It is the cache of ${baseHref}. It is a snapshot of the page. The current page could have changed in the meantime.
Tip: To quickly find your search term on this page, press Ctrl+F or ⌘-F (Mac) and use the find bar.

CSC Journals - Manuscript Information
 
 
List of Journals     /     Call For Papers     /     Subscriptions     /     Login
 
 
 
 
 SEARCH
By Author By Title
 
 
ABOUT CSC
 About CSC Journals
 CSC Journals Objectives
 List of Journals
 CALL FOR PAPERS
 Call For Papers CFP
 Special Issue CFP
AUTHOR GUIDELINES
 Submission Guidelines
 Peer Review Process
 Helpful Hints For Getting Published
 Plagiarism Policies
 Abstracting & Indexing
 Open Access Policy
 Submit Manuscript
 FOR REVIEWERS
 Reviewer Guidelines
 FOR EDITORIAL
 Editor Guidelines
 Join Us As Editor
 Launch Special Issue
 Suggest New Journal
 CSC LIBRARY
 Browse CSC Library
 Open Access Policy
  SERVICES
 Conference Partnership Program (CPP)
 Abstracting & Indexing
 SUBSCRIPTIONS
 Subscriptions
 Discounted Packages
 Archival Subscriptions
 How to Subscribe
 Librarians
 Subscriptions Agents
 Order Form
 DOWNLOADS
 
 
 
 
Reducing Packet Transmission Delay in Vehicular Ad Hoc Networks using Edge Node Based Greedy Routing
Full text
 PDF (639.3KB)
Source 
International Journal of Computer Networks (IJCN)
Table of Contents
Download Complete Issue    PDF(2.93MB)
Volume:  2    Issue:  1
Pages:  1-79
Publication Date:   March 2010
ISSN (Online): 1985-4129
Pages 
1 - 15
Author(s)  
K.Prasanth - India
K.Duraiswamy - India
K.Jayasudha - India
 
Published Date   
31-03-2010 
Publisher 
CSC Journals, Kuala Lumpur, Malaysia
ADDITIONAL INFORMATION
Keywords   Abstract   References   Cited by   Related Articles   Collaborative Colleague
 
KEYWORDS:   Vehicular Ad hoc Networks, Revival Mobility Model, Greedy Position Based Routing, EBGR 
 
 
This Manuscript is indexed in the following databases/websites:-
1. Scribd
2. Docstoc
3. Directory of Open Access Journals (DOAJ)
4. PDFCAST
5. Google Scholar
6. refSeek
7. Academic Index
8. Socol@r
9. iSEEK
 
 
VANETs (Vehicular Ad hoc Networks) are highly mobile wireless ad hoc networks and will play an important role in public safety communications and commercial applications. Routing of data in VANETs is a challenging task due to rapidly changing topology and high speed mobility of vehicles. Conventional routing protocols in MANETs (Mobile Ad hoc Networks) are unable to fully address the unique characteristics in vehicular networks. In this paper, we propose EBGR (Edge Node Based Greedy Routing), a greedy position based routing approach to forward packets to the node present in the edge of the limited transmission range of source/forwarding node as most suitable next hop, with consideration of nodes moving in the direction of the destination. We propose Revival Mobility model (RMM) to evaluate the performance of our routing technique. This paper presents a detailed description of our approach and simulation results show that end to end delay in packet transmission is minimized considerably compared to current routing protocols of VANET. 
 
 
 
1 Charles E. Perkins and Pravin Bhagwat, “Highly dynamic destination-sequenced distance-vector routing (DSDV),” in Proceedings of ACM SIGCOMM’94 Conference on Communications Architectures, Protocols and Applications, 1994.
2 T. H. Clausen and P. Jacquet. “Optimized Link State Routing (OLSR)”, RFC 3626, 2003.
3 Richard G. Ogier , Fred L. Templin , Bhargav Bellur , and Mark G. Lewis , “Topology broadcast based on reverse-path forwarding (tbrpf),” Internet Draft, draft-ietf-manet-tbrpf-03.txt, work in progress, November 2001.
4 S. R. Das, R. Castaneda, and J. Yan, “Simulation based performance evaluation of mobile, ad hoc network routing protocols,” ACM/Baltzer Mobile Networks and Applications (MONET) Journal, pp. 179–189, July 2000.
5 David B. Johnson and David A. Maltz, “Dynamic Source routing in ad hoc wireless networks,” in Mobile Computing, Tomasz Imielinske and Hank Korth, Eds., vol. 353. Kluwer Academic Publishers, 1996.
6 Vincent D. Park and M. Scott Corson, “A highly adaptive distributed routing algorithm for mobile wireless networks,” in Proceedings of IEEE INFOCOMM,1997, pp. 1405–1413.
7 Charles E. Perkins and Elizabeth M. Royer, “Adhoc on-demand distance vector routing,” in Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications, February 1999, pp. 1405–1413.
8 Josh Broch , David A. Maltz , David B. Johnson , Yih-Chun Hu , and Jorjeta Jetcheva , “A performance comparison of multi-hop wireless ad hoc network routing protocols,” in Proceedings of the Fourth Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom ’98), Dallas, Texas, U.S.A., October 1998, pp. 85 – 97.
9 P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with guaranteed delivery in ad hoc wireless networks,” in Proc. of 3rd ACM Intl. Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications DIAL M99, 1999, pp. 48–55.
10 Brad Karp and H. T. Kung, “GPSR: Greedy perimeter stateless routing for wireless networks,” in Proceedings of the 6th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom 2000), Boston, MA, U.S.A., August 2000, pp. 243–254.
11 Stefano Basagni, Imrich Chlamtac, Violet R. Syrotiuk, and Barry A.Woodward, “A distance routing effect algorithm for mobility (dream),” in ACM MOBICOM ’98. ACM, 1998, pp. 76 – 84.
12 Ljubica Blazevic , Silvia Giordano , and Jean- Yves Le Boudec , “Self-organizing wide-area routing,” in Proceedings of SCI 2000/ISAS 2000,Orlando, July 2000.
13 C. Lochert, H. Hartenstein, J. Tian, D. Herrmann, H. Fubler, M. Mauve: “A Routing Strategy for Vehicular Ad Hoc Networks in City Environments”, IEEE Intelligent Vehicles Symposium (IV2003).
14 C. Lochert, M. Mauve, H. Fler, H. Hartenstein. “Geographic Routing in City Scenarios” (poster), MobiCom. 2004, ACM SIGMOBILE Mobile Computing and Communications Review (MC2R) 9 (1), pp. 69–72, 2005.
15 B.-C. Seet, G. Liu, B.-S. Lee, C. H. Foh, K. J. Wong, K.-K. Lee. “A-STAR: A Mobile Ad Hoc Routing Strategy for Metropolis Vehicular Communications”, NETWORKING 2004.
16 H. Wu, R. Fujimoto, R. Guensler and M. Hunter. “MDDV: A Mobility-Centric Data Dissemination Algorithm for Vehicular Networks”, ACM VANET 2004.
17 J. Zhao and G. Cao. “VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc Networks”, InfoCom 2006.
18 Rupesh Kumar, S.V.Rao. “Directional Greedy Routing Protocol (DGRP) in Mobile Ad hoc Networks”, International Conference on Information Technology,2008.
19 Jiayu Gong, Cheng-Zhong Xu and James Holle. “Predictive Directional Greedy Routing in Vehicular Ad hoc Networks”, (ICDCSW’ 07).
20 The Network Simulator: ns2, http: //www.isi.edu/nsnam /ns/."
 
 
 
 
 
 
 
 
K.Prasanth : Colleagues
K.Duraiswamy : Colleagues
K.Jayasudha : Colleagues
Dr.C.Chandrasekar : Colleagues  
 
 
 
  Untitled Document
 
Copyrights (c) 2012 Computer Science Journals. All rights reserved.
Best viewed at 1152 x 864 resolution. Microsoft Internet Explorer.
 
   
 
Copyrights & Usage: Articles published by CSC Journals are Open Access. Permission to copy and distribute any other content, images, animation and other parts of this website is prohibited. CSC Journals has the rights to take action against individual/group if they are found victim of copying these parts of the website.