding

scheme.

Notice that the two-user i.i.d. fading BC with delayed stateinformation at the transmitter considered by

Maddah-Ali and Tse [7], and the BEBCs whereall erasure events are known at all receivers considered

by Wang [5] and by Georgiadis and Tassiulas [6], belong to this class of DMBCs. In fact, it is shown

in [4] that the degrees-of-freedom optimal scheme in [7] andthe capacity-achieving schemes in [5], [6]

are special cases of the general Shayevitz-Wigger scheme specialized to the choice (13). The Maddah-

Ali&Tse scheme [7] has been modified and extended to setups with imperfect (rate-limited) current

and delayed channel state-information (CSI) at the transmitter, e.g., in [8], [9], [10] and [11]. In the

special case of only delayed CSI, these schemes are also special cases1 of the Shayevitz-Wigger scheme

for generalized feedback, more precisely for feedback signals that are noisy versions of the channel

state. For example, the scheme in [9] corresponds to the Shayevitz-Wigger scheme with the following

auxiliaries:Q = {1, 2}; X = U0+U1+U2; U0−U1−U2 form a Markov chain;U0 = const. whenQ = 1

andU0 arbitrary whenQ = 2; V0 = V1 = V2 = (η̂1, η̂2) where(η̂1, η̂2) are defined in [9]. The scheme

in [8] corresponds to the Shayevitz-Wigger scheme with the following auxiliaries:X = U0 + U1 + U2;

U0 −U1−U2 form a Markov chain; andV0 = V1 = V2 = (¯̌l(1), ¯̌l(2)) where(¯̌l(1), ¯̌l(2)) are defined in (54)

in [8].

IV. M OTIVATION : A SIMPLE SCHEME

We sketch a simple scheme that motivates our schemes in Section VII. We assume there is only

feedback from Receiver1, i.e.,RFb,1 > 0 andRFb,2 = 0.

We apply block-Markov coding withB+1 blocks of lengthn, where in each block we use superposition

coding (without feedback) to send fresh messagesM1,b andM2,b. MessageM1,b is sent in the cloud

centerUn
b andM2,b in the satellite codewordXn

b . Thus, the scheme is expected to perform well when

1The schemes in [9] and [8], however, use successive decodinginstead of the more performant joint decoding applied in [3].
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the following gap is nonnegative:

Γ := I(U ;Y2)− I(U ;Y1) ≥ 0. (15)

(This is for example the case in a BSBC when the cross-over probability to Receiver 2 is no larger than

the cross-over probability to Receiver 1.)

After each block, both Receivers 1 and 2 decode the cloud center codewordUn
b by means of joint

typicality decoding. By the Packing Lemma, this is possiblewhenever

R1 ≤ I(U ;Y1) (16)

R1 ≤ I(U ;Y2), (17)

where here, by (15), the second constraint is not active. We notice that when

Γ > 0 (18)

Receiver 2 would be able to decode the cloud center even if—besidesM1,b—it also encoded an extra

message of rate not exceedingΓ. Of course, we cannot just add an arbitrary rate-Γ message to the cloud

center, because this would make it impossible for Receiver 1to decode this larger cloud center. Instead,

we shall add a rate-Γ message that is known to Receiver 1. If in the typicality check Receiver 1 only

considers the candidate codewords for the cloud center thatcorrespond to the correct value of this extra

message, then the decoding at Receiver 1 performs as well as if the additional message was not present.

Thus, if the additional message is known at Receiver 1, it does not disturb its decoding.

With rate-limited feedback, we can identify a suitable additional message to send in the cloud center

of block b: the feedback messageMFb,1,b−1 that Receiver 1 had fed back after the previous blockb− 1.

In fact, as we describe shortly, in our scheme Receiver 1 onlyfeeds back a message at the end of each

block.

The transmitter thus simply relays the information it received over the feedback link to the other

receiver. In this sense, the feedback link and part of the cloud center can be seen as an independent

communication pipe from Receiver 1 to Receiver 2, where the pipe is rate-limited to

min{Γ, RFb,1}. (19)

In our scheme, we use this pipe to send a compressed version ofthe channel outputs observed at Receiver 1

to Receiver 2. Specifically, the feedback messageMFb,1,b−1 sent after blockb−1 is a Wyner-Ziv message

that compresses outputsY n
1,b−1 while taking into account that the reconstructor has side-information
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Y n
2,b−1, U

n
b−1. The rate-required for this Wyner-Ziv message is

R̃1 > I(Ỹ1;Y1|Y2, U). (20)

and, in order to satisfy the feedback-rate constraint, it also has to satisfy

R̃1 < RFb,1. (21)

After decoding the additional messageMFb,1,b−1, which is transmitted in the cloud center of block

b, Receiver 2 first reconstructs a compressed version of Receiver 1’s outputsỸ n
1,b−1. It then uses this

reconstruction to decode its intended MessageM2,b−1 based on the tuple(Ỹ n
1,b−1, Y

n
2,b−1, U

n
b−1). This is

possible, with arbitrary small probability of error, if

R2 ≤ I(X; Ỹ1, Y2|U). (22)

Combining now constraints (16), (20), (21), and (22), we conclude that our scheme achieves all rate

pairs (R1, R2) satisfying

R1 ≤ I(U ;Y1) (23a)

R2 ≤ I(X; Ỹ1, Y2|U) = I(X;Y2|U) + I(X; Ỹ1|U, Y2) (23b)

for some pmfsPUX andPỸ1|U,Y1

that satisfy

I(Ỹ1;Y1|Y2, U) ≤ min{Γ, RFb,1}. (24)

The left-hand side of (24) gives the minimum rate required for a Wyner-Ziv code that compressesY n
1,b−1

given that the reconstructor has side-informationY n
2,b−1 andUn

b−1.

Comparing constraints (23) to the superposition coding constraints in (7), we see that the constraints

here are strictly looser wheneverI(X; Ỹ1|U, Y2) > 0. Or in other words, whenever observing a compressed

version of Receiver 1’s outputs improves the decoding at Receiver 2.

What is remarkable about this scheme is that whenΓ > 0, there is no cost in conveying the compressed

version of Receiver 1’s outputs to Receiver 2. It is as if there were free resources in the communication

from the transmitter to Receiver 2, which the feedback allows to exploit. Without feedback, the resources

cannot be exploited because the transmitter cannot identify a messages that is known at Receiver 1 and

useful at Receiver 2.
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V. NEW ACHIEVABLE REGIONS AND USEFULNESS OFFEEDBACK

A. Achievable Regions

The following achievable regions are based on the coding schemes in Section VII. These coding

schemes are motivated by the scheme sketched in the previoussection, but use the more general Marton

coding instead of superposition coding and exploit the feedback from both receivers.

In our first scheme 1A (Section VII-A), the receivers apply sliding-window decoding. The scheme

achieves the region in the following Theorem 1.

Theorem 1 (Sliding-Window Decoding). The capacity regionCFb includes the setRrelay,sw
2 of all

nonnegative rate pairs(R1, R2) that satisfy

R1 ≤ I(U0, U1;Y1, Ỹ2|Q)− I(Ỹ2;U0, Y2|Y1, Q) (25a)

R1 ≤ I(U0;Y2|Q) + I(U1;Y1, Ỹ2|U0, Q)−∆2

−I(Ỹ1;Y1|U0, U2, Y2, Q) (25b)

R2 ≤ I(U0, U2;Y2, Ỹ1|Q)− I(Ỹ1;U0, Y1|Y2, Q) (25c)

R2 ≤ I(U0;Y1|Q) + I(U2;Y2, Ỹ1|U0, Q)−∆1

−I(Ỹ2;Y2|U0, U1, Y1, Q) (25d)

R1+R2 ≤ I(U0, U1;Y1, Ỹ2|Q)− I(Ỹ2;U0, Y2|Y1, Q)

+I(U2;Y2,Ỹ1|U0,Q)−∆1−I(U1;U2|U0,Q) (25e)

R1+R2 ≤ I(U0, U2;Y2, Ỹ1|Q)− I(Ỹ1;U0, Y1|Y2, Q)

+I(U1;Y1,Ỹ2|U0,Q)−∆2−I(U1;U2|U0,Q) (25f)

R1+R2 ≤ I(U0, U1;Y1, Ỹ2|Q)+I(U0, U2;Y2, Ỹ1|Q)

−I(Ỹ2;U0, Y2|Y1, Q)−I(Ỹ1;U0, Y1|Y2, Q)

−I(U1;U2|U0, Q) (25g)

where

∆1 := max{0, I(Ỹ1;Y1|U0, Y2, Q)−RFb,1}

2The subscript “relay” indicates that the transmitter simply relays the feedback information and the subscript “sw” indicates

that sliding-window decoding is applied.
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∆2 := max{0, I(Ỹ2;Y2|U0, Y1, Q)−RFb,2}

for some pmfsPQ, PU0U1U2|Q, PỸ1|Y1U0Q
, PỸ2|Y2U0Q

and some functionf : U0 × U1 × U2 ×Q → X such

that

I(U1;Y1, Ỹ2|U0, Q)−∆2 ≥ 0 (27a)

I(U2;Y2, Ỹ1|U0, Q)−∆1 ≥ 0. (27b)

I(Ỹ1;Y1|U0, U2, Y2, Q) ≤ min{I(U0;Y2|Q), RFb,1} (27c)

I(Ỹ2;Y2|U0, U1, Y1, Q) ≤ min{I(U0;Y1|Q), RFb,2} (27d)

whereX = f(U0, U1, U2, Q).

Proof: See Section VII-A.

For sufficiently large feedback ratesRFb,1 andRFb,2 (in particular forRFb,1 ≥ |Y1| andRFb,2 ≥ |Y2|),

the terms∆1 and∆2 as defined in (26) are 0.

In our second scheme 1B (Section VII-B), the receivers applybackward decoding. This way, for each

block, they can jointly decode the cloud center and their intended satellite codewords. In this scheme,

the Wyner-Ziv compression cannot be superpositioned on thecloud center because the receivers have not

yet decoded this latter when compressing their channel outputs at the end of each block. The following

Theorem 2 presents the achievable region for this second scheme.

Theorem 2 (Backward Decoding). The capacity regionCFb includes the setRrelay,bw
3 of all nonnegative

rate pairs (R1, R2) that satisfy

R1 ≤ I(U0, U1;Y1, Ỹ2|Q)− I(Ỹ2;Y2|Y1, Q) (28a)

R2 ≤ I(U0, U2;Y2, Ỹ1|Q)− I(Ỹ1;Y1|Y2, Q) (28b)

R1+R2 ≤ I(U0, U1;Y1, Ỹ2|Q)− I(Ỹ2;Y2|Y1, Q)

+I(U2;Y2, Ỹ1|U0,Q)−∆1−I(U1;U2|U0,Q) (28c)

R1+R2 ≤ I(U0, U2;Y2, Ỹ1|Q)− I(Ỹ1;Y1|Y2, Q)

+I(U1;Y1, Ỹ2|U0,Q)−∆2−I(U1;U2|U0,Q) (28d)

R1+R2 ≤ I(U0, U1;Y1, Ỹ2|Q)− I(Ỹ2;Y2|Y1, Q)

3The subscript “bw” stands for backward decoding.
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+I(U0, U2;Y2, Ỹ1|Q)− I(Ỹ1;Y1|Y2, Q)

−I(U1;U2|U0, Q) (28e)

for some pmfsPQ, PU0U1U2|Q, PỸ1|Y1Q
, PỸ2|Y2Q

and some functionf : U0 ×U1 ×U2 ×Q → X such that

I(Ỹ1;Y1|U0, U2, Y2, Q) ≤ RFb,1 (29a)

I(Ỹ2;Y2|U0, U1, Y1, Q) ≤ RFb,2 (29b)

whereX = f(U0, U1, U2, Q).

Proof: See Section VII-B.

SettingỸ1 = Ỹ2 = const., i.e., both receivers do not send any feedback, the regionRrelay,bw specializes

to RMarton.

Remark 3. Constraints(28) and (29) are looser than Constraints(25) and (27), respectively. But in

Theorem 2 we have the conditional pmfsPỸ1|Y1

and PỸ2|Y2

whereas in Theorem 1 we allow for more

general pmfsPỸ1|Y1,U0

and PỸ2|Y2,U0

. It is thus not clear in general which of the achievable regions in

Theorems 1 or 2 is larger.

Remark 4. Consider the Shayevitz-Wigger region(12) restricted to the choice of auxiliaries

V1 = V2 = V0 = (f1(Y1, Q), f2(Y2, Q)) (30)

for two deterministic functionsf1 and f2. (Notice that Kim, Chia, and El Gamal’s choice of auxiliaries

(13) or (14) is of this form.) Our new achievable regionRrelay,bw improves over this restricted Shayevitz-

Wigger region whenever the feedback ratesRFb,1, RFb,2 are sufficiently large so that in our new region

we can choose

Ỹ1 = f1(Y1, Q) and Ỹ2 = f2(Y2, Q) (31)

and so that∆1 = ∆2 = 0.

In fact, for the choices(30) and (31) the rate constraints in(28a), (28b), and (28e) characterizing

our new region coincide with the rate constraints(12a)–(12b) which characterize the Shayevitz-Wigger

region. Moreover, the combination of the two sum-rate constraints (28c) and (28d) is looser than the

sum-rate constraint(12c), because the former involves a “mini={1,2}{ai − bi}-term” whereas the latter

involves the smaller “mini∈{1,2} ai −maxi∈{1,2} bi-term”, for ai, bi ≥ 0.

Our third scheme 1C (Section VII-C) is a mixture of the first two: Receiver 1 behaves as in the

first scheme and Receiver 2 as in the second scheme. This is particularly interesting when there is no
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feedback from Receiver 2,RFb,2 = 0, and when Marton’s scheme specializes to superposition coding

with no satellite codeword for Receiver 1. Theorem 3 presents the region achieved by this third scheme

with Marton coding and Corollary 1 with superposition coding.

Theorem 3 (Hybrid Sliding-Window Decoding and Backward Decoding). Even forRFb,2 = 0, the

capacity regionCFb includes the setR(1)
relay,hb

4 of all nonnegative rate pairs(R1, R2) that satisfy

R1 ≤ I(U0, U1;Y1|Q) (32a)

R2 ≤ I(U0, U2; Ỹ1, Y2|Q)

−I(Ỹ1;U0, U1, U2, Y1|Y2, Q) (32b)

R1+R2 ≤ I(U0, U1;Y1|Q) + I(U2;Y2, Ỹ1|U0, Q)

−∆1 − I(U1;U2|U0, Q) (32c)

R1+R2 ≤ I(U1;Y1|U0, Q) + I(U0, U2; Ỹ1, Y2|Q)

−I(Ỹ1;U0,U1,U2,Y1|Y2,Q)−I(U1;U2|U0,Q) (32d)

for some pmfsPQ, PU0U1U2|Q, PỸ1|Y1U0Q
and some functionf : U0 × U1 × U2 ×Q → X such that

I(Ỹ1;U1,Y1|U0, U2, Y2, Q) ≤ RFb,1. (33)

The capacity regionCFb also includes the regionR(2)
relay,hb which is obtained by exchanging indices1

and 2 in the above definition ofR(1)
relay,hb.

Proof: See Section VII-C.

If superposition coding is used instead of Marton coding andonly one of the two receivers sends

feedback, Theorem 3 reduces to the following corollary.

Corollary 1. The capacity regionCFb includes the setR(1)
relay,sp

5 of all nonnegative rate pairs(R1, R2)

that satisfy

R1 ≤ I(U ;Y1|Q) (34a)

R1+R2 ≤ I(U ;Y1|Q) + I(X;Y2, Ỹ1|U,Q) (34b)

R1+R2 ≤ I(X;Y2|Q)− I(Ỹ1;Y1|U, Y2, Q) (34c)

4The subscript “hb” stands for hybrid decoding.

5The subscript “sp” stands for superposition coding.
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for some pmfsPQ, PUX|Q, PỸ1|Y1UQ such that

I(Ỹ1;Y1|U, Y2, Q) ≤ RFb,1. (35)

The capacity regionCFb also includes the regionR(2)
relay,sp which is obtained by exchanging indices1

and 2 in the above definition ofR(1)
relay,sp.

Proof: Let Ỹ2 = U1 = const.,U = U0 andX = U2. Constraint (32a) then specializes to (34a) and

Constraint (32b) is redundant compared to Constraint (32d). Observe that Constraints (32d) and (33) are

looser than Constraints (34c) and (35), respectively. Also, by (35), Constraint (32c) reduces to (34b).

Thus the capacity regionCFb includes the regionR(1)
relay,sp. Similar arguments hold forR(2)

relay,sp.

Remark 5. The regionR(1)
relay,hbcontains the regions in Theorems 1 and 2 when these latter arespecialized

to U1 =const.,U2 = X, andRFb,2 = 0.

In our first three schemes 1A–1C the transmitter simply relays the compression information it received

over each of the feedback links to the other receiver, as is the case also for our motivating scheme

in the previous section IV. Alternatively, the transmittercan also use this feedback information to first

reconstruct the compressed versions of the channel outputsand then compress them jointly with the

Marton codewords. The indices resulting from this latter compression are then sent to the two receivers.

The following Theorem 4 presents the region achieved by thisfourth scheme 2.

Theorem 4. The capacity regionCFb includes the setRproc.
6 of all nonnegative rate pairs(R1, R2) that

satisfy

R1 ≤ I(U0, U1;Y1, Ỹ1, V |Q)

−I(V ;U0, U1, U2, Ỹ2|Ỹ1, Y1, Q)

R2 ≤ I(U0, U2;Y2, Ỹ2, V |Q)

−I(V ;U0, U1, U2, Ỹ1|Ỹ2, Y2, Q)

R1+R2 ≤ I(U0, U1;Y1, Ỹ1, V |Q)+I(U2;Y2, Ỹ2, V |U0, Q)

−I(V ;U0,U1,U2,Ỹ2|Ỹ1,Y1,Q)−I(U1;U2|U0,Q)

R1+R2 ≤ I(U0, U2;Y2, Ỹ2, V |Q)+I(U1;Y1, Ỹ1, V |U0, Q)

6The subscript “proc.” indicates that the transmitter processes the feedback information it receives.
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−I(V ;U0,U1,U2,Ỹ1|Ỹ2,Y2,Q)−I(U1;U2|U0,Q)

R1+R2 ≤ I(U0, U1;Y1, Ỹ1, V |Q) + I(U0, U2;Y2, Ỹ2, V |Q)

−I(V ;U0, U1, U2, Ỹ2|Ỹ1, Y1, Q)

−I(V ;U0,U1,U2,Ỹ1|Ỹ2,Y2,Q)−I(U1;U2|U0,Q)

for some pmfPQ, PU0U1U2|Q, PỸ1|Y1Q
, PỸ2|Y2Q

, PV |U0U1U2Ỹ1Ỹ2

and some functionf : X → U0×U1×U2×Q

where the feedback-rates have to satisfy

I(Y1; Ỹ1|U0, U1, U2, Ỹ2, Q) ≤ RFb,1 (37a)

I(Y2; Ỹ2|U0, U1, U2, Ỹ1, Q) ≤ RFb,2 (37b)

I(Y1, Y2; Ỹ1, Ỹ2|U0, U1, U2, Q) ≤ RFb,1 +RFb,2. (37c)

and whereX = f(U0, U1, U2, Q).

Proof: See Section VII-D.

When the feedback ratesRFb,1, RFb,2 are sufficiently large, we can choosẽYi = Yi for i ∈ {1, 2}.

Corollary 2. In the limit RFb,1, RFb,2 → ∞, CFb includes the setR∞
proc. of all nonnegative rate pairs

(R1, R2) that satisfy

R1 ≤ I(U0,U1;Y1,V |Q)−I(V ;U0,U1,U2,Y2|Y1,Q) (38a)

R2 ≤ I(U0,U2;Y2,V |Q)−I(V ;U0,U1,U2,Y1|Y2,Q) (38b)

R1+R2 ≤ I(U1;Y1, V |U0, Q) + I(U2;Y2, V |U0, Q) (38c)

−I(U1;U2|U0, Q) + min
i∈{1,2}

{I(U0;Yi, V |Q)

−I(V ;U0, U1, U2, Y1, Y2|Yi, Q)} (38d)

R1+R2 ≤ I(U0, U1;Y1, V |Q)−I(V ;U0, U1, U2, Y2|Y1, Q)

+I(U0, U2;Y2, V |Q)−I(V ;U0, U1, U2, Y1|Y2, Q)

−I(U1;U2|U0, Q) (38e)

for some pmfPQ, PU0U1U2|QPV |U0U1U2Y1Y2
and some functionf : X → U0 × U1 × U2 ×Q, whereX =

f(U0, U1, U2, Q).

Remark 6. The regionR∞
proc. improves over the Shayevitz-Wigger region for output feedback when this

latter is specialized to the choiceV1 = V2 = V0. Observe that except for the sum-rate constraints(38d)
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and (12c), all other rate constraints definingRproc. and the Shayevitz-Wigger region coincide when the

latter are specialized toV1 = V2 = V0. Sincemini={1,2}{ai − bi} ≥ mini∈{1,2} ai −maxi∈{1,2} bi holds

for any nonnegative{ai, bi}2i=1, we conclude that the rate regionRproc. contains the Shayevitz-Wigger

region specialized to the choiceV1 = V2 = V0. As proved in [4], our regionR∞
proc. thus also recovers

the two-user capacity result in [5], [6] and the degrees of freedom achievability result in [7].

B. Usefulness of Feedback

Our third scheme 1C (which leads to Theorem 3) can be used to prove the following result on the

usefulness of rate-limited feedback for DMBCs. (Similar results can be shown based on our other proposed

schemes.)

Theorem 5. Fix a DMBC. Consider random variables(U (M)
0 , U

(M)
1 , U

(M)
2 ,X(M)) such that

Γ(M) := I(U
(M)
0 ;Y

(M)
2 )− I(U

(M)
0 ;Y

(M)
1 ) > 0. (39)

Let the rate pair (R
(M)
1 , R

(M)
2 ) satisfy Marton’s constraints (6) when evaluated for

(U
(M)
0 , U

(M)
1 , U

(M)
2 ,X(M)) where Constraint(6b) has to hold with strict inequality.

Also, let(R(Enh)
1 , R

(Enh)
2 ) be a rate pair in the capacity regionC(1)

Enh of the enhanced DMBC.

If the feedback-rate from Receiver 1 is positive,RFb,1 > 0, then for all sufficiently smallγ ∈ (0, 1),

the rate pair(R1, R2),

R1 = (1− γ)R
(M)
1 + γR

(Enh)
1 (40a)

R2 = (1− γ)R
(M)
2 + γR

(Enh)
2 (40b)

lies in R
(1)
relay,hb,

(R1, R2) ∈ R
(1)
relay,hb, (41)

and is thus achievable.

An analogous statement holds when indices1 and 2 are exchanged.

Proof: See Appendix D.

The following remark elaborates on the condition of the theorem that a rate pair satisfies Constraint (6b)

with strict inequality.

Remark 7. For given random variablesU (M)
0 , U

(M)
1 , U

(M)
2 ,X(M) Marton’s region, i.e., the rate region

defined by Constraints(6), is either a pentagon (both single-rate constraints as wellas at least one of
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the sum-rates are active), a quadrilateral (only the two single-rate constraints are active), or a triangle

(only one single-rate constraint and at least one of the sum-rate constraints are active).

In the case of superposition coding withU (M)
1 =const. andU (M)

2 = X(M) and when Condition(39)

holds, then the region is a quadrilateral and the only activeconstraints are(6a) and (6c). Thus, in this

case, constraint(6b) holds with strict inequality for all rate pairs in this region.

Whenever the region defined by Marton’s constraints(6) is a pentagon, then the only rate pair in this

pentagon that satisfies Constraint(6b) with equality is the dominant corner point of maximumR2-rate.

Corollary 3. AssumeRFb,1 > 0. If there exists a rate pair(R(M)
1 , R

(M)
2 ) that satisfies the conditions in

Theorem 5 and that lies on the boundary ofRMarton but strictly in the interior ofC(1)
Enh, then

RMarton ( CFb. (42)

If for the considered DMBC moreoverRMarton = CNoFB,

CNoFB ( CFb. (43)

Proof: Inclusion (43) follows from (42). We show (42). Since(R(M)
1 , R

(M)
2 ) is in the interior of

C
(1)
Enh, there exists a rate pair(R(Enh)

1 , R
(Enh)
2 ) ∈ C

(1)
Enh with R

(Enh)
1 > R

(M)
1 andR(Enh)

2 > R
(M)
2 . Now, since

(R
(M)
1 , R

(M)
2 ) lies on the boundary ofRMarton, the rate pair in (40) must lie outsideRMarton for any

γ ∈ (0, 1). By Theorem 5, Equation (41), this rate pair is achievable with rate-limited feedback for all

γ ∈ (0, 1) that are sufficiently close to 0.

For many DMBCs such as the BSBC or the BEBC with unequal cross-over probabilities or unequal

erasure probabilities to the two receivers, or the BSC/BEC-BC where the two channels have different

capacities, the conditions of Corollary 3 can easily be checked. Thus, our corollary immediately shows

that for these DMBCs rate-limited feedback strictly increases capacity. (See also Examples 1 and 2

For the BSBC and the BEBC, Theorem 5 can even be used to show that all the boundary points

(R1 > 0, R2 > 0) of CNoFB can be improved with rate-limited feedback, see the following Corollary 4,

the paragraph thereafter, and Example 1 in the next Section.

More generally speaking, Corollary 3 is particularly interesting in view of the following class of BCs.

We introduce the new termstrictly essentially less-noisy.

Definition 3 (Strictly Essentially Less-Noisy). The definition of astrictly essentially less-noisyDMBC

coincides with the definition of an essentially less-noisy DMBC except that Inequality(10) needs to be

strict wheneverI(U ;Y1) > 0.
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The BSBC and the BEBC with different cross-over probabilities or different erasure probabilities at

the two receivers are strictly essentially less-noisy.

Corollary 4. Consider a DMBC whereY2 is strictly essentially less-noisy thanY1. AssumeRFb,1 > 0.

We have:

1) If a rate pair (R1, R2) lies on the boundary ofCNoFB but in the interior ofC(1)
Enh, then(R1, R2) lies

in the interior ofCFb, i.e., with rate-limited feedback one can improve over thisrate pair.

2) If CNoFB does not coincide withC(1)
Enh, thenCNoFB is also a strict subset ofCFb, i.e., feedback strictly

improves capacity.

Analogous statements hold if indices1 and 2 are exchanged.

As mentioned, all BSBCs and BEBCs with unequal cross-over probabilities or unequal erasure

probabilities to the two receivers are strictly essentially less-noisy. Also, for these BCsCNoFB has no

common boundary points(R1 > 0, R2 > 0) with the setsC(1)
Enh or C

(2)
Enh unless the BC is physically

degraded. Thus, for these BCs the corollary implies that, unless the BC is physically degraded, rate-

limited feedback improves all boundary points(R1 > 0, R2 > 0) of CNoFB wheneverRFb,1, RFb,2 > 0.

Notice that when a DMBC is physically degraded in the sense that outputY1 is a degraded version of

Y2, thenCNoFB = C
(1)
Enh. Of course (even infinite-rate) feedback does not increase the capacity of physically

degraded DMBCs [1].

Proof of Corollary 4: 2.) follows from 1.) We prove 1.) For strictly essentially less-noisy DMBCs,

CNoFB is achieved by superposition coding. Thus,RMarton = CNoFB and in the evaluation of Marton’s

region one can restrict attention to auxiliaries of the formU1 =const. andU2 = X. By the definition

of strictly essentially-less noisy, when evaluating Marton’s region we can further restrict attention to

auxiliary random variables that satisfy (39). Thus, by Remark 7, any boundary point ofRMarton satisfies

the conditions of Theorem 5. Repeating the proof steps for Corollary 3, we can prove that these boundary

points cannot be boundary points ofCFb whenever they lie in the interior ofC(1)
Enh.

VI. EXAMPLES

Example 1. Consider the BSBC with inputX and outputsY1 and Y2 described by:

Y1 = X ⊕ Z1, Y2 = X ⊕ Z2, (44a)

for Z1 ∼ Bern(p1) and Z2 ∼ Bern(p2) independent noises. LetQ = const., U ∼ Bern(1/2), W1 ∼

Bern(β1) andW2 ∼ Bern(β2), for β1, β2 ∈ [0, 1/2], whereU,W1,W2 are mutually independent. Also
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setX = U ⊕W1, and Ỹ1 = Y1 ⊕W2. Then

I(U ;Y1) = 1−Hb(β1 ∗ p1), I(X;Y2) = 1−Hb(p2),

and

I(X; Ỹ1, Y2|U) = H(α1,α2,α3,α4)−Hb(p2)−Hb(β2 ∗ p1)

I(Ỹ1;Y1|Y2, U) = H(α1,α2,α3,α4)−Hb(β1 ∗ p2)−Hb(β2)

where

α1 = (p1 ∗ β2)p2β1 + (1− p1 ∗ β2)p̄2β̄1

α2 = (p1 ∗ β2)p̄2β1 + (1− p1 ∗ β2)p2β̄1

α3 = (p1 ∗ β2)p̄2β̄1 + (1− p1 ∗ β2)p2β1

α4 = (p1 ∗ β2)p2β̄1 + (1− p1 ∗ β2)p̄2β1.

For this choice, the region defined by the constraints in Corollary 1 evaluates to:

R1 ≤ 1−Hb(β1 ∗ p1) (45a)

R1 +R2 ≤ 1−Hb(β1 ∗ p1) +H(α1, α2, α3, α4)

−Hb(p2)−Hb(β2 ∗ p1) (45b)

R1 +R2 ≤ 1−Hb(p2)−H(α1, α2, α3, α4)

+Hb(β1 ∗ p2) +Hb(β2) (45c)

for someβ1, β2 ∈ [0, 1/2] satisfying

H(α1,α2, α3, α4)−Hb(β1 ∗ p2)−Hb(β2) ≤ RFb,1 (46)

and whereH(α1, α2, α3, α4) denotes the entropy of a quaternary random variable with probability masses

(α1, α2, α3, α4).

The region is plotted in Figure 2 against the no-feedback capacity regionCNoFB.

Example 2. Consider a DMBC where the channel fromX to Y1 is a BSC with cross-over probability

p ∈ (0, 1/2), and the channel fromX to Y2 is an independent BEC with erasure probabilitye ∈ (0, 1).

We show that our feedback regionsR(1)
relay,spandR(2)

relay,sp improve over a large part of the boundary points

of CNoFB for all values ofe, p unlessHb(p) = e, no matter how smallRFb,1, RFb,2 > 0.
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Fig. 2. CNoFB and the achievable region in (45) are plotted for BSBCs with parametersp2 = 0.1 andp1 ∈ {0.2, 0.25, 0.3} and

for feedback rateRFb,1 = 0.8.

We distinguish different parameter ranges of our channel.

• 0 < e < Hb(p): In this case, the nofeedback capacity regionCNoFB [26] is formed by the set of rate

pairs (R1, R2) that for somes ∈ [0, 1/2] satisfy

R1 ≤ 1−Hb(s ∗ p), (47a)

R2 ≤ (1− e)Hb(s), (47b)

R1 +R2 ≤ 1− e. (47c)

We specialize the regionR(1)
relay,sp to the following choices. LetQ = const., U ∼ Bern(1/2), X =

U ⊕ V , whereV ∼ Bern(s) independent ofU , and Ỹ1 = Y1 with probabilityγ ∈ (0, 1) and Ỹ1 = ?

with probability 1− γ, where

γ ≤
RFb,1

(1− e)Hb(p) + eHb(s ∗ p)
. (48)

Condition (48) assures that the described choice satisfies(35). Then,

I(U ;Y1) = 1−Hb(s ∗ p), I(X;Y2) = 1− e,

and

I(X; Ỹ1, Y2|U) = γe(Hb(s ∗ p)−Hb(p))+(1−e)Hb(s)

I(Ỹ1;Y1|Y2, U) = γ(Hb(p)(1− e) + eHb(s ∗ p)).

WhenRFb,1 > 0, by Corollary 1, all rate pairs(R1, R2) satisfying

R1 ≤ 1−Hb(s ∗ p) (49a)
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R1+R2 ≤ 1−Hb(s ∗ p) + (1− e)Hb(s)

+γe(Hb(s ∗ p)−Hb(p)) (49b)

R1+R2 ≤ 1−e−γ(Hb(p)(1−e)+eHb(s∗p)) (49c)

are achievable for anyγ ∈ (0, 1) satisfying(48).

As shown in [26], the points(R1, R2) of the form

(1−Hb(s ∗ p), (1 − e)Hb(s)), s ∈ (0, s0), (50)

are all on the dominant boundary ofCNoFb, wheres0 ∈ (0, 1/2) is the unique solution to

1−Hb(s0 ∗ p) + (1− e)Hb(s0) = 1− e. (51)

For these boundary points, only the single-rate constraints (47a)and (47b)are active, but not(47c).

Thus, comparing(50) to our feedback region(49), we can conclude that by choosingγ sufficiently

small, all boundary points(50) lie strictly in the interior of our feedback regionR(1)
relay,sp when

RFb,1 > 0.

• 0 < Hb(p) < e < 1: The nofeedback capacity regionCNoFb equals the time-sharing region given by

the union of all rate pairs(R1, R2) that for someα ∈ [0, 1] satisfy

R1 ≤ α(1 −Hb(p)) (52a)

R2 ≤ (1− α)(1 − e). (52b)

We specialize the regionR(2)
relay,sp to the following choices:Q ∼ Bern(α); if Q = 0 then U ∼

Bern(1/2), X = U , and Ỹ2 = const.; if Q = 1 thenU =const.,X ∼ Bern(1/2), and Ỹ2 = Y2

with probabilityγ ∈ (0, 1) and Ỹ2 = ? with probability 1− γ, where in order to satisfy the average

feedback rate constraint,

γ ≤
RFb,2

α((1 − e)Hb(p) +Hb(e))
. (53)

WhenRFb,2 > 0, by Theorem 3, all rate pairs(R1, R2) satisfying

R1 ≤ α(1−Hb(p)) + α(1− e)γHb(p) (54a)

R1 +R2 ≤ (1− α)(1− e) + α(1 −Hb(p))

+ α(1− e)γHb(p) (54b)

R1 +R2 ≤ (1−Hb(p))− (1− α)γHb(e). (54c)

are achievable for anyγ ∈ (0, 1) satisfying(53).
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Fig. 3. CNoFB and the achievable regions in (49) and (54) are plotted for a BSC/BEC-BC when the BSC has parameterp = 0.1

and the BEC has parametere ∈ {0.2, 0.7}. Notice that0.2 < Hb(p) < 0.7. The feedback ratesRFb,1 = RFb,2 = 0.8.

Since here1 − Hb(p) > 1 − e, for small γ > 0 the feedback region in(54) improves overCNoFB

given in (52). In fact, (54) improves over all boundary points(R1 > 0, R2 > 0) of CNoFB.

Remark 8. The BSC/BEC-BC in Example 2, is particularly interesting, because depending on the values

of the parameterse and p, the BC is either degraded, less noisy, more capable, or essentially less-

noisy [26]. We conclude that our feedback regionsR
(1)
relay,spandR(2)

relay,spcan improve over the nofeedback

capacity regions for all these classes of BCs even with only one feedback link that is of arbitrary small,

but positive rate.

We plotted our regions(49) and (54) versus the nofeedback capacity region in Figure 3 forp = 0.1 and

e = 0.2 or e = 0.7. In the first case the DMBC is more capable and in the second case it is essentially

less-noisy.

In the next example we consider the Gaussian BC with independent noises. We evaluate the region

defined by the constraints of Corollary 1 for a set of jointly Gaussian distributions on the input and the

auxiliary random variables. A rigorous proof that our achievability result in Corollary 1 holds also for

the Gaussian BC and Gaussian random variables is omitted forbrevity.

Example 3. Consider theGaussian broadcast channel

Y1 = X + Z1 (55a)

Y2 = X + Z2 (55b)

whereZ1 ∼ N (0, N1) and Z2 ∼ N (0, N2) are independent noises. Assume an average transmission
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powerP , and0 < N2 < N1 < P .

Let Q = const.,U ∼ N (0, ᾱP ), W1 ∼ N (0, αP ) andW2 ∼ N (0, β), for α ∈ [0, 1], β > 0, where

U,W1,W2 are mutually independent. SetX = U +W1, Ỹ1 = Y1 +W2, then

I(U ;Y1) = C
( ᾱP

αP +N1

)

, I(X;Y2) = C
( P

N2

)

,

and

I(X;Y2, Ỹ1|U) = C
(αP

N2

)

+ C
( αPN2

(αP +N2)(N1 + β)

)

I(Ỹ1;Y1|Y2, U) = C
(αP (N1 +N2) +N1N2

β(N2 + αP )

)

.

For these choices, the region defined by the constraints in Corollary 1 evaluates to:

R1 ≤ C
( ᾱP

αP +N1

)

(56a)

R1 +R2 ≤ C
( ᾱP

αP +N1

)

+ C
(αP

N2

)

+C
( αPN2

(αP +N2)(N1 + β)

)

(56b)

R1 +R2 ≤ C
( P

N2

)

−C
(αP (N1+N2)+N1N2

β(N2 + αP )

)

(56c)

for someα ∈ [0, 1] and β > 0 satisfying

C
(αP (N1 +N2) +N1N2

β(N2 + αP )

)

≤ RFb,1. (57)

Here, we useC(x) := 1
2 log(1 + x), for anyx ≥ 0.

The region is plotted in Figure 4 against the no-feedback capacity regionCNoFB and the region achieved

by Ozarow&Leung’s coding scheme [35].

Example 4. (Blackwell Channel with State [4]) We consider the Blackwell DMBC with random state.

The state is described by a random variableS ∼ Bern(1/2), which is also part of the outputs. That

means Receiver 1’s output isY1 = (Y ∗
1 , S) and Receiver 2’s output isY2 = (Y ∗

2 , S). If S = 0 then the

BC to Y ∗
1 and Y ∗

2 is a reversed Blackwell channel:

Y ∗
1 =







0 X = 0

1 X = 1, 2
Y ∗
2 =







0 X = 0, 2

1 X = 1.
(58)

If S = 1, then the BC toY ∗
1 and Y ∗

2 is a standard Blackwell channel:

Y ∗
1 =







0 X = 0, 2

1 X = 1
Y ∗
2 =







0 X = 0

1 X = 1, 2.
(59)
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Fig. 4. CNoFB and the achievable region in (56) are plotted for Gaussian BCs with parametersP = 10, N2 = 1, N1 ∈ {4, 8}

and feedback rateRFb,1 = 0.8.

For this BC, the nofeedback capacity region is achieved by time-sharing and the maximum sum-rate is 1.

In [4] it was shown that the Shayevitz-Wigger scheme with choices of auxiliary random variables as in

(13) and (14) achieves the rate pairs(0.5958, 0.5958) and (0.6103, 0.6103), respectively. By Remark 4,

we obtain that the proposed scheme pertaining to Theorem 2 can enlarge the nofeedback-capacity of this

BC. Notice that for this setup,I(U ;Y2) − I(U ;Y1) = 0 holds for all PUX , which means the statement

above holds even when one of the receivers is not “stronger” than the other.

VII. CODING SCHEMES

A. Coding Scheme 1A: Sliding-Window Decoding (Theorem 1)

For simplicity, we only describe the scheme forQ =const. A generalQ can be introduced by coded

time-sharing [28, Section 4.5.3]. That means all the codebooks need to be superpositioned on aPQ-i.i.d.

random vectorQn that is revealed to transmitter and receivers, and thisQn sequence needs to be included

in all the joint-typicality checks.

Choose nonnegative ratesR′
1, R

′
2, R̃1, R̃2, R̂1, R̂2, auxiliary finite alphabetsU0,U1,U2, Ỹ1, Ỹ2, a func-

tion f of the form f : U0 × U1 × U2 → X , and pmfsPU0U1U2
, PỸ1|U0Y1

, PỸ2|U0Y2

. Transmission takes

place overB + 1 consecutive blocks, with lengthn for each block. We denote then-length blocks of

inputs and outputs in blockb by xnb , yn1,b andyn2,b.

Define Ji := {1, . . . , ⌊2nR̂i⌋}, Ki := {1, . . . , ⌊2nR
′

i⌋}, andLi := {1, . . . , ⌊2nR̃i⌋} , for i ∈ {1, 2}.

The messages are in product form:Mi = (Mi,1, . . . ,Mi,B), i ∈ {1, 2}, with Mi,b = (Mc,i,b,Mp,i,b) for

b ∈ {1, . . . , B}. The submessagesMc,i,b, andMp,i,b are uniformly distributed over the setsMc,i :=
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{1, . . . , ⌊2nRc,i⌋} andMp,i := {1, . . . , ⌊2nRp,i⌋}, respectively, whereRp,i, Rc,i > 0 and so thatRi =

Rp,i +Rc,i
7. Let Rc := (Rc,1 +Rc,2 + R̃1 + R̃2).

1) Codebook generation: For each blockb ∈ {1, . . . , B + 1}, randomly and independently generate

2nRc sequencesun0,b(mc,b, l1,b−1, l2,b−1), for mc,b ∈ Mc := Mc,1×Mc,2 andli,b−1 ∈ Li, for i ∈ {1, 2}.

(We use vector notation formc,b to emphasize that it represents a pair of indices.) Each sequence

un0,b(mc,b, l1,b−1, l2,b−1) is drawn according to the product distribution
∏n

t=1 PU0
(u0,b,t), where u0,b,t

denotes thet-th entry ofun0,b(mc,b, l1,b−1, l2,b−1).

For i ∈ {1, 2} and eachun0,b(mc,b, l1,b−1, l2,b−1) randomly and conditionally independently gen-

erate [28] 2n(Rp,i+R′

i) sequencesuni,b(mp,i,b, ki,b|mc,b, l1,b−1, l2,b−1), for mp,i,b ∈ Mp,i and ki,b ∈

Ki, where eachuni,b(mp,i,b, ki,b|mc,b, l1,b−1, l2,b−1) is drawn according to the product distribution
∏n

t=1 PUi|U0
(ui,b,t|u0,b,t), whereui,b,t denotes thet-th entry ofuni,b

(

mp,i,b, ki,b|mc,b, l1,b−1, l2,b−1

)

.

Similarly, for i ∈ {1, 2} and each tuple(mc,b, l1,b−1, l2,b−1) ∈ Mc × L1 × L2 randomly generate

2n(R̃i+R̂i) sequences̃yni,b(li,b, ji,b|mc,b, l1,b−1, l2,b−1

)

, for li,b ∈ Li and ji,b ∈ Ji, by drawing each

ỹni,b(li,b, ji,b|mc,b, l1,b−1, l2,b−1

)

according to the product distribution
∏n

t=1 PỸi|U0,Yi
(ỹi,b,t|u0,b,t) where

ỹi,b,t denotes thet-th entry of ỹni,b(li,b, ji,b|mc,b, l1,b−1, l2,b−1

)

.

All codebooks are revealed to transmitter and receivers.

2) Encoding: We describe the encoding for a fixed blockb ∈ {1, . . . , B + 1}. Assume thatMc,i,b =

mc,i,b, Mp,i,b = mp,i,b, for i ∈ {1, 2} and that the feedback messages sent after blockb− 1 areL1,b−1 =

l1,b−1 andL2,b−1 = l2,b−1. Definemc,b := (mc,1,b,mc,2,b). To simplify notation, letli,0 = mc,i,B+1 =

mp,i,B+1 = 1, for i ∈ {1, 2} andmc,B+1 = (1, 1).

The transmitter looks for a pair(k1,b, k2,b) ∈ K1 ×K2 that satisfies

(

un0,b(mc,b, l1,b−1, l2,b−1),

un1,b(mp,1,b, k1,b|mc,b, l1,b−1, l2,b−1),

un2,b(mp,2,b, k2,b|mc,b, l1,b−1, l2,b−1)
)

∈ T n
ε/16(PU0U1U2

).

(60)

If there is exactly one pair(k1,b, k2,b) that satisfies the above condition, the transmitter choosesthis pair.

7Due to the floor operations and since transmission takes place overB + 1 blocks whereas the messagesM1 andM2 are

split into onlyB submessages,R1 andR2 here do not exactly represent the transmission rates of messagesM1 andM2. In the

limit n → ∞ andB → ∞, which is our case of interest,R1 andR2 however approach these transmission rates. Therefore, we

neglect this technicality in the following.
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If there are multiple such pairs, it chooses one of them uniformly at random. Otherwise it chooses a pair

(k1,b, k2,b) uniformly at random over the entire setK1 × K2. In block b the transmitter then sends the

inputsxnb = (xb,1, . . . , xb,n), where

xb,t = f(u0,b,t, u1,b,t, u2,b,t), t ∈ {1, . . . , n}, (61)

andu0,b,t, u1,b,t, u2,b,t denote thet-th symbols of the chosen Marton codewordsun0,b(mc,b, l1,b−1, l2,b−1),

un1,b(mp,1,b, k1,b|mc,b, l1,b−1, l2,b−1), and

un2,b(mp,2,b, k2,b|mc,b, l1,b−1, l2,b−1).

3) Decoding and Generation of Feedback Messages at Receivers: We describe the operations performed

at Receiver 1. Receiver 2 behaves in an analogous way.

After each blockb ∈ {1, . . . , B + 1}, and after observing the outputsyn1,b, Receiver 1 looks for a pair

of indices(m̂(1)
c,b , l̂2,b−1) ∈ Mc × L2 that satisfies

(

un0,b(m̂
(1)
c,b , l1,b−1, l̂2,b−1), y

n
1,b

)

∈ T n
ε/8(PU0Y1

).

Notice that Receiver 1 already knowsl1,b−1 because it has created it itself after the previous blockb− 1.

If there are multiple such pairs, the receiver chooses one ofthem at random. If there is no such pair,

then it chooses(m̂(1)
c,b , l̂2,b−1) randomly over the setMc × L2.

After decoding the cloud center in blockb, Receiver 1 then looks for a tuple(ĵ2,b−1, m̂p,1,b−1, k̂1,b−1) ∈

J2 ×Mp,1 ×K1 that satisfies

(

un0,b−1(m̂
(1)
c,b−1,l1,b−2,l̂2,b−2), y

n
1,b−1,

un1,b−1(m̂p,1,b−1, k̂1,b−1|m̂
(1)
c,b−1, l1,b−2, l̂2,b−2),

ỹn2,b−1(l̂2,b−1, ĵ2,b−1|m̂
(1)
c,b−1, l1,b−2, l̂2,b−2)

)

∈ T n
ǫ (PU0U1Y1Ỹ2

).

It further looks for a pair(l1,b, j1,b) ∈ L1 ×J1 that satisfies

(ỹn1,b(l1,b, j1,b|m̂
(1)
c,b , l1,b−1, l̂2,b−1),

un0,b(m̂
(1)
c,b , l1,b−1, l̂2,b−1), y

n
1,b) ∈ T n

ε/4(PY1U0Ỹ1

)

and sends the indexl1,b over the feedback link. If there is more than one such pair(l1,b, j1,b) the encoder

chooses one of them at random. If there is none, it chooses theindex l1,b that it sends over the feedback

link uniformly at random overL1. The receivers thus only send a feedback message at the end ofeach

block 1, . . . , B.
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After decoding BlockB + 1, Receiver 1 produces the product messagem̂1 = (m̂1,1, . . . , m̂1,B) as its

guess, wherêm1,b = (m̂
(1)
c,1,b, m̂p,1,b), for b ∈ {1, . . . , B}, andm̂(1)

c,1,b denotes the first component of̂m(1)
c,b .

5) Analysis: See Appendix A.

B. Coding Scheme 1B: Backward Decoding (Theorem 2)

For simplicity, we describe the scheme without the coded time-sharing random variableQ, i.e., for

Q =const.

Choose nonnegative ratesR′
1, R

′
2, R̃1, R̃2, R̂1, R̂2, auxiliary finite alphabetsU0,U1,U2, Ỹ1, Ỹ2, a func-

tion f of the form f : U0 × U1 × U2 → X , and pmfsPU0U1U2
, PỸ1|Y1

, PỸ2|Y2

. Transmission takes place

overB + 1 consecutive blocks, with lengthn for each block. We denote then-length blocks of inputs

and outputs in blockb by xnb , yn1,b andyn2,b.

Define Ji := {1, . . . , ⌊2nR̂i⌋}, Ki := {1, . . . , ⌊2nR
′

i⌋}, andLi := {1, . . . , ⌊2nR̃i⌋} , for i ∈ {1, 2}.

The messages are in product form:Mi = (Mi,1, . . . ,Mi,B), i ∈ {1, 2}, with Mi,b = (Mc,i,b,Mp,i,b) for

b ∈ {1, . . . , B}. The submessagesMc,i,b, andMp,i,b are uniformly distributed over the setsMc,i :=

{1, . . . , ⌊2nRc,i⌋} andMp,i := {1, . . . , ⌊2nRp,i⌋}, respectively, whereRp,i, Rc,i > 0 and so thatRi =

Rp,i +Rc,i. Let Rc := (Rc,1 +Rc,2 + R̃1 + R̃2).

1) Codebook generation: For each blockb ∈ {1, . . . , B + 1}, randomly and independently generate

2nRc sequencesun0,b(mc,b, l1,b−1, l2,b−1), for mc,b ∈ Mc := Mc,1×Mc,2 andli,b−1 ∈ Li, for i ∈ {1, 2}.

Each sequenceun0,b(mc,b, l1,b−1, l2,b−1) is drawn according to the product distribution
∏n

t=1 PU0
(u0,b,t),

whereu0,b,t denotes thet-th entry ofun0,b(mc,b, l1,b−1, l2,b−1).

For i ∈ {1, 2} and each tuple(mc,b, l1,b−1, l2,b−1) randomly generate 2n(Rp,i+R′

i) sequences

uni,b(mp,i,b, ki,b|mc,b, l1,b−1, l2,b−1), for mp,i,b ∈ Mp,i andki,b ∈ Ki by randomly drawing each codeword

uni,b(mp,i,b, ki,b|mc,b, l1,b−1, l2,b−1) according to the product distribution
∏n

t=1 PUi|U0
(ui,b,t|u0,b,t), where

ui,b,t denotes thet-th entry ofuni,b
(

mp,i,b, ki,b|mc,b, l1,b−1, l2,b−1

)

.

Also, for i ∈ {1, 2}, generate2n(R̃i+R̂i) sequences̃yni,b(li,b, ji,b
)

, for li,b ∈ Li andji,b ∈ Ji, by drawing

all the entries independently according to the same distribution PỸi
.

All codebooks are revealed to transmitter and receivers.

2) Encoding: We describe the encoding for a fixed blockb ∈ {1, . . . , B + 1}. Assume thatMc,i,b =

mc,i,b, Mp,i,b = mp,i,b, for i ∈ {1, 2}, and that the feedback messages sent after blockb−1 areL1,b−1 =

l1,b−1 andL2,b−1 = l2,b−1. Definemc,b := (mc,1,b,mc,2,b). To simplify notation, letli,0 = mc,i,B+1 =

mp,i,B+1 = 1, for i ∈ {1, 2} andmc,B+1 = (1, 1).
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The transmitter looks for a pair(k1,b, k2,b) ∈ K1 ×K2 that satisfies

(

un0,b(mc,b, l1,b−1, l2,b−1),

un1,b(mp,1,b, k1,b|mc,b, l1,b−1, l2,b−1),

un2,b(mp,2,b, k2,b|mc,b, l1,b−1, l2,b−1)
)

∈ T n
ε/16(PU0U1U2

).

(62)

If there is exactly one pair(k1,b, k2,b) that satisfies the above condition, the transmitter choosesthis pair.

If there are multiple such pairs, it chooses one of them uniformly at random. Otherwise it chooses a pair

(k1,b, k2,b) uniformly at random over the entire setK1 × K2. In block b the transmitter then sends the

inputsxnb = (xb,1, . . . , xb,n), where

xb,t = f(u0,b,t, u1,b,t, u2,b,t), t ∈ {1, . . . , n}, (63)

andu0,b,t, u1,b,t, u2,b,t denote thet-th symbols of the chosen Marton codewordsun0,b(mc,b, l1,b−1, l2,b−1),

un1,b(mp,1,b, k1,b|mc,b, l1,b−1, l2,b−1), and

un2,b(mp,2,b, k2,b|mc,b, l1,b−1, l2,b−1).

3) Generation of Feedback Messages at Receivers: We describe the operations performed at Receiver 1.

Receiver 2 behaves in an analogous way.

After each blockb ∈ {1, . . . , B}, and after observing the outputsyn1,b, Receiver 1 looks for a pair

(l1,b, j1,b) ∈ L1 ×J1 that satisfies

(ỹn1,b(l1,b, j1,b), y
n
1,b) ∈ T n

ε/4(PY1Ỹ1

) (64)

and sends the indexl1,b over the feedback link. If there is more than one such pair(l1,b, j1,b) the encoder

chooses one of them at random. If there is none, it chooses theindex l1,b that it sends over the feedback

link uniformly at random overL1.

In our scheme the receivers thus only send a feedback messageat the end of each block1, . . . , B.

4) Decoding at Receivers: We describe the operations performed at Receiver 1. Receiver 2 behaves in

an analogous way.

The receivers apply backward decoding and thus start decoding only after the transmission terminates.

Then, for each blockb ∈ {1, . . . , B + 1}, starting with the last blockB + 1, Receiver 1 performs the

following operations. From the previous decoding step in block b + 1, it already knows the feedback

messagel2,b. Moreover, it also knows its own feedback messagesl1,b−1 andl1,b because it has created them
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itself, see point3). Now, when observingyn1,b, Receiver 1 looks for a tuple(ĵ2,b, m̂
(1)
c,b , l̂2,b−1, m̂p,1,b, k̂1,b) ∈

J2 ×Mc × L2 ×Mp,1 ×K1 that satisfies

(

un0,b(m̂
(1)
c,b ,l1,b−1,l̂2,b−1), u

n
1,b(m̂p,1,b, k̂1,b|m̂

(1)
c,b , l1,b−1, l̂2,b−1),

ỹn2,b(l2,b, ĵ2,b), y
n
1,b

)

∈ T n
ǫ (PU0U1Y1Ỹ2

).

After decoding Block1, Receiver 1 produces the product messagem̂1 = (m̂1,1, . . . , m̂1,B) as its guess,

wherem̂1,b = (m̂
(1)
c,1,b, m̂p,1,b), for b ∈ {1, . . . , B}, andm̂(1)

c,1,b denotes the first component of̂m(1)
c,b .

5) Analysis: See Appendix B.

C. Coding Scheme 1C: Hybrid Sliding-Window Decoding and Backward Decoding (Theorem 3)

For simplicity, we only describe the scheme achieving region R
(1)
relay,hb for Q =const. A scheme

achieving regionR(2)
relay,hb is obtained if in the following description indices 1 and 2 are exchanged.

1) Codebook generation: The codebooks are generated as in Scheme 1A, described in point 1) in

Section VII-A, but whereR̃2 = R̂2 = 0.

2) Encoding: The transmitter performs the same encoding procedure as inSection VII-A, but where

l2,b−1 = 1 is constant for each blockb ∈ {1, . . . , B + 1}.

3) Receiver 1: In each blockb ∈ {1, . . . , B+1}, Receiver 1 first simultaneously decodes the cloud center

and its satellite. Specifically, Receiver 1 looks for a tuple(m̂c,b−1, m̂p,1,b−1, k̂1,b−1) ∈ Mc ×Mp,1 ×K1

that satisfies

(

un0,b−1(m̂c,b−1,l1,b−2, 1), y
n
1,b−1,

un1,b−1(m̂p,1,b−1, k̂1,b−1|m̂c,b−1, l1,b−2, 1)
)

∈ T n
ǫ (PU0U1Y1

).

It further compresses the outputsyn1,b and sends the feedback messagel1,b over the feedback link as in

Scheme 1A, see point 3) in Section VII-A.

4) Receiver 2: Receiver 2 performs backward decoding as in Scheme 1B, see point 4) in Section VII-B.

5) Analysis: Similar to the analysis of the schemes 1A and 1B in presentedin appendices A and B.

Details are omitted.

D. Coding Scheme 2: Encoder Processes Feedback-Info

The scheme described in this subsection differs from the previous scheme in that in each blockb, after

receiving the feedback messagesMFb,1,b,MFb,2,b, the encoder first reconstructs the compressed versions

of the channel outputs,̃Y n
1,b and Ỹ n

2,b, and then newly compresses the quintuple consisting ofỸ n
1,b and
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Ỹ n
2,b and the Marton codewordsUn

0,b, U
n
1,b, U

n
2,b that it had sent during blockb. This new compression

information is then sent to the two receivers in the next-following block b+1 as part of the cloud center

of Marton’s code.

Decoding at the receivers is based on backward decoding. Foreach blockb, each receiveri ∈ {1, 2}

uses its observed outputsY n
i,b to simultaneously reconstruct the encoder’s compressed signal and decode

its intended messages sent in blockb.

For simplicity, we only describe the scheme forQ =const.

Choose nonnegative ratesR′
1, R

′
2, R̃1, R̃2, R̂1, R̂2, R̃v, auxiliary finite alphabetsU0,U1,U2, Ỹ1, Ỹ2, V,

a functionf of the form f : U0 × U1 × U2 → X , and pmfsPU0U1U2
, PỸ1|Y1

, PỸ2|Y2

, andPV |U0U1U2Ỹ1Ỹ2

.

Transmission takes place overB + 1 consecutive blocks, with lengthn for each block. We denote the

n-length blocks of channel inputs and outputs in blockb by xnb , yn1,b andyn2,b.

DefineJi := {1, . . . , ⌊2nR̂i⌋}, Ki := {1, . . . , ⌊2nR
′

i⌋}, andLi := {1, . . . , ⌊2nR̃i⌋}, for i ∈ {1, 2}, and

N := {1, . . . , ⌊2nR̃v⌋} The messages are in product form:Mi = (Mi,1, . . . ,Mi,B), i ∈ {1, 2}, with

Mi,b = (Mc,i,b,Mp,i,b) for b ∈ {1, . . . , B}. The submessagesMc,i,b, andMp,i,b are uniformly distributed

over the setsMc,i := {1, . . . , ⌊2nRc,i⌋} andMp,i := {1, . . . , ⌊2nRp,i⌋}, respectively, whereRp,i, Rc,i > 0

and so thatRi = Rp,i +Rc,i. Let Rc := (Rc,1 +Rc,2 + R̃v).

1) Codebook generation: For each blockb ∈ {1, . . . , B + 1}, randomly and independently generate

2nRc sequencesun0,b(mc,b, nb−1), for mc,b ∈ Mc := Mc,1 × Mc,2 and nb−1 ∈ N . Each sequence

un0,b(mc,b, nb−1) is drawn according to the product distribution
∏n

t=1 PU0
(u0,b,t), whereu0,b,t denotes the

t-th entry ofun0,b(mc,b, nb−1).

For i ∈ {1, 2} and each pair (mc,b, nb−1) randomly generate2n(Rp,i+R′

i) sequences

uni,b(mp,i,b, ki,b|mc,b, nb−1), for mp,i,b ∈ Mp,i and ki,b ∈ Ki, by drawing each codeword

uni,b(mp,i,b, ki,b|mc,b, nb−1) according to the product distribution
∏n

t=1 PUi|U0
(ui,b,t|u0,b,t), whereui,b,t

denotes thet-th entry ofuni,b
(

mp,i,b, ki,b|mc,b, nb−1

)

.

Also, for i ∈ {1, 2}, generate2n(R̃i+R̂i) sequences̃yni,b(li,b, ji,b
)

, for li,b ∈ Li andji,b ∈ Ji by drawing

all the entries independently according to the same distribution PỸi
;

Finally, for eachnb−1 ∈ N , generate2nRv sequencesvnb (nb|nb−1), for nb ∈ N by drawing all entries

independently according to the same distributionPV .

All codebooks are revealed to transmitter and receivers.

2) Encoding: We describe the encoding for a fixed blockb ∈ {1, . . . , B + 1}. Assume that in this

block we wish to send messagesMc,i,b = mc,i,b, Mp,i,b = mp,i,b, for i ∈ {1, 2}, and definemc,b :=
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(mc,1,b,mc,2,b). To simplify notation, letli,0 = mc,i,B+1 = mp,i,B+1 = 1, for i ∈ {1, 2}, and also

n−1 = n0 = 1.

The first step in the encoding is to reconstruct the compressed outputs pertaining to the previous

block Ỹ n
1,b−1 and Ỹ n

2,b−1. Assume that after blockb − 1 the transmitter received the feedback messages

L1,b−1 = l1,b−1 andL2,b−1 = l2,b−1, and that in this previous block it had produced the Marton code-

words un0,b−1 := un0,b−1(mc,b−1, nb−2), un1,b−1 := un1,b−1(mp,1,b−1, k1,b−1|mc,b−1, nb−2), andun2,b−1 :=

un2,b−1(mp,2,b−1, k2,b−1|mc,b−1, nb−2). The transmitter then looks for a pair(ĵ1,b−1, ĵ2,b−1) ∈ J1 × J2

that satisfies

(

un0,b−1, u
n
1,b−1, u

n
2,b−1, ỹ

n
1,b−1(l1,b−1, ĵ1,b−1),

ỹn2,b−1(l2,b−1, ĵ2,b−1)
)

∈ Tε/4(PU0U1U2Ỹ1,Ỹ2

).

In a second step the encoder produces the new compression information pertaining to blockb− 1, which

it then sends to the receivers during blockb. To this end, it looks for an index̂nb−1 ∈ N that satisfies

(

un0,b−1, u
n
1,b−1, u

n
2,b−1, ỹ

n
1,b−1(l1,b−1, ĵ1,b−1),

ỹn2,b−1(l2,b−1, ĵ2,b−1), v
n
b−1(n̂b−1|nb−2)

)

∈ Tε/2(PU0U1U2Ỹ1,Ỹ2V
).

The transmitter now sends the fresh data and the compressionmessagênb−1 over the channel: It thus

looks for a pair(k1,b, k2,b) ∈ K1 ×K2 that satisfies

(

un0,b(mc,b, n̂b−1),

un1,b(mp,1,b, k1,b|mc,b, n̂b−1),

un2,b(mp,2,b, k2,b|mc,b, n̂b−1)
)

∈ T n
ǫ/64(PU0U1U2

).

If there is exactly one pair(k1,b, k2,b) that satisfies the above condition, the transmitter choosesthis pair.

If there are multiple such pairs, it chooses one of them uniformly at random. Otherwise it chooses a pair

(k1,b, k2,b) uniformly at random over the entire setK1 × K2. In block b the transmitter then sends the

inputsxnb = (xb,1, . . . , xb,n), where

xb,t = f(u0,b,t, u1,b,t, u2,b,t), t ∈ {1, . . . , n}. (65)

and u0,b,t, u1,b,t, u2,b,t denote thet-th symbols of the chosen Marton codewordsun0,b(mc,b, n̂b−1),

un1,b(mp,1,b, k1,b|mc,b, n̂b−1), andun2,b(mp,2,b, k2,b|mc,b, n̂b−1).
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3) Generation of Feedback Messages at Receivers: We describe the operations performed at Receiver 1.

Receiver 2 behaves in an analogous way.

After each blockb ∈ {1, . . . , B}, and after observing the outputsyn1,b, Receiver 1 looks for a pair of

indices(l1,b, j1,b) ∈ L1 × J1 that satisfies

(ỹn1,b(l1,b, j1,b), y
n
1,b) ∈ T n

ε/16(PY1Ỹ1

) (66)

and sends the indexl1,b over the feedback link. If there is more than one such pair(l1,b, j1,b) the encoder

chooses one of them at random. If there is none, it chooses theindex l1,b sent over the feedback link

uniformly at random overL1.

In our scheme the receivers thus only send a feedback messageat the end of each block.

4) Decoding at Receivers: We describe the operations performed at Receiver 1. Receiver 2 behaves in

an analogous way.

The receivers apply backward decoding, so they wait until the end of the transmission. Then, for

each blockb ∈ {1, . . . , B + 1}, starting with the last blockB + 1, Receiver 1 performs the following

operations. From the previous decoding step in blockb+ 1, it already knows the compression indexnb.

Now, when observingyn1,b, Receiver 1 looks for a tuple(m̂(1)
c,b , m̂p,1,b, k̂1,b, n̂b−1) ∈ Mc×Mp,1×K1×N

that satisfies

(

un0,b(m̂
(1)
c,b , n̂b−1), u

n
1,b(m̂p,1,b, k̂1,b|m̂

(1)
c,b , n̂b−1),

vnb (nb|n̂b−1), y
n
1,b, ỹ

n
1,b(l1,b, j1,b)

)

∈ T n
ǫ (PU0U1V Y1Ỹ1

),

where recall that Receiver 1 knows the indicesl1,b andj1,b because it has constructed them itself under

3).

After the decoding Block1, Receiver 1 produces the product messagem̂1 = (m̂1,1, . . . , m̂1,B) as

its guess, wherêm1,b = (m̂
(1)
c,1,b, m̂p,1,b), for b ∈ {1, . . . , B}, andm̂(1)

c,1,b denotes the first component of

m̂
(1)
c,1,b.

5) Analysis: See Appendix C.

VIII. E XTENSION: NOISY FEEDBACK

Our results also apply to the related setup where the two feedback links are noisy channels of

capacitiesRFb,1 andRFb,2 and wherethe decoders can code over their feedback links. The following

three modifications to our coding schemes suffice to ensure that our achievable regions remain valid:
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• We time-share two instances of our coding schemes: one scheme operates during the odd blocks of

the BC and occupies the even blocks on the feedback links; theother scheme operates during the

even blocks of the BC and occupies the odd blocks on the feedback links.

• Instead of sending after each block an uncoded feedback message over the feedback links, the

receivers encode them using a capacity-achieving code for their feedback links and send these

codewords during the next block.

• After each block, the transmitter first decodes the messagessent over the feedback links during this

block, and then uses the decoded feedback-messages in the same way as it used them in the original

scheme.

Let εFb,i,b, for i = 1, 2, denote the event that during Blockb there is an error in the feedback

communication from Receiveri to the transmitter, and letε denote the event that̂M1 6=M1 or M̂2 6=M2.

Then,

Pr[M̂1 6=M1 or M̂2 6=M2]

≤ Pr

[

ε ∪

(

B
⋃

b=1

εFb,1,b

)

∪

(

B
⋃

b=1

εFb,2,b

)]

≤ Pr

[

ε
∣

∣

∣

(

B
⋃

b=1

εFb,1,b

)c

∩

(

B
⋃

b=1

εFb,2,b

)c]

+Pr

[

B
⋃

b=1

εFb,1,b

]

+ Pr

[

B
⋃

b=1

εFb,2,b

]

≤ Pr

[

ε
∣

∣

∣

(

B
⋃

b=1

εFb,1,b

)c

∩

(

B
⋃

b=1

εFb,2,b

)c]

+

B
∑

b=1

Pr[εFb,1,b] + Pr[εFb,2,b] . (67)

Since we use capacity-achieving codes on the feedback links, the probabilities Pr[εFb,1,b] and Pr[εFb,2,b]

vanish as the blocklength increases. When the feedback communications in all the blocks are error-

free, then the probability of error in the setup with noisy feedback is no larger than that in the

setup with noise-free feedback. Thus, under the corresponding rate constraints, also the probability

Pr
[

ε
∣

∣

∣

(

⋃B
b=1 εFb,1,b

)c
∩
(

⋃B
b=1 εFb,2,b

)c]

vanishes as the blocklength increases. Combining all these

observations proves that the rate regions in Theorems 1–4 are achievable also in a setup with noisy

feedback if the receivers can code over the feedback links.
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APPENDIX A

ANALYSIS OF SCHEME 1A (THEOREM 1)

By the symmetry of our code construction, the probability oferror does not depend on the realizations

of Mc,i,b, Mp,i,b, Ki,b, Ji,b, Li,b, for i ∈ {1, 2} andb ∈ {1, . . . , B}. To simplify exposition we therefore

assume thatMc,i,b = Mp,i,b = Ki,b = Ji,b = Li,b = 1 for all i ∈ {1, 2} and b ∈ {1, . . . , B}. Under this

assumption, an error occurs if, and only if, for someb ∈ {1, . . . , B},

(M̂p,1,b, M̂p,2,b, M̂
(1)
c,1,b, M̂

(2)
c,2,b) 6= (1, 1, 1, 1).

For eachb ∈ {1, . . . , B}, let ǫb denote the event that in our coding scheme at least one of the following

holds for i ∈ {1, 2}:

• Ĵi,b−1 6= 1;

• K̂i,b−1 6= 1;

• L̂i,b−1 6= 1;

• M̂p,i,b−1 6= 1;

• M̂
(i)
c,b 6= (1, 1);

• There is no pair(k1,b, k2,b) ∈ K1 ×K2 that satisfies

(

Un
0,b(1[4]), U

n
1,b(1, k1,b|1[4]), U

n
2,b(1, k2,b|1[4])

)

∈ T n
ε/16(PU0U1U2

)

•
(

Un
0,b−1(1[4]), U

n
1,b−1(1, 1|1[4]), U

n
2,b−1(1, 1, |1[4]),

Y n
1,b−1, Y

n
2,b−1

)

/∈ T n
ε/12(PU0U1U2Y1Y2

)

• There is no pair(li,b, ji,b) ∈ Li × Ji that satisfies

(

Ỹ n
i,b(li,b, ji,b|1[4]), U

n
0,b(1[4]), Y

n
i,b

)

∈ T n
ε/4(PỸiU0Yi

).

Then,

P (N)
e ≤ Pr

[

B+1
⋃

b=1

ǫb

]

≤
B+1
∑

b=2

Pr
[

ǫb|ǫ
c
b−1

]

+ Pr[ǫ1]. (68)

In the following we analyze the probabilities of these events averaged over the random code construction.

In particular, we shall identify conditions such that for eachb ∈ {2, . . . , B+1}, the probability Pr
[

ǫb|ǫ
c
b−1

]
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tends to 0 asn→ ∞. Similar arguments can be used to show that under the same conditions also Pr[ǫ1] →

0 asn→ ∞. Using standard arguments one can then conclude that there must exist a deterministic code

for which the probability of errorP (N)
e tends to 0 asN → ∞ when the mentioned conditions are satisfied.

Fix b ∈ {2, . . . , B + 1} andε > 0, and define the following events.

• Let ǫ0,b be the event that there is no pair(k1,b, k2,b) ∈ K1 ×K2 that satisfies

(

Un
0,b(1[4]), U

n
1,b(1, k1,b|1[4]), U

n
2,b(1, k2,b|1[4])

)

∈ T n
ε/16(PU0U1U2

).

By the Covering Lemma [28],Pr(ǫ0,b) tends to 0 asn→ ∞ if

R′
1 +R′

2 ≥ I(U1;U2|U0) + δ(ε), (69)

where throughout this sectionδ(ε) stands for some function that tends to 0 asε→ 0.

• Let ǫ1,b be the event that

(

Un
0,b(1[4]), U

n
1,b(1, 1|1[4]), U

n
2,b(1, 1, |1[4]), Y

n
1,b, Y

n
2,b

)

/∈ T n
ε/12(PU0U1U2Y1Y2

).

Since the channel is memoryless, by the law of large numbers,Pr(ǫ1,b|ǫ
c
0,b) tends to 0 asn→ ∞.

• Let ǫ2,1,b be the event that there is no tuple(m̂(1)
c,b , l̂2,b−1) ∈ Mc × L2 that is not equal to(1[2], 1)

and that satisfies

(

Un
0,b(m̂

(1)
c,b , 1, l̂2,b−1), Y

n
1,b

)

∈ T n
ε/8(PU0Y1

).

By the Packing Lemma [28],Pr(ǫ2,1,b|ǫc1,b) tends to 0 asn→ ∞, if

R̃2 +Rc,1 +Rc,2 ≤ I(U0;Y1) + δ(ε). (70)

• Let ǫ2,2,b be the event that there is no tuple(m̂(2)
c,b , l̂1,b−1) ∈ Mc ×L1 with (m̂

(2)
c,b , l̂1,b−1) not equal

to (1[2], 1) that satisfies

(

Un
0,b(m̂

(2)
c,b , l̂1,b−1, 1), Y

n
2,b

)

∈ T n
ε/8(PU0Y2

).

By the Packing Lemma,Pr(ǫ2,2,b|ǫc1,b) tends to 0 asn→ ∞, if

R̃1 +Rc,1 +Rc,2 ≤ I(U0;Y2) + δ(ε). (71)

• Let ǫ3,1,b be the event that

(

Un
0,b−1(1[4]), U

n
1,b−1(1, 1|1[4]),
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Ỹ n
2,b−1(1, 1), Y

n
1,b−1

)

/∈ T n
ε/2(PU0U1Ỹ2Y1

).

By the Markov Lemma [28],Pr(ǫ3,1,b|ǫcb−1) tends to 0 asn→ ∞.

• Let ǫ3,2,b be the event that

(

Un
0,b−1(1[4]), U

n
2,b−1(1, 1|1[4]),

Ỹ n
1,b−1(1, 1), Y

n
2,b−1

)

/∈ T n
ε/2(PU0U2Ỹ1Y2

).

By the Markov Lemma,Pr(ǫ3,2,b|ǫcb−1) tends to 0 asn→ ∞.

• Let ǫ4,1,b be the event that there exists a tuple(m̂p,1,b−1, k̂1,b−1, ĵ2,b−1) ∈ Mp,1×K1×J2 not equal

to the all-one tuple and that satisfies

(

Un
0,b−1(1[4]), U

n
1,b−1(m̂p,1,b−1, k̂1,b−1|1[4]),

Ỹ n
2,b−1(1, ĵ2,b−1|1[4]), Y

n
1,b−1

)

∈ T n
ε (PU0U1Ỹ2Y1

).

By the Packing Lemma,Pr(ǫ4,1,b|ǫc3,1,b) tends to zero asn→ ∞, if

R̂2 ≤ I(Ỹ2;U1, Y1|U0)− δ(ε) (72)

Rp,1 +R′
1 ≤ I(U1;Y1, Ỹ2|U0)− δ(ε) (73)

Rp,1 +R′
1 + R̂2 ≤ I(U1;Y1, Ỹ2|U0)

+I(Ỹ2;Y1|U0)− δ(ε). (74)

• Let ǫ4,2,b be the event that there exists a tuple(m̂p,2,b−1, k̂2,b−1, ĵ1,b−1) ∈ Mp,2×K2×J1 not equal

to the all-one tuple and that satisfies

(

Un
0,b−1(1[4]), U

n
2,b−1(m̂p,2,b−1, k̂2,b−1|1[4]),

Ỹ n
1,b−1(1, ĵ1,b−1|1[4]), Y

n
2,b−1

)

∈ T n
ε (PU0U2Ỹ1Y2

).

By the Packing Lemma,Pr(ǫ4,2,b|ǫc3,2,b) tends to zero asn→ ∞, if

R̂1 ≤ I(Ỹ1;U2, Y2|U0)− δ(ε) (75)

Rp,2 +R′
2 ≤ I(U2;Y2, Ỹ1|U0)− δ(ε) (76)

Rp,2 +R′
2 + R̂1 ≤ I(U2;Y2, Ỹ1|U0)

+I(Ỹ1;Y2|U0)− δ(ε). (77)

• For i ∈ {1, 2}, let ǫ5,i,b be the event that there is no pair(li,b, ji,b) ∈ Li ×Ji that satisfies

(

Ỹ n
i,b(li,b, ji,b|1[4]), U

n
0,b(1[4]), Y

n
i,b

)

∈ T n
ε/4(PỸiU0Yi

).
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By the Covering Lemma,Pr(ǫ5,i,b|ǫc1,b) tends to 0 asn→ ∞, if

R̃i + R̂i ≥ I(Ỹi;Yi|U0) + δ(ε). (78)

Whenever the eventǫcb−1 occurs but none of the events{ǫ0,b, ǫ1,b, ǫ2,1,b, ǫ2,2,b, ǫ3,1,b, ǫ3,2,b, ǫ4,1,b, ǫ4,2,b, ǫ5,1,b, ǫ5,2,b}

above, thenǫcb. Therefore,

Pr
[

ǫb|ǫ
c
b−1

]

≤ Pr
[

ǫ0,b ∪ ǫ1,b ∪
2
⋃

i=1

(

ǫ2,i,b ∪ ǫ3,i,b ∪ ǫ4,i,b ∪ ǫ5,i,b

)∣

∣

∣
ǫcb−1

]

≤ Pr
[

ǫ0,b|ǫ
c
b−1

]

+ Pr
[

ǫ1,b|ǫ
c
0,b, ǫ

c
b−1

]

+

2
∑

i=1

(

Pr
[

ǫ2,i,b|ǫ
c
1,b, ǫ

c
b−1

]

+ Pr
[

ǫ3,i,b|ǫ
c
b−1

]

+Pr
[

ǫ4,i,b|ǫ
c
3,i,b, ǫ

c
b−1

]

+ Pr
[

ǫ5,i,b|ǫ
c
1,b, ǫ

c
b−1

]

)

= Pr[ǫ0,b] + Pr
[

ǫ1,b|ǫ
c
0,b

]

+

2
∑

i=1

(

Pr
[

ǫ2,i,b|ǫ
c
1,b

]

+ Pr
[

ǫ3,i,b|ǫ
c
b−1

]

+Pr
[

ǫ4,i,b|ǫ
c
3,i,b

]

+ Pr
[

ǫ5,i,b|ǫ
c
1,b

]

)

.

The last equality holds because the channel is memoryless and the codebooks employed in blocksb− 1

and b are drawn independently. As explained in the previous paragraphs, the remaining terms in the

last three lines tend to 0 asn → ∞, if Constraints (69)–(78) are satisfied. Thus, by (68) and (79) we

conclude that the probability of errorP (N)
e (averaged over all code constructions) vanishes asn→ ∞ if

Constraints (69)–(78) hold. Lettingε → 0, we obtain that the probability of error can be made to tend

to 0 asn→ ∞ whenever

R′
1 +R′

2 > I(U1;U2|U0) (79a)

R̃2+Rc,1+Rc,2 < I(U0;Y1) (79b)

R̃1+Rc,1+Rc,2 < I(U0;Y2) (79c)

R̂1 < I(Ỹ1;U2, Y2|U0) (79d)

R̂2 < I(Ỹ2;U1, Y1|U0) (79e)

Rp,1 +R′
1 < I(U1;Y1, Ỹ2|U0) (79f)

Rp,2 +R′
2 > I(U2;Y2, Ỹ1|U0) (79g)
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Rp,1+R
′
1+R̂2 < I(U1;Y1, Ỹ2|U0)+I(Ỹ2;Y1|U0) (79h)

Rp,2+R
′
2+R̂1 < I(U2;Y2, Ỹ1|U0)+I(Ỹ1;Y2|U0) (79i)

R̂1 + R̃1 > I(Ỹ1;Y1|U0) (79j)

R̂2 + R̃2 > I(Ỹ2;Y2|U0). (79k)

Moreover, the feedback-rate constraints (1) impose that:

R̃1 ≤ RFb,1 (79l)

R̃2 ≤ RFb,2. (79m)

Applying the Fourier-Motzkin elimination algorithm to these constraints, we obtain the desired result in

Theorem 1 with the additional constraint that

I(U1;Y1, Ỹ2|U0) + I(U2;Y2, Ỹ1|U0)

−∆1 −∆2 − I(U1;U2|U0) ≥ 0 (80)

Notice that we can ignore Constraint (80) because for any tuple (U0, U1, U2,X, Y1, Y2, Ỹ1, Ỹ2) that

violates (80), the region defined by the constraints in Theorem 1 is contained in the time-sharing region.

APPENDIX B

ANALYSIS OF THE SCHEME 1B (THEOREM 2)

An error occurs whenever

M̂1,b 6=M1,b or M̂2,b 6=M2,b, for someb ∈ {1, . . . , B}.

For eachb ∈ {1, . . . , B + 1}, let ǫb denote the event that in our coding scheme at least one of the

following holds for i ∈ {1, 2}:

Ĵi,b 6= Ji,b (81)

K̂i,b 6= Ki,b (82)

L̂i,b−1 6= Li,b−1 (83)

M̂p,i,b 6=Mp,i,b (84)

M̂
(i)
c,b 6= M

(i)
c,b (85)

Then,

P (N)
e ≤ Pr

[

B+1
⋃

b=1

ǫb

]

≤
B
∑

b=1

Pr
[

ǫb|ǫ
c
b+1

]

+ Pr[ǫB+1] . (86)
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In the following we analyze the probabilities of these events averaged over the random code construction.

In particular, we shall identify conditions such that for each b ∈ {1, . . . , B}, the probability Pr
[

ǫb|ǫ
c
b+1

]

tends to 0 asn → ∞. Similar arguments can be used to show that under the same conditions also

Pr[ǫB+1] → 0 as n → ∞. Using standard arguments one can then conclude that there must exist a

deterministic code for which the probability of errorP (N)
e tends to 0 asN → ∞ when the mentioned

conditions are satisfied.

Fix b ∈ {1, . . . , B} andε > 0. By the symmetry of our code construction, the probability Pr
[

ǫb|ǫ
c
b+1

]

does not depend on the realization ofMc,i,b, Mp,i,b, Ki,b, Ji,b, Li,b, Li,b−1, for i ∈ {1, 2}. To simplify

exposition we therefore assume thatMc,i,b =Mp,i,b = Ki,b = Ji,b = Li,b = Li,b−1 = 1.

Define the following events.

• Let ǫ0,b be the event that there is no pair(k1,b, k2,b) ∈ K1 ×K2 that satisfies

(

U0,b(1[4]), U
n
1,b(1, k1,b|1[4]), U

n
2,b(1, k2,b|1[4])

)

∈ T n
ε/16(PU0U1U2

).

By the Covering Lemma,Pr(ǫ0,b) tends to 0 asn→ ∞, if

R′
1 +R′

2 ≥ I(U1;U2|U0) + δ(ε), (87)

where throughout this sectionδ(ε) stands for some function that tends to 0 asε→ 0.

• Let ε1,b be the event that

(

Un
0,b(1[4]), U

n
1,b(1, 1|1[4], U

n
2,b(1, 1, |1[4]), Y

n
1,b, Y

n
2,b

)

/∈ T n
ε/8(PU0U1Y2Y1Y2

).

Since the channel is memoryless, according to the law of large numbers,Pr(ǫ1,b|ǫc0,b) tends to 0 as

n→ ∞.

• For i ∈ {1, 2}, let ǫ2,i,b be the event that there is no pair(li,b, ji,b) ∈ Li ×Ji that satisfies

(

Ỹ n
i,b(li,b, ji,b), Y

n
i,b

)

∈ T n
ε/4(PỸiYi

).

By the Covering Lemma,Pr(ǫ2,i,b|ǫc1,b) tends to 0 asn→ ∞ if

R̃i + R̂i ≥ I(Ỹi;Yi) + δ(ε). (88)

• Let ǫ3,1,b be the event that

(

Un
0,b(1[4]),U

n
1,b(1, 1|1[4]),
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Ỹ n
2,b(1, 1), Y

n
1,b

)

/∈ T n
3ε/4(PU0U1Ỹ2Y1

).

By the Markov Lemma,Pr(ǫ3,1,b|ǫc2,2,b, ǫ
c
1,b) tends to 0 asn→ ∞.

• Let ǫ3,2,b be the event that

(

Un
0,b(1[4]),U

n
2,b(1, 1|1[4]),

Ỹ n
1,b(1, 1), Y

n
2,b

)

/∈ T n
3ε/4(PU0U2Ỹ1Y2

).

By the Markov Lemma,Pr(ǫ3,2,b|ǫc2,1,b, ǫ
c
1,b) tends to 0 asn→ ∞.

• Let ǫ4,1,b be the event that there exists a tuple(ĵ2,b, m̂
(1)
c,b , l̂2,b−1, m̂p,1,b, k̂1,b) ∈ J2 × Mc × L2 ×

Mp,1 ×K1 not equal to the all-one tuple(1,1[2], 1, 1, 1) and that satisfies
(

Un
0,b(m̂

(1)
c,b , 1, l̂2,b−1),

Un
1,b(m̂p,1,b, k̂1,b|m̂

(1)
c,b , 1, l̂2,b−1),

Ỹ n
2,b(1, ĵ2,b), Y

n
1,b

)

∈ T n
ε (PU0U1Ỹ2Y1

).

By the Packing Lemma, we conclude thatPr(ǫ4,1,b|ǫ
c
3,1,b) tends to zero asn→ ∞ if

R̂2 ≤ I(U0, U1, Y1; Ỹ2|U0)−δ(ε)

Rp,1 +R′
1 ≤ I(U1;Y1, Ỹ2|U0)− δ(ε)

R1 +Rc,2 + R̃2 +R′
1 ≤ I(U0, U1;Y1, Ỹ2)− δ(ε)

R1+Rc,2+R̃2+R
′
1+R̂2 ≤ I(U0, U1;Y1, Ỹ2)

+ I(Y1; Ỹ2)− δ(ε)

Rp,1 +R′
1 + R̂2 ≤ I(U1;Y1, Ỹ2|U0)

+ I(Ỹ2;Y1, U0)−δ(ε). (89)

• Let ǫ4,2,b be the event that there exists a tuple(ĵ1,b, m̂
(2)
c,b , l̂1,b−1, m̂p,2,b, k̂2,b) ∈ J1 × Mc × L1 ×

Mp,2 ×K2 not equal to the all-one tuple and that satisfies

(

Un
0,b(m̂

(2)
c,b , l̂1,b−1, 1),

Un
1,b(m̂p,2,b, k̂2,b|m̂

(2)
c,b , l̂1,b−1, 1),

Ỹ n
1,b(1, ĵ1,b), Y

n
2,b

)

∈ T n
ε (PU0U2Ỹ1Y2

).

By the Packing Lemma, we conclude thatPr(ǫ4,2,b|ǫ
c
3,2,b) tends to zero asn→ ∞ if

R̂1 ≤ I(U0, U2, Y2; Ỹ1|U0)−δ(ε)
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Rp,2 +R′
2 ≤ I(U2;Y2, Ỹ1|U0)− δ(ε)

R2 +Rc,1 + R̃1 +R′
2 ≤ I(U0, U2;Y2, Ỹ1)− δ(ε)

R2+Rc,1+R̃1+R
′
2+R̂1 ≤ I(U0, U2;Y2, Ỹ1)

+ I(Y2; Ỹ1)− δ(ε)

Rp,2 +R′
2 + R̂1 ≤ I(U2;Y2, Ỹ1|U0)

+ I(Ỹ1;Y2, U0)−δ(ε). (90)

Whenever the eventǫcb+1 occurs but none of the events above, thenǫcb. Therefore,

Pr
[

ǫb|ǫ
c
b+1

]

≤ Pr

[

ǫ0,b ∪ ǫ1,b ∪
2
⋃

i=1

(

ǫ2,i,b ∪ ǫ3,i,b ∪ ǫ4,i,b
)
∣

∣

∣
ǫcb+1

]

≤ Pr
[

ǫ0,b|ǫ
c
b+1

]

+ Pr
[

ǫ1,b|ǫ
c
0,b, ǫ

c
b+1

]

+Pr
[

ǫ3,1,b|ǫ
c
1,b,ǫ

c
2,2,b,ǫ

c
b+1

]

+ Pr
[

ǫ3,2,b|ǫ
c
1,b,ǫ

c
2,1,b,ǫ

c
b+1

]

+

2
∑

i=1

(

Pr
[

ǫ2,i,b|ǫ
c
1,b, ǫ

c
b+1

]

+ Pr
[

ǫ4,i,b|ǫ
c
3,i,b, ǫ

c
b+1

]

)

= Pr[ǫ0,b] + Pr
[

ǫ1,b|ǫ
c
0,b

]

+Pr
[

ǫ3,1,b|ǫ
c
1,b, ǫ

c
2,2,b

]

+ Pr
[

ǫ3,2,b|ǫ
c
1,b, ǫ

c
2,1,b

]

+

2
∑

i=1

(

Pr
[

ǫ2,i,b|ǫ
c
1,b

]

+ Pr
[

ǫ4,i,b|ǫ
c
3,i,b

]

)

, (91)

where the last equality follows because the channel is memoryless and the codebooks for blocksb and

b+ 1 have been generated independently. As explained in the previous paragraphs, each of the terms in

the last three lines tends to 0 asn→ ∞, if Constraints (87)–(90) are satisfied. Thus, by (86) and (91) we

conclude that the probability of errorP (N)
e (averaged over all code constructions) vanishes asn → ∞

if constraints (87)–(90) hold. Lettingε→ 0, we obtain that the probability of error can be made to tend

to 0 asn→ ∞ whenever

R′
1 +R′

2 > I(U1;U2|U0) (92a)

R̂1 + R̃1 > I(Ỹ1;Y1) (92b)

R̂2 + R̃2 > I(Ỹ2;Y2) (92c)

R̂1 < I(U0, U2, Y2; Ỹ1|U0) (92d)
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R̂2 < I(U0, U1, Y1; Ỹ2|U0) (92e)

Rp,1 +R′
1 < I(U1;Y1, Ỹ2|U0) (92f)

Rp,2 +R′
2 < I(U2;Y2, Ỹ1|U0) (92g)

R1 +Rc,2 + R̃2 +R′
1 < I(U0, U1;Y1, Ỹ2) (92h)

R2 +Rc,1 + R̃1 +R′
2 < I(U0, U2;Y2, Ỹ1) (92i)

R1+Rc,2+R̃2+R
′
1+R̂2 < I(U0, U1;Y1, Ỹ2)

+ I(Y1; Ỹ2) (92j)

R2+Rc,1+R̃1+R
′
2+R̂1 < I(U0, U2;Y2, Ỹ1)

+ I(Y2; Ỹ1) (92k)

Rp,1 +R′
1 + R̂2 < I(U1;Y1, Ỹ2|U0)

+ I(Ỹ2;Y1, U0) (92l)

Rp,2 +R′
2 + R̂1 < I(U2;Y2, Ỹ1|U0)

+ I(Ỹ1;Y2, U0). (92m)

Moreover, the feedback-rate constraints (1) impose that:

R̃1 ≤ RFb,1 (92n)

R̃2 ≤ RFb,2. (92o)

Applying the Fourier-Motzkin elimination algorithm to these constraints, we obtain the desired result in

Theorem 2 with the additional constraint that

I(U1;Y1, Ỹ2|U0) + I(U2;Y2, Ỹ1|U0)

−∆1 −∆2 − I(U1;U2|U0) ≥ 0 (93a)

I(U1;Y1, Ỹ2|U0)−∆2 ≥ 0 (93b)

I(U2;Y2, Ỹ1|U0)−∆1 ≥ 0. (93c)

We can ignore Constraint (93a) because for any tuple(U0, U1, U2,X, Y1, Y2, Ỹ1, Ỹ2) that violates (93a),

the region defined by the constraints in Theorem 2 is contained in the time-sharing region. Constraint

(93b) can also be ignored because for any tuple(U0, U1, U2,X, Y1, Y2, Ỹ1, Ỹ2) that violates (93b), the
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region defined by the constraints in Theorem 2 is contained inthe region in Theorem 2 for the choice

Ỹ2 = const., for which (93b) is always satisfied. Constraint (93c) can be ignored by analogous arguments.

APPENDIX C

ANALYSIS OF SCHEME 2 (THEOREM 4)

An error occurs whenever

M̂1,b 6=M1,b or M̂2,b 6=M2,b, for someb ∈ {1, . . . , B}.

For eachb ∈ {1, . . . , B + 1}, let ǫb denote the event that in our coding scheme at least one of the

following holds for i ∈ {1, 2}:

Ĵi,b 6= Ji,b (94)

K̂i,b 6= Ki,b (95)

L̂i,b 6= Li,b (96)

M̂p,i,b 6=Mp,i,b (97)

M̂
(i)
c,b 6= M

(i)
c,b (98)

or when

N̂b−1 6= Nb−1. (99)

Then,

P (n)
e ≤ Pr

[

B+1
⋃

b=1

ǫb

]

≤
B
∑

b=1

Pr
[

ǫb|ǫ
c
b+1

]

+ Pr[ǫB+1] . (100)

In the following we analyze the probabilities of these events averaged over the random code construction.

In particular, we shall identify conditions such that for each b ∈ {1, . . . , B}, the probability Pr
[

ǫb|ǫ
c
b+1

]

tends to 0 asn → ∞. Similar arguments can be used to show that under the same conditions also

Pr[ǫB+1] → 0 as n → ∞. Using standard arguments one can then conclude that there must exist a

deterministic code for which the probability of errorP (N)
e tends to 0 asN → ∞ when the mentioned

conditions are satisfied.

Fix b ∈ {1, . . . , B} andε > 0. By the symmetry of our code construction, the probability Pr
[

ǫb|ǫ
c
b+1

]

does not depend on the realizations ofNb−1, Nb, or Mc,i,b, Mp,i,b, Ki,b, Ji,b, Li,b, for i ∈ {1, 2}. To

simplify exposition we therefore assume that fori ∈ {1, 2}, Mc,i,b = Mp,i,b = Ki,b = Ji,b = Li,b = 1,

andNb = Nb−1 = 1.

Define the following events.
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• Let ǫ0,b be the event that there is no pair(k1,b, k2,b) ∈ K1 ×K2 that satisfies

(

U0,b(1[3]), U
n
1,b(1, k1,b|1[2), U

n
2,b(1, k2,b|1[3])

)

∈ T n
ε/64(PU0U1U2

).

By the Covering Lemma,Pr(ǫ0,b) tends to 0 asn→ ∞ if

R′
1 +R′

2 ≥ I(U1;U2|U0) + δ(ε), (101)

where throughout this sectionδ(ε) stands for some function that tends to 0 asε→ 0.

• Let ǫ1,b be the event that

(

Un
0,b(1[3]), U

n
1,b(1, 1|1[3]), U

n
2,b(1, 1, |1[3]), Y

n
1,b, Y

n
2,b

)

/∈ T n
ε/32(PU0U1U2Y1Y2

).

Since the channel is memoryless, according to the law of large numbers,Pr(ǫ1,b|ǫc0,b) tends to 0 as

n→ ∞.

• For i ∈ {1, 2}, let ǫ2,i,b be the event that there is no pair(li,b, ji,b) ∈ Li ×Ji that satisfies

(

Ỹ n
i,b(li,b, ji,b), Y

n
i,b

)

∈ T n
ε/16(PỸiYi

).

By the Covering Lemma,Pr(ǫ2,i,b|ǫc1,b) tends to 0 asn→ ∞ if

R̃i + R̂i ≥ I(Ỹi;Yi) + δ(ǫ). (102)

• Let ǫ3,b be the event that

(

Un
0,b(1[3]), U

n
1,b(1, 1|1[3]), U

n
2,b(1, 1|1[3]),

Ỹ n
1,b(1, 1), Ỹ

n
2,b(1, 1), Y

n
1,b, Y

n
2,b

)

/∈ T n
ε/6(PU0U1U2Ỹ1Ỹ2Y1Y2

).

By the Markov Lemma,Pr(ǫ3,b|ǫc2,1,b, ǫ
c
2,2,b, ǫ

c
1,b) tends to 0 asn→ ∞.

• Let ǫ4,b be the event that there is a pair of indicesĵ1,b ∈ J1 and ĵ2,b ∈ J2 not equal to the all-one

pair (1, 1) and that satisfies

(

Un
0,b(1[3]), U

n
1,b(1, 1|1[3]), U

n
2,b(1, 1|1[3]),

Ỹ n
1,b(1, ĵ1,b), Ỹ

n
2,b(1, ĵ2,b)

)

∈T n
ε/4(PU0U1U2Ỹ1Ỹ2

).

By the Packing Lemma,Pr(ǫ4,b|ǫc3,b) tends to 0 asn→ ∞, if

R̂1 ≤ I(U0, U1, U2, Ỹ2; Ỹ1)− δ(ε) (103)
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R̂2 ≤ I(U0, U1, U2, Ỹ1; Ỹ2)− δ(ε) (104)

R̂1 + R̂2 ≤ I(U0, U1, U2; Ỹ1, Ỹ2) + I(Ỹ1; Ỹ2)− δ(ε).

(105)

• Let ǫ5,b be the event that there is no indexnb ∈ N that satisfies

(

Un
0,b(1[3]), U

n
1,b(1, 1|1[3]), U

n
2,b(1, 1|1[3]),

Ỹ n
1,b(1, 1), Ỹ

n
2,b(1, 1), V

n
b (nb|1)

)

∈ T n
ε/2(PU0U1U2Ỹ1Ỹ2V

).

By the Covering Lemma,Pr(ǫ5,b|ǫc3,b) tends to 0 asn→ ∞, if

R̃v ≥ I(U0, U1, U2, Ỹ1, Ỹ2;V ) + δ(ε). (106)

• Let ǫ6,1,b be the event that
(

Un
0,b(1[3], 1), U

n
1,b(1, 1|1[3], 1),

V n
b (1|1), Y n

1,b, Ỹ
n
1,b(1, 1)

)

∈ T n
ε (PU0U1V Y1Ỹ1

).

By the Markov LemmaPr(ǫ6,1,b|ǫc3,b, ǫ
c
5,b) tends to zero asn→ ∞.

• Let ǫ6,2,b be the event that
(

Un
0,b(1[3], 1), U

n
2,b(1, 1|1[3], 1),

V n
b (1|1), Y n

2,b, Ỹ
n
2,b(1, 1)

)

∈ T n
ε (PU0U2V Y2Ỹ2

).

By the Markov LemmaPr(ǫ6,2,b|ǫc3,b, ǫ
c
5,b) tends to zero asn→ ∞.

• Let ǫ7,1,b be the event that there is a tuple(m̂(1)
c,b , n̂b−1, m̂p,1,b, k̂1,b) ∈ Mc ×N ×Mp,1 × K1 that

is not equal to the all-one tuple(1[3], 1, 1, 1) and that satisfies
(

Un
0,b(m̂

(1)
c,b , n̂b−1), U

n
1,b(m̂p,1,b, k̂1,b|m̂

(1)
c,b , n̂b−1),

V n
b (1|n̂b−1), Y

n
1,b, Ỹ

n
1,b(1, 1)

)

∈ T n
ε (PU0U1V Y1Ỹ1

).

By the Packing Lemma, we conclude thatPr(ǫ7,1,b|ǫ
c
6,1,b) tends to zero asn→ ∞ if

R1 +Rc,2 +R′
1 ≤ I(U0, U1;Y1, Ỹ1, V )− δ(ε) (107)
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R1+Rc,2+R̃v+R
′
1 ≤ I(U0, U1;Y1, Ỹ1, V )

+I(V ; Ỹ1, Y1)− δ(ε) (108)

Rp,1 +R′
1 ≤ I(U1;Y1, Ỹ1, V |U0)− δ(ε). (109)

• Let ǫ7,2,b be the event that there is a tuple(m̂(2)
c,b , n̂b−1, m̂p,2,b, k̂2,b) ∈ Mc ×N ×Mp,2 × K2 that

is not equal to the all-one tuple(1[3], 1, 1, 1) and that satisfies
(

Un
0,b(m̂

(2)
c,b , n̂b−1), U

n
2,b(m̂p,2,b, k̂2,b|m̂

(2)
c,b , n̂b−1),

V n
b (1|n̂b−1), Y

n
2,b, Ỹ

n
2,b(1, 1)

)

∈ T n
ε (PU0U2V Y2Ỹ2

).

By the Markov Lemma and the Packing Lemma, we conclude thatPr(ǫ7,2,b|ǫ
c
6,2,b) tends to zero as

n→ ∞, if

R2 +Rc,1 +R′
2 ≤ I(U0, U2;Y2, Ỹ2, V )− δ(ε) (110)

R2+Rc,1+R̃v+R
′
2 ≤ I(U0, U2;Y2, Ỹ2, V )

+I(V ; Ỹ2, Y2)− δ(ε) (111)

Rp,2 +R′
2 ≤ I(U2;Y2, Ỹ2, V |U0)− δ(ε). (112)

Whenever the eventǫcb+1 occurs but none of the events above, thenǫcb. Therefore,

Pr
[

ǫb|ǫ
c
b+1

]

≤ Pr
[

ǫ0,b ∪ ǫ1,b ∪ ǫ2,1,b ∪ ǫ2,2,b ∪ ǫ3,b

∪ǫ4,b ∪ ǫ5,b ∪ ǫ6,1,b ∪ ǫ6,2,b
∣

∣ǫcb+1

]

≤ Pr
[

ǫ0,b
∣

∣ǫcb+1

]

+ Pr
[

ǫ1,b|ǫ
c
0,b, ǫ

c
b+1

]

+

2
∑

i=1

Pr
[

ǫ2,i,b|ǫ
c
1,b, ǫ

c
b+1

]

+Pr
[

ǫ3,b|ǫ
c
1,b, ǫ

c
2,1,b, ǫ

c
2,2,b, ǫ

c
b+1

]

+ Pr
[

ǫ4,b|ǫ
c
3,b, ǫ

c
b+1

]

+Pr
[

ǫ5,b|ǫ
c
3,b, ǫ

c
b+1

]

+

2
∑

i=1

Pr
[

ǫ6,i,b|ǫ
c
3,b, ǫ

c
b+1

]

= Pr[ǫ0,b] + Pr
[

ǫ1,b|ǫ
c
0,b

]

+

2
∑

i=1

Pr
[

ǫ2,i,b|ǫ
c
1,b

]

+Pr
[

ǫ3,b|ǫ
c
1,b, ǫ

c
2,1,b, ǫ

c
2,2,b

]

+ Pr
[

ǫ4,b|ǫ
c
3,b

]

+ Pr
[

ǫ5,b|ǫ
c
3,b

]
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+

2
∑

i=1

Pr
[

ǫ6,i,b|ǫ
c
3,b

]

, (113)

where the last equality follows because the channel is memoryless and the codebooks in blocksb and

b+1 have been chosen independently. As explained in the previous paragraphs, each of the terms in the

last five lines tends to 0 asn→ ∞, if Constraints (101)–(112) are satisfied. Thus, by (100) and (113) we

conclude that the probability of errorP (N)
e (averaged over all code constructions) vanishes asn → ∞

if Constraints (101)–(112) hold. Lettingε → 0, we obtain that the probability of error can be made to

tend to 0 asn→ ∞ whenever

R′
1 +R′

2 > I(U1;U2|U0) (114a)

R̂1 + R̃1 > I(Ỹ1;Y1) (114b)

R̂2 + R̃2 > I(Ỹ2;Y2) (114c)

R̂1 < I(U0, U1, U2, Ỹ2; Ỹ1) (114d)

R̂2 < I(U0, U1, U2, Ỹ1; Ỹ2) (114e)

R̂1 + R̂2 < I(U0, U1, U2; Ỹ1, Ỹ2)

+I(Ỹ1; Ỹ2) (114f)

R̃v > I(U0, U1, U2, Ỹ1,Ỹ2;V) (114g)

R1 +Rc,2 + R̃v +R′
1 < I(U0, U1;Y1, Ỹ1, V )

+I(V ; Ỹ1, Y1) (114h)

R1 +Rc,2 +R′
1 < I(U0, U1;Y1, Ỹ1, V ) (114i)

Rc,1 +R2 +R′
2 < I(U0, U2;Y2, Ỹ2, V ) (114j)

Rc,1 +R2 + R̃v +R′
2 < I(U0, U2;Y2, Ỹ2, V )

+I(V ; Ỹ2, Y2) (114k)

Rp,1 +R′
1 < I(U1;Y1, Ỹ1, V |U0) (114l)

Rp,2 +R′
2 < I(U2;Y2, Ỹ2, V |U0). (114m)

Moreover, the feedback-rate constraints (1) impose that:

R̃1 ≤ RFb,1 (114n)

R̃2 ≤ RFb,2. (114o)
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Eliminating the auxiliaries̃R1, R̃2, R̂1, R̂2, R̃v from the above (using the Fourier-Motzkin algorithm), we

obtain:

R′
1 +R′

2 > I(U1;U2|U0) (115a)

R1 +Rc,2 +R′
1 < I(U0, U1;Y1, Ỹ1, V )

−I(V ;U0, U1, U2, Ỹ2|Ỹ1, Y1) (115b)

Rc,1 +R2 +R′
2 < I(U0, U2;Y2, Ỹ2, V )

−I(V ;U0, U1, U2, Ỹ1|Ỹ2, Y2) (115c)

Rp,1 +R′
1 < I(U1;Y1, Ỹ1, V |U0) (115d)

Rp,2 +R′
2 < (U2;Y2, Ỹ2, V |U0) (115e)

where the feedback-rate constraints have to satisfy

I(Y1; Ỹ1|U0, U1, U2, Ỹ2) ≤ RFb,1 (116a)

I(Y2; Ỹ2|U0, U1, U2, Ỹ1) ≤ RFb,2 (116b)

I(Y1, Y2; Ỹ1, Ỹ2|U0, U1, U2) ≤ RFb,1 +RFb,2. (116c)

Applying again the Fourier-Motzkin elimination algorithmto Constraints (115) and keeping Con-

straints (116), we obtain the desired result in Theorem 4 with the additional constraint that

I(U1;U2|U0) ≤ I(U1;Y1,Ỹ1,V |U0)+(U2;Y2,Ỹ2,V |U0). (117)

Finally, this last constraint can be ignored because for anytuple (U0, U1, U2,X, Y1, Y2, Ỹ1, Ỹ2) that

violates (117), the region defined by the constraints in Theorem 4 is contained in the time-sharing

region.

APPENDIX D

PROOF OFTHEOREM 5

LetRFb,1 > 0. Fix a tuple(U (M)
0 , U

(M)
1 , U

(M)
2 ,X(M)) and rate pairs(R(M)

1 , R
(M)
2 ) and(R(Enh)

1 , R
(Enh)
2 ) ∈

C
(1)
Enh as stated in the theorem. Then, by the assumptions in the theorem,

R
(M)
1 ≤ I(U

(M)
0 , U

(M)
1 ;Y

(M)
1 ) (118a)

R
(M)
2 < I(U

(M)
0 , U

(M)
2 ;Y

(M)
2 ) (118b)

R
(M)
1 +R

(M)
2 ≤ I(U

(M)
0 , U

(M)
1 ;Y

(M)
1 )+I(U

(M)
2 ;Y

(M)
2 |U

(M)
0 )



53

−I(U
(M)
1 ;U

(M)
2 |U

(M)
0 ), (118c)

whereY (M)
1 andY (M)

2 denote the outputs of the considered DMBC corresponding to inputX(M). (Notice

the strict inequality of the second constraint.)

By the definition ofC(1)
Enh we can identify random variablesU (Enh)

0 andX(Enh) such that

R
(Enh)
1 ≤ I(U

(Enh)
0 ;Y

(Enh)
1 ) (119a)

R
(Enh)
2 ≤ I(X(Enh);Y

(Enh)
1 , Y

(Enh)
2 |U

(Enh)
0 ), (119b)

whereY (Enh)
1 andY (Enh)

2 denote the outputs of the considered DMBC corresponding to inputX(Enh).

Define furtherU (Enh)
1 =const.,U (Enh)

2 = X(Enh), Ỹ (Enh)
1 = Y

(Enh)
1 , ỸM

1 =const, and a binary random

variableQ independent of all previously defined random variables and of pmf

PQ(q) =







γ, q = Enh

1− γ, q = M.
(120)

We show that whenγ is sufficiently small, then the random variables

U0 := U
(Q)
0 , U1 := U

(Q)
1 , U2 := U

(Q)
2

X := X(Q), and Ỹ1 := Ỹ
(Q)
1 (121)

satisfy the feedback rate constraints (33) and the rate pair(R′
1, R

′
2),

R′
1 := (1− γ)R

(M)
1 + γR

(Enh)
1 (122a)

R′
2 := (1− γ)R

(M)
2 + γR

(Enh)
2 , (122b)

satisfies the constraints in (32) for the choice in (121). Thetwo imply that the rate pair(R′
1, R

′
2) lies in

R
(1)
relay,hb and concludes our proof.

Notice that the pmf of the tupleU0, U1, U2,X, Y1, Y2, Ỹ1 has the desired form

PQPU0U1U2|QPX|U0U1U2QPY1Y2|XPỸ1|Y1Q
. (123)

wherePY1Y2|X denotes the channel law.

For the described choice of random variables (121), the feedback-rate constraint (33) specializes to

γH(Y
(Enh)
1 |Y

(Enh)
2 ,X(Enh)) ≤ RFb,1, (124)

which is satisfied for all sufficiently smallγ ∈ (0, 1). Moreover, for this choice the constraints in (32)

specialize to

R1 ≤ (1− γ)I(U
(M)
0 , U

(M)
1 ;Y

(M)
1 )
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+γI(U
(Enh)
0 ;Y

(Enh)
1 ) (125a)

R2 ≤ (1− γ)I(U
(M)
0 , U

(M)
2 ;Y

(M)
2 )

+γ
(

I(X(Enh);Y
(Enh)
1 , Y

(Enh)
2 )

−H(Y
(Enh)
1 |Y

(Enh)
2 )

)

(125b)

R1 +R2 ≤ (1− γ)
(

I(U
(M)
0 , U

(M)
1 ;Y

(M)
1 )

+I(U
(M)
2 ;Y

(M)
2 |U

(M)
0 )

−I(U
(M)
1 ;U

(M)
2 |U

(M)
0 )

)

+γ
(

I(U
(Enh)
0 ;Y

(Enh)
1 )

+I(X(Enh);Y
(Enh)
1 , Y

(Enh)
2 |U

(Enh)
0 )

)

(125c)

R1 +R2 ≤ (1− γ)
(

I(U
(M)
1 ;Y

(M)
1 |U

(M)
0 )

+I(U
(M)
0 , U

(M)
2 ;Y

(M)
2 )

−I(U
(M)
1 ;U

(M)
2 |U

(M)
0 )

)

+γ
(

I(X(Enh);Y
(Enh)
1 , Y

(Enh)
2 )

−H(Y
(Enh)
1 |Y

(Enh)
2 )

)

. (125d)

We argue in the following that the rate pair(R1 = R′
1, R2 = R′

2) defined in (122) satisfies these

constraints for all sufficiently smallγ > 0. Comparing (118a), (119a), and (122a), we see that the first

constraint (125a) is satisfied for any choice ofγ ∈ [0, 1]. Similarly, comparing (118c), (119a), (119b),

and (122a) and (122b), we note that also the third constraint(125c) is satisfied for anyγ ∈ [0, 1]. The

second constraint (125b) is satisfied whenγ is sufficiently small. This can be seen by comparing (118b),

(119b), and (122b), and because Constraint (118b) holds with strict inequality. The last constraint (125d)

is not active in view of Constraint (125c) whenever

γH(Y
(Enh)
1 |Y

(Enh)
2 ) ≤ (1− γ)Γ(M), (126)

whereΓ(M) is defined in (39). Thus, also this last constraint is satisfied whenγ is sufficiently small. This

concludes our proof.

APPENDIX E

PROOF OFREMARK 1

Fix a distributionPU0U1U2X . We prove that there exists a distributionPU ′

0
U ′

1
U ′

2
X′ that satisfies one
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of the three conditions in Remark 1 and so that the rate regiondefined by Marton’s constraints (6)

and distributionPU ′

0
U ′

1
U ′

2
X′ contains the rate region defined by Marton’s constraints (6)and distribution

PU0U1U2X .

We assume without loss of generality thatI(U0;Y1) ≤ I(U0;Y2), and we separately treat the two cases

• I(U0, U1;Y1) ≤ I(U0, U1;Y2)

• I(U0, U1;Y1) > I(U0, U1;Y2).

For the first case,I(U0, U1;Y1) ≤ I(U0, U1;Y2), let U ′
0 = (U0, U1), U ′

1 = const.,U ′
2 = U2 and

X ′ = X. Evaluating Marton’s constraints (6) for the auxiliaries(U ′
0, U

′
1, U

′
2,X

′) results in

R1 ≤ I(U0, U1;Y1) (127a)

R2 ≤ I(U0, U1, U2;Y2) (127b)

R1+R2 ≤ I(U0, U1;Y1)+I(U2;Y2|U0, U1) (127c)

R1+R2 ≤ I(U0, U1, U2;Y2) (127d)

Note that the fourth constraint is redundant in view of the second.

We show that the first three constraints are no tighter than Marton’s constraints in (6), which proves the

desired result for the first case. In fact, theR1-constraint in (127a) coincides with Marton’sR1-constraint

(6a). TheR2-constraint in (127b) is looser than Marton’sR2-constraint (6b):

I(U0, U1, U2;Y2) ≥ I(U0, U2;Y2).

The sum-rate constraint in (127c) is looser than Marton’s sum-rate constraint (6c),

I(U0, U1;Y1) + I(U2;Y2|U0, U1)

= I(U0, U1;Y1) +H(U2|U0, U1)−H(U2|U0, U1, Y2)

≥ I(U0, U1;Y1) +H(U2|U0, U1)−H(U2|U0, Y2)

= I(U0, U1;Y1) +H(U2|U0, U1)−H(U2|U0, Y2)

+H(U2|U0)−H(U2|U0)

= I(U0, U1;Y1) + I(U2;Y2|U0)− I(U1;U2|U0).

We now treat the second caseI(U0, U1;Y1) > I(U0, U1;Y2). Since I(U0;Y1) < I(U0;Y2) by

assumption and by the continuity of mutual information, there exists a deterministic functionf such

that

I(U0, f(U1);Y1) = I(U0, f(U1);Y2) (128)
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Let now U ′
0 = (U0, f(U1)), U ′

1 = U1, U ′
2 = U2 andX ′ = X. For this choice of auxiliaries, Marton’s

constraints (6) result in:

R1 ≤ I(U0, f(U1), U1;Y1) (129a)

R2 ≤ I(U0, f(U1), U2;Y2) (129b)

R1+R2 ≤ I(U0, f(U1), U1;Y1)+I(U2;Y2|U0, f(U1))

−I(U1;U2|U0, f(U1)) (129c)

R1+R2 ≤ I(U0, f(U1), U2;Y2) + I(U1;Y1|U0, f(U1))

−I(U1;U2|U0, f(U1)) (129d)

Note that the two sum-rate constraints (129c) and (129d) coincide becauseI(U0, f(U1);Y1) =

I(U0, f(U1);Y2).

We again show that these constraints are no tighter than Marton’s constraints in (6), which proves the

desired result also for this second case and concludes the proof. TheR1-constraint in (129a) coincides

with Marton’sR1-constraint (6a):

I(U0, f(U1), U1;Y1) = I(U0, U1;Y1).

TheR2-constraint in (129b) is looser than Marton’sR2-constraint (6b):

I(U0, f(U1), U2;Y2) ≥ I(U0, U2;Y2).

The sum-rate constraints in (129c) and (129d) are looser than Marton’s sum-rate constraint (6c):

I(U0,f(U1),U1;Y1)−I(U1;U2|U0,f(U1))+I(U2;Y2|U0,f(U1))

= I(U0, U1;Y1)−H(U2|U0, f(U1)) +H(U2|U0, U1)

+H(U2|U0, f(U1))−H(U2|U0, f(U1), Y2)

= I(U0, U1;Y1) +H(U2|U0, U1)−H(U2|U0, f(U1), Y2)

+H(U2|U0)−H(U2|U0)

≥ I(U0, U1;Y1) +H(U2|U0, U1)−H(U2|U0, Y2)

+H(U2|U0)−H(U2|U0)

= I(U0, U1;Y1) + I(U2;Y2|U0)− I(U1;U2|U0).
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